X-Git-Url: http://git.megacz.com/?a=blobdiff_plain;f=ghc%2Fcompiler%2FnativeGen%2FAsmCodeGen.lhs;h=b1e0d47865bf4fa60877a3f4616c7b524b11bd06;hb=7f82f577d34b201b7345794ece8b9dbb680a0257;hp=5fca05543108af0232e426e0ef1d3529f6c7f3a5;hpb=bc823a0863befbcd57f70d29e04bc202384b3d33;p=ghc-hetmet.git diff --git a/ghc/compiler/nativeGen/AsmCodeGen.lhs b/ghc/compiler/nativeGen/AsmCodeGen.lhs index 5fca055..b1e0d47 100644 --- a/ghc/compiler/nativeGen/AsmCodeGen.lhs +++ b/ghc/compiler/nativeGen/AsmCodeGen.lhs @@ -6,9 +6,7 @@ module AsmCodeGen ( nativeCodeGen ) where #include "HsVersions.h" -#include "nativeGen/NCG.h" - -import List ( intersperse ) +#include "NCG.h" import MachMisc import MachRegs @@ -16,25 +14,31 @@ import MachCode import PprMach import AbsCStixGen ( genCodeAbstractC ) -import AbsCSyn ( AbstractC, MagicId ) -import AbsCUtils ( mkAbsCStmtList ) +import AbsCSyn ( AbstractC, MagicId(..) ) +import AbsCUtils ( mkAbsCStmtList, magicIdPrimRep ) import AsmRegAlloc ( runRegAllocate ) -import PrimOp ( commutableOp, PrimOp(..) ) +import MachOp ( MachOp(..), isCommutableMachOp, isComparisonMachOp ) import RegAllocInfo ( findReservedRegs ) -import Stix ( StixTree(..), StixReg(..), - pprStixTrees, pprStixTree, CodeSegment(..), - stixCountTempUses, stixSubst, - NatM, initNat, mapNat, - NatM_State, mkNatM_State, +import Stix ( StixReg(..), StixStmt(..), StixExpr(..), StixVReg(..), + pprStixStmts, pprStixStmt, + stixStmt_CountTempUses, stixStmt_Subst, + liftStrings, + initNat, + mkNatM_State, uniqOfNatM_State, deltaOfNatM_State ) -import UniqSupply ( returnUs, thenUs, mapUs, initUs, - initUs_, UniqSM, UniqSupply, - lazyThenUs, lazyMapUs ) +import UniqSupply ( returnUs, thenUs, initUs, + UniqSM, UniqSupply, + lazyMapUs ) import MachMisc ( IF_ARCH_i386(i386_insert_ffrees,) ) -import OrdList ( fromOL, concatOL ) +import qualified Pretty import Outputable +import FastString +-- DEBUGGING ONLY +--import OrdList + +import List ( intersperse ) \end{code} The 96/03 native-code generator has machine-independent and @@ -42,9 +46,9 @@ machine-dependent modules (those \tr{#include}'ing \tr{NCG.h}). This module (@AsmCodeGen@) is the top-level machine-independent module. It uses @AbsCStixGen.genCodeAbstractC@ to produce @StixTree@s -(defined in module @Stix@), using support code from @StixInfo@ (info -tables), @StixPrim@ (primitive operations), @StixMacro@ (Abstract C -macros), and @StixInteger@ (GMP arbitrary-precision operations). +(defined in module @Stix@), using support code from @StixPrim@ +(primitive operations), @StixMacro@ (Abstract C macros), and +@StixInteger@ (GMP arbitrary-precision operations). Before entering machine-dependent land, we do some machine-independent @genericOpt@imisations (defined below) on the @StixTree@s. @@ -85,7 +89,7 @@ The machine-dependent bits break down as follows: So, here we go: \begin{code} -nativeCodeGen :: AbstractC -> UniqSupply -> (SDoc, SDoc) +nativeCodeGen :: AbstractC -> UniqSupply -> (SDoc, Pretty.Doc) nativeCodeGen absC us = let absCstmts = mkAbsCStmtList absC (sdoc_pairs, us1) = initUs us (lazyMapUs absCtoNat absCstmts) @@ -95,32 +99,37 @@ nativeCodeGen absC us insn_sdoc = my_vcat insn_sdocs stix_sdoc = vcat stix_sdocs -# if NCG_DEBUG +# ifdef NCG_DEBUG my_trace m x = trace m x - my_vcat sds = vcat (intersperse - (char ' ' - $$ ptext SLIT("# __debug_NCG_split_marker") - $$ char ' ') - sds) + my_vcat sds = Pretty.vcat ( + intersperse ( + Pretty.char ' ' + Pretty.$$ Pretty.ptext SLIT("# ___ncg_debug_marker") + Pretty.$$ Pretty.char ' ' + ) + sds + ) # else - my_vcat sds = vcat sds + my_vcat sds = Pretty.vcat sds my_trace m x = x # endif - in - my_trace "nativeGen: begin" + in + my_trace "nativeGen: begin" (stix_sdoc, insn_sdoc) -absCtoNat :: AbstractC -> UniqSM (SDoc, SDoc) +absCtoNat :: AbstractC -> UniqSM (SDoc, Pretty.Doc) absCtoNat absC - = genCodeAbstractC absC `thenUs` \ stixRaw -> - genericOpt stixRaw `bind` \ stixOpt -> - genMachCode stixOpt `thenUs` \ pre_regalloc -> - regAlloc pre_regalloc `bind` \ almost_final -> - x86fp_kludge almost_final `bind` \ final_mach_code -> - vcat (map pprInstr final_mach_code) `bind` \ final_sdoc -> - pprStixTrees stixOpt `bind` \ stix_sdoc -> - returnUs (stix_sdoc, final_sdoc) + = _scc_ "genCodeAbstractC" genCodeAbstractC absC `thenUs` \ stixRaw -> + _scc_ "genericOpt" genericOpt stixRaw `bind` \ stixOpt -> + _scc_ "liftStrings" liftStrings stixOpt `thenUs` \ stixLifted -> + _scc_ "genMachCode" genMachCode stixLifted `thenUs` \ pre_regalloc -> + _scc_ "regAlloc" regAlloc pre_regalloc `bind` \ almost_final -> + _scc_ "x86fp_kludge" x86fp_kludge almost_final `bind` \ final_mach_code -> + _scc_ "vcat" Pretty.vcat (map pprInstr final_mach_code) `bind` \ final_sdoc -> + _scc_ "pprStixTrees" pprStixStmts stixOpt `bind` \ stix_sdoc -> + returnUs ({-\_ -> Pretty.vcat (map pprInstr almost_final),-} + stix_sdoc, final_sdoc) where bind f x = x f @@ -148,15 +157,13 @@ Switching between the two monads whilst carrying along the same Unique supply breaks abstraction. Is that bad? \begin{code} -genMachCode :: [StixTree] -> UniqSM InstrBlock +genMachCode :: [StixStmt] -> UniqSM InstrBlock genMachCode stmts initial_us - = let initial_st = mkNatM_State initial_us 0 - (blocks, final_st) = initNat initial_st - (mapNat stmt2Instrs stmts) - instr_list = concatOL blocks - final_us = uniqOfNatM_State final_st - final_delta = deltaOfNatM_State final_st + = let initial_st = mkNatM_State initial_us 0 + (instr_list, final_st) = initNat initial_st (stmtsToInstrs stmts) + final_us = uniqOfNatM_State final_st + final_delta = deltaOfNatM_State final_st in if final_delta == 0 then (instr_list, final_us) @@ -181,12 +188,12 @@ have introduced some new opportunities for constant-folding wrt address manipulations. \begin{code} -genericOpt :: [StixTree] -> [StixTree] -genericOpt = map stixConFold . stixPeep +genericOpt :: [StixStmt] -> [StixStmt] +genericOpt = map stixStmt_ConFold . stixPeep -stixPeep :: [StixTree] -> [StixTree] +stixPeep :: [StixStmt] -> [StixStmt] -- This transformation assumes that the temp assigned to in t1 -- is not assigned to in t2; for otherwise the target of the @@ -194,111 +201,138 @@ stixPeep :: [StixTree] -> [StixTree] -- code. As far as I can see, StixTemps are only ever assigned -- to once. It would be nice to be sure! -stixPeep ( t1@(StAssign pka (StReg (StixTemp u pk)) rhs) +stixPeep ( t1@(StAssignReg pka (StixTemp (StixVReg u pk)) rhs) : t2 : ts ) - | stixCountTempUses u t2 == 1 - && sum (map (stixCountTempUses u) ts) == 0 + | stixStmt_CountTempUses u t2 == 1 + && sum (map (stixStmt_CountTempUses u) ts) == 0 = # ifdef NCG_DEBUG - trace ("nativeGen: inlining " ++ showSDoc (pprStixTree rhs)) + trace ("nativeGen: inlining " ++ showSDoc (pprStixExpr rhs)) # endif - (stixPeep (stixSubst u rhs t2 : ts)) + (stixPeep (stixStmt_Subst u rhs t2 : ts)) stixPeep (t1:t2:ts) = t1 : stixPeep (t2:ts) stixPeep [t1] = [t1] stixPeep [] = [] - --- disable stix inlining until we figure out how to fix the --- latent bugs in the register allocator which are exposed by --- the inliner. ---stixPeep = id \end{code} For most nodes, just optimize the children. \begin{code} -stixConFold :: StixTree -> StixTree - -stixConFold (StInd pk addr) = StInd pk (stixConFold addr) - -stixConFold (StAssign pk dst src) - = StAssign pk (stixConFold dst) (stixConFold src) - -stixConFold (StJump addr) = StJump (stixConFold addr) - -stixConFold (StCondJump addr test) - = StCondJump addr (stixConFold test) - -stixConFold (StCall fn cconv pk args) - = StCall fn cconv pk (map stixConFold args) -\end{code} - -Fold indices together when the types match: -\begin{code} -stixConFold (StIndex pk (StIndex pk' base off) off') - | pk == pk' - = StIndex pk (stixConFold base) - (stixConFold (StPrim IntAddOp [off, off'])) - -stixConFold (StIndex pk base off) - = StIndex pk (stixConFold base) (stixConFold off) -\end{code} - -For PrimOps, we first optimize the children, and then we try our hand -at some constant-folding. - -\begin{code} -stixConFold (StPrim op args) = stixPrimFold op (map stixConFold args) -\end{code} - -Replace register leaves with appropriate StixTrees for the given -target. - -\begin{code} -stixConFold leaf@(StReg (StixMagicId id)) - = case (stgReg id) of - Always tree -> stixConFold tree - Save _ -> leaf - -stixConFold other = other +stixExpr_ConFold :: StixExpr -> StixExpr +stixStmt_ConFold :: StixStmt -> StixStmt + +stixStmt_ConFold stmt + = case stmt of + StAssignReg pk reg@(StixTemp _) src + -> StAssignReg pk reg (stixExpr_ConFold src) + StAssignReg pk reg@(StixMagicId mid) src + -- Replace register leaves with appropriate StixTrees for + -- the given target. MagicIds which map to a reg on this arch are left unchanged. + -- Assigning to BaseReg is always illegal, so we check for that. + -> case mid of { + BaseReg -> panic "stixStmt_ConFold: assignment to BaseReg"; + other -> + case get_MagicId_reg_or_addr mid of + Left realreg + -> StAssignReg pk reg (stixExpr_ConFold src) + Right baseRegAddr + -> stixStmt_ConFold (StAssignMem pk baseRegAddr src) + } + StAssignMem pk addr src + -> StAssignMem pk (stixExpr_ConFold addr) (stixExpr_ConFold src) + StVoidable expr + -> StVoidable (stixExpr_ConFold expr) + StJump dsts addr + -> StJump dsts (stixExpr_ConFold addr) + StCondJump addr test + -> let test_opt = stixExpr_ConFold test + in + if manifestlyZero test_opt + then StComment (mkFastString ("deleted: " ++ showSDoc (pprStixStmt stmt))) + else StCondJump addr (stixExpr_ConFold test) + StData pk datas + -> StData pk (map stixExpr_ConFold datas) + other + -> other + where + manifestlyZero (StInt 0) = True + manifestlyZero other = False + +stixExpr_ConFold expr + = case expr of + StInd pk addr + -> StInd pk (stixExpr_ConFold addr) + StCall fn cconv pk args + -> StCall fn cconv pk (map stixExpr_ConFold args) + StIndex pk (StIndex pk' base off) off' + -- Fold indices together when the types match: + | pk == pk' + -> StIndex pk (stixExpr_ConFold base) + (stixExpr_ConFold (StMachOp MO_Nat_Add [off, off'])) + StIndex pk base off + -> StIndex pk (stixExpr_ConFold base) (stixExpr_ConFold off) + + StMachOp mop args + -- For PrimOps, we first optimize the children, and then we try + -- our hand at some constant-folding. + -> stixMachOpFold mop (map stixExpr_ConFold args) + StReg (StixMagicId mid) + -- Replace register leaves with appropriate StixTrees for + -- the given target. MagicIds which map to a reg on this arch are left unchanged. + -- For the rest, BaseReg is taken to mean the address of the reg table + -- in MainCapability, and for all others we generate an indirection to + -- its location in the register table. + -> case get_MagicId_reg_or_addr mid of + Left realreg -> expr + Right baseRegAddr + -> case mid of + BaseReg -> stixExpr_ConFold baseRegAddr + other -> stixExpr_ConFold (StInd (magicIdPrimRep mid) baseRegAddr) + other + -> other \end{code} Now, try to constant-fold the PrimOps. The arguments have already been optimized and folded. \begin{code} -stixPrimFold - :: PrimOp -- The operation from an StPrim - -> [StixTree] -- The optimized arguments - -> StixTree - -stixPrimFold op arg@[StInt x] - = case op of - IntNegOp -> StInt (-x) - _ -> StPrim op arg - -stixPrimFold op args@[StInt x, StInt y] - = case op of - CharGtOp -> StInt (if x > y then 1 else 0) - CharGeOp -> StInt (if x >= y then 1 else 0) - CharEqOp -> StInt (if x == y then 1 else 0) - CharNeOp -> StInt (if x /= y then 1 else 0) - CharLtOp -> StInt (if x < y then 1 else 0) - CharLeOp -> StInt (if x <= y then 1 else 0) - IntAddOp -> StInt (x + y) - IntSubOp -> StInt (x - y) - IntMulOp -> StInt (x * y) - IntQuotOp -> StInt (x `quot` y) - IntRemOp -> StInt (x `rem` y) - IntGtOp -> StInt (if x > y then 1 else 0) - IntGeOp -> StInt (if x >= y then 1 else 0) - IntEqOp -> StInt (if x == y then 1 else 0) - IntNeOp -> StInt (if x /= y then 1 else 0) - IntLtOp -> StInt (if x < y then 1 else 0) - IntLeOp -> StInt (if x <= y then 1 else 0) - -- ToDo: WordQuotOp, WordRemOp. - _ -> StPrim op args +stixMachOpFold + :: MachOp -- The operation from an StMachOp + -> [StixExpr] -- The optimized arguments + -> StixExpr + +stixMachOpFold mop arg@[StInt x] + = case mop of + MO_NatS_Neg -> StInt (-x) + other -> StMachOp mop arg + +stixMachOpFold mop args@[StInt x, StInt y] + = case mop of + MO_32U_Gt -> StInt (if x > y then 1 else 0) + MO_32U_Ge -> StInt (if x >= y then 1 else 0) + MO_32U_Eq -> StInt (if x == y then 1 else 0) + MO_32U_Ne -> StInt (if x /= y then 1 else 0) + MO_32U_Lt -> StInt (if x < y then 1 else 0) + MO_32U_Le -> StInt (if x <= y then 1 else 0) + MO_Nat_Add -> StInt (x + y) + MO_Nat_Sub -> StInt (x - y) + MO_NatS_Mul -> StInt (x * y) + MO_NatS_Quot | y /= 0 -> StInt (x `quot` y) + MO_NatS_Rem | y /= 0 -> StInt (x `rem` y) + MO_NatS_Gt -> StInt (if x > y then 1 else 0) + MO_NatS_Ge -> StInt (if x >= y then 1 else 0) + MO_Nat_Eq -> StInt (if x == y then 1 else 0) + MO_Nat_Ne -> StInt (if x /= y then 1 else 0) + MO_NatS_Lt -> StInt (if x < y then 1 else 0) + MO_NatS_Le -> StInt (if x <= y then 1 else 0) + MO_Nat_Shl | y >= 0 && y < 32 -> do_shl x y + other -> StMachOp mop args + where + do_shl :: Integer -> Integer -> StixExpr + do_shl v 0 = StInt v + do_shl v n | n > 0 = do_shl (v*2) (n-1) \end{code} When possible, shift the constants to the right-hand side, so that we @@ -307,68 +341,65 @@ also assume that constants have been shifted to the right when possible. \begin{code} -stixPrimFold op [x@(StInt _), y] | commutableOp op = stixPrimFold op [y, x] +stixMachOpFold op [x@(StInt _), y] | isCommutableMachOp op + = stixMachOpFold op [y, x] \end{code} We can often do something with constants of 0 and 1 ... \begin{code} -stixPrimFold op args@[x, y@(StInt 0)] - = case op of - IntAddOp -> x - IntSubOp -> x - IntMulOp -> y - AndOp -> y - OrOp -> x - XorOp -> x - SllOp -> x - SrlOp -> x - ISllOp -> x - ISraOp -> x - ISrlOp -> x - IntNeOp | is_comparison -> x - _ -> StPrim op args +stixMachOpFold mop args@[x, y@(StInt 0)] + = case mop of + MO_Nat_Add -> x + MO_Nat_Sub -> x + MO_NatS_Mul -> y + MO_NatU_Mul -> y + MO_Nat_And -> y + MO_Nat_Or -> x + MO_Nat_Xor -> x + MO_Nat_Shl -> x + MO_Nat_Shr -> x + MO_Nat_Sar -> x + MO_Nat_Ne | x_is_comparison -> x + other -> StMachOp mop args where - is_comparison + x_is_comparison = case x of - StPrim opp [_, _] -> opp `elem` comparison_ops - _ -> False - -stixPrimFold op args@[x, y@(StInt 1)] - = case op of - IntMulOp -> x - IntQuotOp -> x - IntRemOp -> StInt 0 - _ -> StPrim op args + StMachOp mopp [_, _] -> isComparisonMachOp mopp + _ -> False + +stixMachOpFold mop args@[x, y@(StInt 1)] + = case mop of + MO_NatS_Mul -> x + MO_NatU_Mul -> x + MO_NatS_Quot -> x + MO_NatU_Quot -> x + MO_NatS_Rem -> StInt 0 + MO_NatU_Rem -> StInt 0 + other -> StMachOp mop args \end{code} Now look for multiplication/division by powers of 2 (integers). \begin{code} -stixPrimFold op args@[x, y@(StInt n)] - = case op of - IntMulOp -> case exactLog2 n of - Nothing -> StPrim op args - Just p -> StPrim ISllOp [x, StInt p] - IntQuotOp -> case exactLog2 n of - Nothing -> StPrim op args - Just p -> StPrim ISrlOp [x, StInt p] - _ -> StPrim op args +stixMachOpFold mop args@[x, y@(StInt n)] + = case mop of + MO_NatS_Mul + -> case exactLog2 n of + Nothing -> unchanged + Just p -> StMachOp MO_Nat_Shl [x, StInt p] + MO_NatS_Quot + -> case exactLog2 n of + Nothing -> unchanged + Just p -> StMachOp MO_Nat_Shr [x, StInt p] + other + -> unchanged + where + unchanged = StMachOp mop args \end{code} Anything else is just too hard. \begin{code} -stixPrimFold op args = StPrim op args -\end{code} - -\begin{code} -comparison_ops - = [ CharGtOp , CharGeOp , CharEqOp , CharNeOp , CharLtOp , CharLeOp, - IntGtOp , IntGeOp , IntEqOp , IntNeOp , IntLtOp , IntLeOp, - WordGtOp , WordGeOp , WordEqOp , WordNeOp , WordLtOp , WordLeOp, - AddrGtOp , AddrGeOp , AddrEqOp , AddrNeOp , AddrLtOp , AddrLeOp, - FloatGtOp , FloatGeOp , FloatEqOp , FloatNeOp , FloatLtOp , FloatLeOp, - DoubleGtOp, DoubleGeOp, DoubleEqOp, DoubleNeOp, DoubleLtOp, DoubleLeOp - ] +stixMachOpFold mop args = StMachOp mop args \end{code}