X-Git-Url: http://git.megacz.com/?a=blobdiff_plain;f=ghc%2Fcompiler%2FsimplCore%2FSimplify.lhs;h=c766c8fc5fbecd01bc73aaac389cce1f39cce476;hb=1703fe03e209e9d1f11c19a2b05fd4f0fd3d28f0;hp=92fb9dd5b3db6d0c8aacc4a0df55051d92eb226f;hpb=5ca77490a603e0175bb717343884533ad8de017d;p=ghc-hetmet.git diff --git a/ghc/compiler/simplCore/Simplify.lhs b/ghc/compiler/simplCore/Simplify.lhs index 92fb9dd..c766c8f 100644 --- a/ghc/compiler/simplCore/Simplify.lhs +++ b/ghc/compiler/simplCore/Simplify.lhs @@ -1,4 +1,4 @@ - +% % (c) The AQUA Project, Glasgow University, 1993-1998 % \section[Simplify]{The main module of the simplifier} @@ -8,67 +8,63 @@ module Simplify ( simplTopBinds, simplExpr ) where #include "HsVersions.h" -import CmdLineOpts ( intSwitchSet, switchIsOn, - opt_SccProfilingOn, opt_PprStyle_Debug, opt_SimplDoEtaReduction, - opt_SimplNoPreInlining, opt_DictsStrict, opt_SimplPedanticBottoms, +import CmdLineOpts ( switchIsOn, opt_SimplDoEtaReduction, + opt_SimplNoPreInlining, + dopt, DynFlag(Opt_D_dump_inlinings), SimplifierSwitch(..) ) import SimplMonad -import SimplUtils ( mkCase, transformRhs, findAlt, etaCoreExpr, - simplBinder, simplBinders, simplIds, findDefault, mkCoerce +import SimplUtils ( mkCase, tryRhsTyLam, tryEtaExpansion, findAlt, + simplBinder, simplBinders, simplIds, findDefault, + SimplCont(..), DupFlag(..), mkStop, mkRhsStop, + contResultType, discardInline, countArgs, contIsDupable, + getContArgs, interestingCallContext, interestingArg, isStrictType ) -import Var ( TyVar, mkSysTyVar, tyVarKind, maybeModifyIdInfo ) +import Var ( mkSysTyVar, tyVarKind ) import VarEnv -import VarSet -import Id ( Id, idType, idInfo, idUnique, - getIdUnfolding, setIdUnfolding, isExportedId, - getIdSpecialisation, setIdSpecialisation, - getIdDemandInfo, setIdDemandInfo, - setIdInfo, - getIdOccInfo, setIdOccInfo, - zapLamIdInfo, zapFragileIdInfo, - getIdStrictness, - setInlinePragma, mayHaveNoBinding, - setOneShotLambda, maybeModifyIdInfo +import Id ( Id, idType, idInfo, isDataConId, hasNoBinding, + idUnfolding, setIdUnfolding, isExportedId, isDeadBinder, + idDemandInfo, setIdInfo, + idOccInfo, setIdOccInfo, + zapLamIdInfo, setOneShotLambda, + ) +import IdInfo ( OccInfo(..), isDeadOcc, isLoopBreaker, + setArityInfo, + setUnfoldingInfo, atLeastArity, + occInfo ) -import IdInfo ( InlinePragInfo(..), OccInfo(..), StrictnessInfo(..), - ArityInfo(..), atLeastArity, arityLowerBound, unknownArity, - specInfo, inlinePragInfo, setArityInfo, setInlinePragInfo, setUnfoldingInfo +import Demand ( isStrict ) +import DataCon ( dataConNumInstArgs, dataConRepStrictness, + dataConSig, dataConArgTys ) -import Demand ( Demand, isStrict, wwLazy ) -import Const ( isWHNFCon, conOkForAlt ) -import ConFold ( tryPrimOp ) -import PrimOp ( PrimOp, primOpStrictness, primOpType ) -import DataCon ( DataCon, dataConNumInstArgs, dataConRepStrictness, dataConSig, dataConArgTys ) -import Const ( Con(..) ) -import Name ( isLocallyDefined ) import CoreSyn -import CoreFVs ( exprFreeVars ) -import CoreUnfold ( Unfolding, mkOtherCon, mkUnfolding, otherCons, - callSiteInline, hasSomeUnfolding +import PprCore ( pprParendExpr, pprCoreExpr ) +import CoreFVs ( mustHaveLocalBinding ) +import CoreUnfold ( mkOtherCon, mkUnfolding, otherCons, + callSiteInline ) -import CoreUtils ( cheapEqExpr, exprIsDupable, exprIsCheap, exprIsTrivial, - coreExprType, coreAltsType, exprArity, exprIsValue, - exprOkForSpeculation +import CoreUtils ( cheapEqExpr, exprIsDupable, exprIsTrivial, + exprIsConApp_maybe, mkPiType, + exprType, coreAltsType, exprIsValue, + exprOkForSpeculation, exprArity, exprIsCheap, + mkCoerce, mkSCC, mkInlineMe, mkAltExpr ) import Rules ( lookupRule ) -import CostCentre ( isSubsumedCCS, currentCCS, isEmptyCC ) -import Type ( Type, mkTyVarTy, mkTyVarTys, isUnLiftedType, seqType, - mkFunTy, splitFunTys, splitTyConApp_maybe, splitFunTy_maybe, - funResultTy, isDictTy, isDataType, applyTy, applyTys, mkFunTys +import CostCentre ( currentCCS ) +import Type ( mkTyVarTys, isUnLiftedType, seqType, + mkFunTy, splitTyConApp_maybe, tyConAppArgs, + funResultTy ) -import Subst ( Subst, mkSubst, emptySubst, substTy, substExpr, - substEnv, isInScope, lookupInScope, lookupIdSubst, substIdInfo +import Subst ( mkSubst, substTy, + isInScope, lookupIdSubst, substIdInfo ) -import TyCon ( isDataTyCon, tyConDataCons, tyConClass_maybe, tyConArity, isDataTyCon ) +import TyCon ( isDataTyCon, tyConDataConsIfAvailable ) import TysPrim ( realWorldStatePrimTy ) import PrelInfo ( realWorldPrimId ) -import BasicTypes ( TopLevelFlag(..), isTopLevel ) +import OrdList import Maybes ( maybeToBool ) -import Util ( zipWithEqual, stretchZipEqual, lengthExceeds ) -import PprCore +import Util ( zipWithEqual ) import Outputable -import Unique ( foldrIdKey ) -- Temp \end{code} @@ -76,6 +72,16 @@ The guts of the simplifier is in this module, but the driver loop for the simplifier is in SimplCore.lhs. +----------------------------------------- + *** IMPORTANT NOTE *** +----------------------------------------- +The simplifier used to guarantee that the output had no shadowing, but +it does not do so any more. (Actually, it never did!) The reason is +documented with simplifyArgs. + + + + %************************************************************************ %* * \subsection{Bindings} @@ -93,12 +99,12 @@ simplTopBinds binds simplIds (bindersOfBinds binds) $ \ bndrs' -> simpl_binds binds bndrs' `thenSmpl` \ (binds', _) -> freeTick SimplifierDone `thenSmpl_` - returnSmpl binds' + returnSmpl (fromOL binds') where -- We need to track the zapped top-level binders, because -- they should have their fragile IdInfo zapped (notably occurrence info) - simpl_binds [] bs = ASSERT( null bs ) returnSmpl ([], panic "simplTopBinds corner") + simpl_binds [] bs = ASSERT( null bs ) returnSmpl (nilOL, panic "simplTopBinds corner") simpl_binds (NonRec bndr rhs : binds) (b:bs) = simplLazyBind True bndr b rhs (simpl_binds binds bs) simpl_binds (Rec pairs : binds) bs = simplRecBind True pairs (take n bs) (simpl_binds binds (drop n bs)) where @@ -107,11 +113,11 @@ simplTopBinds binds simplRecBind :: Bool -> [(InId, InExpr)] -> [OutId] -> SimplM (OutStuff a) -> SimplM (OutStuff a) simplRecBind top_lvl pairs bndrs' thing_inside - = go pairs bndrs' `thenSmpl` \ (binds', stuff) -> - returnSmpl (addBind (Rec (flattenBinds binds')) stuff) + = go pairs bndrs' `thenSmpl` \ (binds', (_, (binds'', res))) -> + returnSmpl (unitOL (Rec (flattenBinds (fromOL binds'))) `appOL` binds'', res) where go [] _ = thing_inside `thenSmpl` \ stuff -> - returnSmpl ([], stuff) + returnOutStuff stuff go ((bndr, rhs) : pairs) (bndr' : bndrs') = simplLazyBind top_lvl bndr bndr' rhs (go pairs bndrs') @@ -126,15 +132,6 @@ simplRecBind top_lvl pairs bndrs' thing_inside %* * %************************************************************************ -\begin{code} -addBind :: CoreBind -> OutStuff a -> OutStuff a -addBind bind (binds, res) = (bind:binds, res) - -addBinds :: [CoreBind] -> OutStuff a -> OutStuff a -addBinds [] stuff = stuff -addBinds binds1 (binds2, res) = (binds1++binds2, res) -\end{code} - The reason for this OutExprStuff stuff is that we want to float *after* simplifying a RHS, not before. If we do so naively we get quadratic behaviour as things float out. @@ -176,7 +173,7 @@ might do the same again. \begin{code} simplExpr :: CoreExpr -> SimplM CoreExpr simplExpr expr = getSubst `thenSmpl` \ subst -> - simplExprC expr (Stop (substTy subst (coreExprType expr))) + simplExprC expr (mkStop (substTy subst (exprType expr))) -- The type in the Stop continuation is usually not used -- It's only needed when discarding continuations after finding -- a function that returns bottom. @@ -186,7 +183,7 @@ simplExprC :: CoreExpr -> SimplCont -> SimplM CoreExpr -- Simplify an expression, given a continuation simplExprC expr cont = simplExprF expr cont `thenSmpl` \ (floats, (_, body)) -> - returnSmpl (mkLets floats body) + returnSmpl (wrapFloats floats body) simplExprF :: InExpr -> SimplCont -> SimplM OutExprStuff -- Simplify an expression, returning floated binds @@ -194,47 +191,29 @@ simplExprF :: InExpr -> SimplCont -> SimplM OutExprStuff simplExprF (Var v) cont = simplVar v cont -simplExprF expr@(Con (PrimOp op) args) cont - = getSubstEnv `thenSmpl` \ se -> - prepareArgs (ppr op) - (primOpType op) - (primOpStrictness op) - (pushArgs se args cont) $ \ args1 cont1 -> +simplExprF (Lit lit) (Select _ bndr alts se cont) + = knownCon (Lit lit) (LitAlt lit) [] bndr alts se cont - let - -- Boring... we may have too many arguments now, so we push them back - n_args = length args - args2 = ASSERT( length args1 >= n_args ) - take n_args args1 - cont2 = pushArgs emptySubstEnv (drop n_args args1) cont1 - in - -- Try the prim op simplification - -- It's really worth trying simplExpr again if it succeeds, - -- because you can find - -- case (eqChar# x 'a') of ... - -- ==> - -- case (case x of 'a' -> True; other -> False) of ... - - case tryPrimOp op args2 of - Just e' -> zapSubstEnv (simplExprF e' cont2) - Nothing -> rebuild (Con (PrimOp op) args2) cont2 - - -simplExprF (Con con@(DataCon _) args) cont - = simplConArgs args $ \ args' -> - rebuild (Con con args') cont - -simplExprF expr@(Con con@(Literal _) args) cont - = ASSERT( null args ) - rebuild expr cont +simplExprF (Lit lit) cont + = rebuild (Lit lit) cont simplExprF (App fun arg) cont = getSubstEnv `thenSmpl` \ se -> simplExprF fun (ApplyTo NoDup arg se cont) simplExprF (Case scrut bndr alts) cont - = getSubstEnv `thenSmpl` \ se -> - simplExprF scrut (Select NoDup bndr alts se cont) + = getSubstEnv `thenSmpl` \ subst_env -> + getSwitchChecker `thenSmpl` \ chkr -> + if not (switchIsOn chkr NoCaseOfCase) then + -- Simplify the scrutinee with a Select continuation + simplExprF scrut (Select NoDup bndr alts subst_env cont) + + else + -- If case-of-case is off, simply simplify the case expression + -- in a vanilla Stop context, and rebuild the result around it + simplExprC scrut (Select NoDup bndr alts subst_env + (mkStop (contResultType cont))) `thenSmpl` \ case_expr' -> + rebuild case_expr' cont simplExprF (Let (Rec pairs) body) cont @@ -247,7 +226,7 @@ simplExprF (Let (Rec pairs) body) cont simplExprF expr@(Lam _ _) cont = simplLam expr cont simplExprF (Type ty) cont - = ASSERT( case cont of { Stop _ -> True; ArgOf _ _ _ -> True; other -> False } ) + = ASSERT( case cont of { Stop _ _ -> True; ArgOf _ _ _ -> True; other -> False } ) simplType ty `thenSmpl` \ ty' -> rebuild (Type ty') cont @@ -276,13 +255,13 @@ simplExprF (Note (Coerce to from) e) cont simplExprF (Note (SCC cc) e) cont = setEnclosingCC currentCCS $ simplExpr e `thenSmpl` \ e -> - rebuild (mkNote (SCC cc) e) cont + rebuild (mkSCC cc e) cont simplExprF (Note InlineCall e) cont = simplExprF e (InlinePlease cont) --- Comments about the InlineMe case --- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +-- Comments about the InlineMe case +-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- Don't inline in the RHS of something that has an -- inline pragma. But be careful that the InScopeEnv that -- we return does still have inlinings on! @@ -298,17 +277,31 @@ simplExprF (Note InlineCall e) cont -- the specialised version of g when f is inlined at some call site -- (perhaps in some other module). -simplExprF (Note InlineMe e) cont - = case cont of - Stop _ -> -- Totally boring continuation - -- Don't inline inside an INLINE expression - switchOffInlining (simplExpr e) `thenSmpl` \ e' -> - rebuild (mkNote InlineMe e') cont +-- It's also important not to inline a worker back into a wrapper. +-- A wrapper looks like +-- wraper = inline_me (\x -> ...worker... ) +-- Normally, the inline_me prevents the worker getting inlined into +-- the wrapper (initially, the worker's only call site!). But, +-- if the wrapper is sure to be called, the strictness analyser will +-- mark it 'demanded', so when the RHS is simplified, it'll get an ArgOf +-- continuation. That's why the keep_inline predicate returns True for +-- ArgOf continuations. It shouldn't do any harm not to dissolve the +-- inline-me note under these circumstances - other -> -- Dissolve the InlineMe note if there's - -- an interesting context of any kind to combine with - -- (even a type application -- anything except Stop) - simplExprF e cont +simplExprF (Note InlineMe e) cont + | keep_inline cont -- Totally boring continuation + = -- Don't inline inside an INLINE expression + setBlackList noInlineBlackList (simplExpr e) `thenSmpl` \ e' -> + rebuild (mkInlineMe e') cont + + | otherwise -- Dissolve the InlineMe note if there's + -- an interesting context of any kind to combine with + -- (even a type application -- anything except Stop) + = simplExprF e cont + where + keep_inline (Stop _ _) = True -- See notes above + keep_inline (ArgOf _ _ _) = True -- about this predicate + keep_inline other = False -- A non-recursive let is dealt with by simplBeta simplExprF (Let (NonRec bndr rhs) body) cont @@ -330,13 +323,9 @@ simplLam fun cont -- Type-beta reduction go (Lam bndr body) (ApplyTo _ (Type ty_arg) arg_se body_cont) = ASSERT( isTyVar bndr ) - tick (BetaReduction bndr) `thenSmpl_` - getInScope `thenSmpl` \ in_scope -> - let - ty' = substTy (mkSubst in_scope arg_se) ty_arg - in - seqType ty' `seq` - extendSubst bndr (DoneTy ty') + tick (BetaReduction bndr) `thenSmpl_` + simplTyArg ty_arg arg_se `thenSmpl` \ ty_arg' -> + extendSubst bndr (DoneTy ty_arg') (go body body_cont) -- Ordinary beta reduction @@ -354,22 +343,42 @@ simplLam fun cont go expr cont = simplExprF expr cont -- completeLam deals with the case where a lambda doesn't have an ApplyTo --- continuation. --- We used to try for eta reduction here, but I found that this was --- eta reducing things like --- f = \x -> (coerce (\x -> e)) --- This made f's arity reduce, which is a bad thing, so I removed the --- eta reduction at this point, and now do it only when binding --- (at the call to postInlineUnconditionally - -completeLam acc (Lam bndr body) cont +-- continuation, so there are real lambdas left to put in the result + +-- We try for eta reduction here, but *only* if we get all the +-- way to an exprIsTrivial expression. +-- We don't want to remove extra lambdas unless we are going +-- to avoid allocating this thing altogether + +completeLam rev_bndrs (Lam bndr body) cont = simplBinder bndr $ \ bndr' -> - completeLam (bndr':acc) body cont + completeLam (bndr':rev_bndrs) body cont -completeLam acc body cont +completeLam rev_bndrs body cont = simplExpr body `thenSmpl` \ body' -> - rebuild (foldl (flip Lam) body' acc) cont - -- Remember, acc is the *reversed* binders + case try_eta body' of + Just etad_lam -> tick (EtaReduction (head rev_bndrs)) `thenSmpl_` + rebuild etad_lam cont + + Nothing -> rebuild (foldl (flip Lam) body' rev_bndrs) cont + where + -- We don't use CoreUtils.etaReduce, because we can be more + -- efficient here: + -- (a) we already have the binders, + -- (b) we can do the triviality test before computing the free vars + -- [in fact I take the simple path and look for just a variable] + -- (c) we don't want to eta-reduce a data con worker or primop + -- because we only have to eta-expand them later when we saturate + try_eta body | not opt_SimplDoEtaReduction = Nothing + | otherwise = go rev_bndrs body + + go (b : bs) (App fun arg) | ok_arg b arg = go bs fun -- Loop round + go [] body | ok_body body = Just body -- Success! + go _ _ = Nothing -- Failure! + + ok_body (Var v) = not (v `elem` rev_bndrs) && not (hasNoBinding v) + ok_body other = False + ok_arg b arg = varToCoreExpr b `cheapEqExpr` arg mkLamBndrZapper :: CoreExpr -- Function -> SimplCont -- The context @@ -389,51 +398,6 @@ mkLamBndrZapper fun cont --------------------------------- -simplConArgs makes sure that the arguments all end up being atomic. -That means it may generate some Lets, hence the strange type - -\begin{code} -simplConArgs :: [InArg] -> ([OutArg] -> SimplM OutExprStuff) -> SimplM OutExprStuff -simplConArgs args thing_inside - = getSubst `thenSmpl` \ subst -> - go subst args thing_inside - where - go subst [] thing_inside - = thing_inside [] - go subst (arg:args) thing_inside - | exprIsTrivial arg - = let - arg1 = substExpr subst arg - -- Simplify the RHS with inlining switched off, so that - -- only absolutely essential things will happen. - -- If we don't do this, consider: - -- let x = e in C {x} - -- We end up inlining x back into C's argument, - -- and then let-binding it again! - -- - -- It's important that the substitution *does* deal with case-binder synonyms: - -- case x of y { True -> (x,1) } - -- Here we must be sure to substitute y for x when simplifying the args of the pair, - -- to increase the chances of being able to inline x. The substituter will do - -- that because the x->y mapping is held in the in-scope set. - in - ASSERT( exprIsTrivial arg1 ) - go subst args $ \ args1 -> - thing_inside (arg1 : args1) - - | otherwise - = -- If the argument ain't trivial, then let-bind it - simplExpr arg `thenSmpl` \ arg1 -> - newId (coreExprType arg1) $ \ arg_id -> - go subst args $ \ args1 -> - thing_inside (Var arg_id : args1) `thenSmpl` \ res -> - returnSmpl (addBind (NonRec arg_id arg1) res) - -- I used to use completeBeta but that was wrong, because - -- arg_id isn't an InId -\end{code} - - ---------------------------------- \begin{code} simplType :: InType -> SimplM OutType simplType ty @@ -477,64 +441,52 @@ simplBeta bndr rhs rhs_se cont_ty thing_inside | otherwise = -- Simplify the RHS simplBinder bndr $ \ bndr' -> - simplArg (idType bndr') (getIdDemandInfo bndr) - rhs rhs_se cont_ty $ \ rhs' -> + let + bndr_ty' = idType bndr' + is_strict = isStrict (idDemandInfo bndr) || isStrictType bndr_ty' + in + simplValArg bndr_ty' is_strict rhs rhs_se cont_ty $ \ rhs' -> -- Now complete the binding and simplify the body - completeBeta bndr bndr' rhs' thing_inside - -completeBeta bndr bndr' rhs' thing_inside - | isUnLiftedType (idType bndr') && not (exprOkForSpeculation rhs') - -- Make a case expression instead of a let - -- These can arise either from the desugarer, - -- or from beta reductions: (\x.e) (x +# y) - = getInScope `thenSmpl` \ in_scope -> - thing_inside `thenSmpl` \ (floats, (_, body)) -> - returnSmpl ([], (in_scope, Case rhs' bndr' [(DEFAULT, [], mkLets floats body)])) - - | otherwise - = completeBinding bndr bndr' False False rhs' thing_inside + if needsCaseBinding bndr_ty' rhs' then + addCaseBind bndr' rhs' thing_inside + else + completeBinding bndr bndr' False False rhs' thing_inside \end{code} \begin{code} -simplArg :: OutType -> Demand - -> InExpr -> SubstEnv - -> OutType -- Type of thing computed by the context - -> (OutExpr -> SimplM OutExprStuff) - -> SimplM OutExprStuff -simplArg arg_ty demand arg arg_se cont_ty thing_inside - | isStrict demand || - isUnLiftedType arg_ty || - (opt_DictsStrict && isDictTy arg_ty && isDataType arg_ty) - -- Return true only for dictionary types where the dictionary - -- has more than one component (else we risk poking on the component - -- of a newtype dictionary) - = transformRhs arg `thenSmpl` \ t_arg -> - getEnv `thenSmpl` \ env -> +simplTyArg :: InType -> SubstEnv -> SimplM OutType +simplTyArg ty_arg se + = getInScope `thenSmpl` \ in_scope -> + let + ty_arg' = substTy (mkSubst in_scope se) ty_arg + in + seqType ty_arg' `seq` + returnSmpl ty_arg' + +simplValArg :: OutType -- rhs_ty: Type of arg; used only occasionally + -> Bool -- True <=> evaluate eagerly + -> InExpr -> SubstEnv + -> OutType -- cont_ty: Type of thing computed by the context + -> (OutExpr -> SimplM OutExprStuff) + -- Takes an expression of type rhs_ty, + -- returns an expression of type cont_ty + -> SimplM OutExprStuff -- An expression of type cont_ty + +simplValArg arg_ty is_strict arg arg_se cont_ty thing_inside + | is_strict + = getEnv `thenSmpl` \ env -> setSubstEnv arg_se $ - simplExprF t_arg (ArgOf NoDup cont_ty $ \ rhs' -> + simplExprF arg (ArgOf NoDup cont_ty $ \ rhs' -> setAllExceptInScope env $ - etaFirst thing_inside rhs') + thing_inside rhs') | otherwise = simplRhs False {- Not top level -} True {- OK to float unboxed -} arg_ty arg arg_se thing_inside - --- Do eta-reduction on the simplified RHS, if eta reduction is on --- NB: etaCoreExpr only eta-reduces if that results in something trivial -etaFirst | opt_SimplDoEtaReduction = \ thing_inside rhs -> thing_inside (etaCoreExprToTrivial rhs) - | otherwise = \ thing_inside rhs -> thing_inside rhs - --- Try for eta reduction, but *only* if we get all --- the way to an exprIsTrivial expression. We don't want to remove --- extra lambdas unless we are going to avoid allocating this thing altogether -etaCoreExprToTrivial rhs | exprIsTrivial rhs' = rhs' - | otherwise = rhs - where - rhs' = etaCoreExpr rhs \end{code} @@ -560,56 +512,113 @@ completeBinding :: InId -- Binder -> SimplM (OutStuff a) completeBinding old_bndr new_bndr top_lvl black_listed new_rhs thing_inside - | (case occ_info of -- This happens; for example, the case_bndr during case of - IAmDead -> True -- known constructor: case (a,b) of x { (p,q) -> ... } - other -> False) -- Here x isn't mentioned in the RHS, so we don't want to + | isDeadOcc occ_info -- This happens; for example, the case_bndr during case of + -- known constructor: case (a,b) of x { (p,q) -> ... } + -- Here x isn't mentioned in the RHS, so we don't want to -- create the (dead) let-binding let x = (a,b) in ... = thing_inside - | postInlineUnconditionally black_listed occ_info old_bndr new_rhs - -- Maybe we don't need a let-binding! Maybe we can just - -- inline it right away. Unlike the preInlineUnconditionally case - -- we are allowed to look at the RHS. + | trivial_rhs && not must_keep_binding + -- We're looking at a binding with a trivial RHS, so + -- perhaps we can discard it altogether! -- - -- NB: a loop breaker never has postInlineUnconditionally True + -- NB: a loop breaker has must_keep_binding = True -- and non-loop-breakers only have *forward* references -- Hence, it's safe to discard the binding -- - -- NB: You might think that postInlineUnconditionally is an optimisation, - -- but if we have - -- let x = f Bool in (x, y) - -- then because of the constructor, x will not be *inlined* in the pair, - -- so the trivial binding will stay. But in this postInlineUnconditionally - -- gag we use the *substitution* to substitute (f Bool) for x, and that *will* - -- happen. - = tick (PostInlineUnconditionally old_bndr) `thenSmpl_` - extendSubst old_bndr (DoneEx new_rhs) - thing_inside + -- NOTE: This isn't our last opportunity to inline. + -- We're at the binding site right now, and + -- we'll get another opportunity when we get to the ocurrence(s) + + -- Note that we do this unconditional inlining only for trival RHSs. + -- Don't inline even WHNFs inside lambdas; doing so may + -- simply increase allocation when the function is called + -- This isn't the last chance; see NOTE above. + -- + -- NB: Even inline pragmas (e.g. IMustBeINLINEd) are ignored here + -- Why? Because we don't even want to inline them into the + -- RHS of constructor arguments. See NOTE above + -- + -- NB: Even NOINLINEis ignored here: if the rhs is trivial + -- it's best to inline it anyway. We often get a=E; b=a + -- from desugaring, with both a and b marked NOINLINE. + = -- Drop the binding + extendSubst old_bndr (DoneEx new_rhs) $ + -- Use the substitution to make quite, quite sure that the substitution + -- will happen, since we are going to discard the binding + tick (PostInlineUnconditionally old_bndr) `thenSmpl_` + thing_inside + + | Note coercion@(Coerce _ inner_ty) inner_rhs <- new_rhs, + not trivial_rhs && not (isUnLiftedType inner_ty) + -- x = coerce t e ==> c = e; x = inline_me (coerce t c) + -- Now x can get inlined, which moves the coercion + -- to the usage site. This is a bit like worker/wrapper stuff, + -- but it's useful to do it very promptly, so that + -- x = coerce T (I# 3) + -- get's w/wd to + -- c = I# 3 + -- x = coerce T c + -- This in turn means that + -- case (coerce Int x) of ... + -- will inline x. + -- Also the full-blown w/w thing isn't set up for non-functions + -- + -- The (not (isUnLiftedType inner_ty)) avoids the nasty case of + -- x::Int = coerce Int Int# (foo y) + -- ==> + -- v::Int# = foo y + -- x::Int = coerce Int Int# v + -- which would be bogus because then v will be evaluated strictly. + -- How can this arise? Via + -- x::Int = case (foo y) of { ... } + -- followed by case elimination. + -- + -- The inline_me note is so that the simplifier doesn't + -- just substitute c back inside x's rhs! (Typically, x will + -- get substituted away, but not if it's exported.) + = newId SLIT("c") inner_ty $ \ c_id -> + completeBinding c_id c_id top_lvl False inner_rhs $ + completeBinding old_bndr new_bndr top_lvl black_listed + (Note InlineMe (Note coercion (Var c_id))) $ + thing_inside | otherwise - = getSubst `thenSmpl` \ subst -> - let - -- We make new IdInfo for the new binder by starting from the old binder, - -- doing appropriate substitutions. - -- Then we add arity and unfolding info to get the new binder - new_bndr_info = substIdInfo subst (idInfo old_bndr) (idInfo new_bndr) - `setArityInfo` ArityAtLeast (exprArity new_rhs) - `setUnfoldingInfo` mkUnfolding top_lvl new_rhs - - final_id = new_bndr `setIdInfo` new_bndr_info - in - -- These seqs force the Ids, and hence the IdInfos, and hence any - -- inner substitutions - final_id `seq` - - (modifyInScope new_bndr final_id thing_inside `thenSmpl` \ stuff -> - returnSmpl (addBind (NonRec final_id new_rhs) stuff)) + = getSubst `thenSmpl` \ subst -> + let + -- We make new IdInfo for the new binder by starting from the old binder, + -- doing appropriate substitutions. + -- Then we add arity and unfolding info to get the new binder + new_bndr_info = substIdInfo subst old_info (idInfo new_bndr) + `setArityInfo` arity_info + + -- Add the unfolding *only* for non-loop-breakers + -- Making loop breakers not have an unfolding at all + -- means that we can avoid tests in exprIsConApp, for example. + -- This is important: if exprIsConApp says 'yes' for a recursive + -- thing, then we can get into an infinite loop + info_w_unf | loop_breaker = new_bndr_info + | otherwise = new_bndr_info `setUnfoldingInfo` mkUnfolding top_lvl new_rhs + + final_id = new_bndr `setIdInfo` info_w_unf + in + -- These seqs forces the Id, and hence its IdInfo, + -- and hence any inner substitutions + final_id `seq` + addLetBind (NonRec final_id new_rhs) $ + modifyInScope new_bndr final_id thing_inside where - occ_info = getIdOccInfo old_bndr + old_info = idInfo old_bndr + occ_info = occInfo old_info + loop_breaker = isLoopBreaker occ_info + trivial_rhs = exprIsTrivial new_rhs + must_keep_binding = black_listed || loop_breaker || isExportedId old_bndr + arity_info = atLeastArity (exprArity new_rhs) \end{code} + %************************************************************************ %* * \subsection{simplLazyBind} @@ -649,7 +658,7 @@ simplLazyBind top_lvl bndr bndr' rhs thing_inside -- Simplify the RHS getSubstEnv `thenSmpl` \ rhs_se -> - simplRhs top_lvl False {- Not ok to float unboxed -} + simplRhs top_lvl False {- Not ok to float unboxed (conservative) -} (idType bndr') rhs rhs_se $ \ rhs' -> @@ -662,62 +671,71 @@ simplLazyBind top_lvl bndr bndr' rhs thing_inside \begin{code} simplRhs :: Bool -- True <=> Top level -> Bool -- True <=> OK to float unboxed (speculative) bindings - -> OutType -> InExpr -> SubstEnv + -- False for (a) recursive and (b) top-level bindings + -> OutType -- Type of RHS; used only occasionally + -> InExpr -> SubstEnv -> (OutExpr -> SimplM (OutStuff a)) -> SimplM (OutStuff a) simplRhs top_lvl float_ubx rhs_ty rhs rhs_se thing_inside - = -- Swizzle the inner lets past the big lambda (if any) - -- and try eta expansion - transformRhs rhs `thenSmpl` \ t_rhs -> - - -- Simplify it - setSubstEnv rhs_se (simplExprF t_rhs (Stop rhs_ty)) `thenSmpl` \ (floats, (in_scope', rhs')) -> - - -- Float lets out of RHS + = -- Simplify it + setSubstEnv rhs_se (simplExprF rhs (mkRhsStop rhs_ty)) `thenSmpl` \ (floats1, (rhs_in_scope, rhs1)) -> let - (floats_out, rhs'') | float_ubx = (floats, rhs') - | otherwise = splitFloats floats rhs' + (floats2, rhs2) = splitFloats float_ubx floats1 rhs1 in - if (top_lvl || exprIsCheap rhs') && -- Float lets if (a) we're at the top level - not (null floats_out) -- or (b) it exposes a cheap (i.e. duplicatable) expression - then - tickLetFloat floats_out `thenSmpl_` - -- Do the float - -- -- There's a subtlety here. There may be a binding (x* = e) in the -- floats, where the '*' means 'will be demanded'. So is it safe -- to float it out? Answer no, but it won't matter because -- we only float if arg' is a WHNF, -- and so there can't be any 'will be demanded' bindings in the floats. -- Hence the assert - WARN( any demanded_float floats_out, ppr floats_out ) - setInScope in_scope' (etaFirst thing_inside rhs'') `thenSmpl` \ stuff -> - -- in_scope' may be excessive, but that's OK; - -- it's a superset of what's in scope - returnSmpl (addBinds floats_out stuff) + WARN( any demanded_float (fromOL floats2), ppr (fromOL floats2) ) + + -- Transform the RHS + -- It's important that we do eta expansion on function *arguments* (which are + -- simplified with simplRhs), as well as let-bound right-hand sides. + -- Otherwise we find that things like + -- f (\x -> case x of I# x' -> coerce T (\ y -> ...)) + -- get right through to the code generator as two separate lambdas, + -- which is a Bad Thing + tryRhsTyLam rhs2 `thenSmpl` \ (floats3, rhs3) -> + tryEtaExpansion rhs3 rhs_ty `thenSmpl` \ (floats4, rhs4) -> + + -- Float lets if (a) we're at the top level + -- or (b) the resulting RHS is one we'd like to expose + if (top_lvl || exprIsCheap rhs4) then + (if (isNilOL floats2 && null floats3 && null floats4) then + returnSmpl () + else + tick LetFloatFromLet) `thenSmpl_` + + addFloats floats2 rhs_in_scope $ + addAuxiliaryBinds floats3 $ + addAuxiliaryBinds floats4 $ + thing_inside rhs4 else -- Don't do the float - etaFirst thing_inside (mkLets floats rhs') + thing_inside (wrapFloats floats1 rhs1) --- In a let-from-let float, we just tick once, arbitrarily --- choosing the first floated binder to identify it -tickLetFloat (NonRec b r : fs) = tick (LetFloatFromLet b) -tickLetFloat (Rec ((b,r):prs) : fs) = tick (LetFloatFromLet b) - -demanded_float (NonRec b r) = isStrict (getIdDemandInfo b) && not (isUnLiftedType (idType b)) +demanded_float (NonRec b r) = isStrict (idDemandInfo b) && not (isUnLiftedType (idType b)) -- Unlifted-type (cheap-eagerness) lets may well have a demanded flag on them demanded_float (Rec _) = False --- Don't float any unlifted bindings out, because the context +-- If float_ubx is true we float all the bindings, otherwise +-- we just float until we come across an unlifted one. +-- Remember that the unlifted bindings in the floats are all for +-- guaranteed-terminating non-exception-raising unlifted things, +-- which we are happy to do speculatively. However, we may still +-- not be able to float them out, because the context -- is either a Rec group, or the top level, neither of which -- can tolerate them. -splitFloats floats rhs - = go floats +splitFloats float_ubx floats rhs + | float_ubx = (floats, rhs) -- Float them all + | otherwise = go (fromOL floats) where - go [] = ([], rhs) - go (f:fs) | must_stay f = ([], mkLets (f:fs) rhs) + go [] = (nilOL, rhs) + go (f:fs) | must_stay f = (nilOL, mkLets (f:fs) rhs) | otherwise = case go fs of - (out, rhs') -> (f:out, rhs') + (out, rhs') -> (f `consOL` out, rhs') must_stay (Rec prs) = False -- No unlifted bindings in here must_stay (NonRec b r) = isUnLiftedType (idType b) @@ -737,28 +755,9 @@ simplVar var cont case lookupIdSubst subst var of DoneEx e -> zapSubstEnv (simplExprF e cont) ContEx env1 e -> setSubstEnv env1 (simplExprF e cont) - DoneId var1 occ -> WARN( not (isInScope var1 subst) && isLocallyDefined var1 && not (mayHaveNoBinding var1), + DoneId var1 occ -> WARN( not (isInScope var1 subst) && mustHaveLocalBinding var1, text "simplVar:" <+> ppr var ) - -- The mayHaveNoBinding test accouunts for the fact - -- that class dictionary constructors dont have top level - -- bindings and hence aren't in scope. - finish_var var1 occ - where - finish_var var occ - = getBlackList `thenSmpl` \ black_list -> - getInScope `thenSmpl` \ in_scope -> - completeCall black_list in_scope occ var cont - ---------------------------------------------------------- --- Dealing with a call - -completeCall black_list_fn in_scope occ var cont - - -- Look for an unfolding. There's a binding for the - -- thing, but perhaps we want to inline it anyway - | maybeToBool maybe_inline - = tick (UnfoldingDone var) `thenSmpl_` - zapSubstEnv (completeInlining var unf_template discard_inline_cont) + zapSubstEnv (completeCall var1 occ cont) -- The template is already simplified, so don't re-substitute. -- This is VITAL. Consider -- let x = e in @@ -767,12 +766,43 @@ completeCall black_list_fn in_scope occ var cont -- We'll clone the inner \x, adding x->x' in the id_subst -- Then when we inline y, we must *not* replace x by x' in -- the inlined copy!! - - | otherwise -- No inlining - -- Use prepareArgs to use function strictness - = prepareArgs (ppr var) (idType var) (get_str var) cont $ \ args' cont' -> - -- Look for rules or specialisations that match +--------------------------------------------------------- +-- Dealing with a call + +completeCall var occ_info cont + = getBlackList `thenSmpl` \ black_list_fn -> + getInScope `thenSmpl` \ in_scope -> + getContArgs var cont `thenSmpl` \ (args, call_cont, inline_call) -> + getDOptsSmpl `thenSmpl` \ dflags -> + let + black_listed = black_list_fn var + arg_infos = [ interestingArg in_scope arg subst + | (arg, subst, _) <- args, isValArg arg] + + interesting_cont = interestingCallContext (not (null args)) + (not (null arg_infos)) + call_cont + + inline_cont | inline_call = discardInline cont + | otherwise = cont + + maybe_inline = callSiteInline dflags black_listed inline_call occ_info + var arg_infos interesting_cont + in + -- First, look for an inlining + case maybe_inline of { + Just unfolding -- There is an inlining! + -> tick (UnfoldingDone var) `thenSmpl_` + simplExprF unfolding inline_cont + + ; + Nothing -> -- No inlining! + + + simplifyArgs (isDataConId var) args (contResultType call_cont) $ \ args' -> + + -- Next, look for rules or specialisations that match -- -- It's important to simplify the args first, because the rule-matcher -- doesn't do substitution as it goes. We don't want to use subst_args @@ -785,148 +815,133 @@ completeCall black_list_fn in_scope occ var cont -- But the black-listing mechanism means that inlining of the wrapper -- won't occur for things that have specialisations till a later phase, so -- it's ok to try for inlining first. - getSwitchChecker `thenSmpl` \ chkr -> - if switchIsOn chkr DontApplyRules then - -- Don't try rules - rebuild (mkApps (Var var) args') cont' - else - -- Try rules first - case lookupRule in_scope var args' of + -- + -- You might think that we shouldn't apply rules for a loop breaker: + -- doing so might give rise to an infinite loop, because a RULE is + -- rather like an extra equation for the function: + -- RULE: f (g x) y = x+y + -- Eqn: f a y = a-y + -- + -- But it's too drastic to disable rules for loop breakers. + -- Even the foldr/build rule would be disabled, because foldr + -- is recursive, and hence a loop breaker: + -- foldr k z (build g) = g k z + -- So it's up to the programmer: rules can cause divergence + + getSwitchChecker `thenSmpl` \ chkr -> + let + maybe_rule | switchIsOn chkr DontApplyRules = Nothing + | otherwise = lookupRule in_scope var args' + in + case maybe_rule of { Just (rule_name, rule_rhs) -> tick (RuleFired rule_name) `thenSmpl_` - zapSubstEnv (simplExprF rule_rhs cont') - -- See note above about zapping the substitution here +#ifdef DEBUG + (if dopt Opt_D_dump_inlinings dflags then + pprTrace "Rule fired" (vcat [ + text "Rule:" <+> ptext rule_name, + text "Before:" <+> ppr var <+> sep (map pprParendExpr args'), + text "After: " <+> pprCoreExpr rule_rhs]) + else + id) $ +#endif + simplExprF rule_rhs call_cont ; - Nothing -> rebuild (mkApps (Var var) args') cont' + Nothing -> -- No rules - where - get_str var = case getIdStrictness var of - NoStrictnessInfo -> (repeat wwLazy, False) - StrictnessInfo demands result_bot -> (demands, result_bot) - - ---------- Unfolding stuff - (subst_args, result_cont) = contArgs in_scope cont - val_args = filter isValArg subst_args - arg_infos = map (interestingArg in_scope) val_args - inline_call = contIsInline result_cont - interesting_cont = contIsInteresting result_cont - discard_inline_cont | inline_call = discardInline cont - | otherwise = cont - - maybe_inline = callSiteInline black_listed inline_call occ - var arg_infos interesting_cont - Just unf_template = maybe_inline - black_listed = black_list_fn var - - --- An argument is interesting if it has *some* structure --- We are here trying to avoid unfolding a function that --- is applied only to variables that have no unfolding --- (i.e. they are probably lambda bound): f x y z --- There is little point in inlining f here. -interestingArg in_scope (Type _) = False -interestingArg in_scope (App fn (Type _)) = interestingArg in_scope fn -interestingArg in_scope (Var v) = hasSomeUnfolding (getIdUnfolding v') - where - v' = case lookupVarSet in_scope v of - Just v' -> v' - other -> v -interestingArg in_scope other = True - - --- First a special case --- Don't actually inline the scrutinee when we see --- case x of y { .... } --- and x has unfolding (C a b). Why not? Because --- we get a silly binding y = C a b. If we don't --- inline knownCon can directly substitute x for y instead. -completeInlining var (Con con con_args) (Select _ bndr alts se cont) - | conOkForAlt con - = knownCon (Var var) con con_args bndr alts se cont - --- Now the normal case -completeInlining var unfolding cont - = simplExprF unfolding cont - ------------ costCentreOk --- costCentreOk checks that it's ok to inline this thing --- The time it *isn't* is this: + -- Done + rebuild (mkApps (Var var) args') call_cont + }} + + +--------------------------------------------------------- +-- Simplifying the arguments of a call + +simplifyArgs :: Bool -- It's a data constructor + -> [(InExpr, SubstEnv, Bool)] -- Details of the arguments + -> OutType -- Type of the continuation + -> ([OutExpr] -> SimplM OutExprStuff) + -> SimplM OutExprStuff + +-- Simplify the arguments to a call. +-- This part of the simplifier may break the no-shadowing invariant +-- Consider +-- f (...(\a -> e)...) (case y of (a,b) -> e') +-- where f is strict in its second arg +-- If we simplify the innermost one first we get (...(\a -> e)...) +-- Simplifying the second arg makes us float the case out, so we end up with +-- case y of (a,b) -> f (...(\a -> e)...) e' +-- So the output does not have the no-shadowing invariant. However, there is +-- no danger of getting name-capture, because when the first arg was simplified +-- we used an in-scope set that at least mentioned all the variables free in its +-- static environment, and that is enough. -- --- f x = let y = E in --- scc "foo" (...y...) +-- We can't just do innermost first, or we'd end up with a dual problem: +-- case x of (a,b) -> f e (...(\a -> e')...) -- --- Here y has a "current cost centre", and we can't inline it inside "foo", --- regardless of whether E is a WHNF or not. - -costCentreOk ccs_encl cc_rhs - = not opt_SccProfilingOn - || isSubsumedCCS ccs_encl -- can unfold anything into a subsumed scope - || not (isEmptyCC cc_rhs) -- otherwise need a cc on the unfolding -\end{code} +-- I spent hours trying to recover the no-shadowing invariant, but I just could +-- not think of an elegant way to do it. The simplifier is already knee-deep in +-- continuations. We have to keep the right in-scope set around; AND we have +-- to get the effect that finding (error "foo") in a strict arg position will +-- discard the entire application and replace it with (error "foo"). Getting +-- all this at once is TOO HARD! + +simplifyArgs is_data_con args cont_ty thing_inside + | not is_data_con + = go args thing_inside + + | otherwise -- It's a data constructor, so we want + -- to switch off inlining in the arguments + -- If we don't do this, consider: + -- let x = +# p q in C {x} + -- Even though x get's an occurrence of 'many', its RHS looks cheap, + -- and there's a good chance it'll get inlined back into C's RHS. Urgh! + = getBlackList `thenSmpl` \ old_bl -> + setBlackList noInlineBlackList $ + go args $ \ args' -> + setBlackList old_bl $ + thing_inside args' + where + go [] thing_inside = thing_inside [] + go (arg:args) thing_inside = simplifyArg is_data_con arg cont_ty $ \ arg' -> + go args $ \ args' -> + thing_inside (arg':args') -\begin{code} ---------------------------------------------------------- --- Preparing arguments for a call +simplifyArg is_data_con (Type ty_arg, se, _) cont_ty thing_inside + = simplTyArg ty_arg se `thenSmpl` \ new_ty_arg -> + thing_inside (Type new_ty_arg) -prepareArgs :: SDoc -- Error message info - -> OutType -> ([Demand],Bool) -> SimplCont - -> ([OutExpr] -> SimplCont -> SimplM OutExprStuff) - -> SimplM OutExprStuff +simplifyArg is_data_con (val_arg, se, is_strict) cont_ty thing_inside + = getInScope `thenSmpl` \ in_scope -> + let + arg_ty = substTy (mkSubst in_scope se) (exprType val_arg) + in + if not is_data_con then + -- An ordinary function + simplValArg arg_ty is_strict val_arg se cont_ty thing_inside + else + -- A data constructor + -- simplifyArgs has already switched off inlining, so + -- all we have to do here is to let-bind any non-trivial argument + + -- It's not always the case that new_arg will be trivial + -- Consider f x + -- where, in one pass, f gets substituted by a constructor, + -- but x gets substituted by an expression (assume this is the + -- unique occurrence of x). It doesn't really matter -- it'll get + -- fixed up next pass. And it happens for dictionary construction, + -- which mentions the wrapper constructor to start with. + simplValArg arg_ty is_strict val_arg se cont_ty $ \ arg' -> + + if exprIsTrivial arg' then + thing_inside arg' + else + newId SLIT("a") (exprType arg') $ \ arg_id -> + addNonRecBind arg_id arg' $ + thing_inside (Var arg_id) +\end{code} -prepareArgs pp_fun orig_fun_ty (fun_demands, result_bot) orig_cont thing_inside - = go [] demands orig_fun_ty orig_cont - where - not_enough_args = fun_demands `lengthExceeds` countValArgs orig_cont - -- "No strictness info" is signalled by an infinite list of wwLazy - - demands | not_enough_args = repeat wwLazy -- Not enough args, or no strictness - | result_bot = fun_demands -- Enough args, and function returns bottom - | otherwise = fun_demands ++ repeat wwLazy -- Enough args and function does not return bottom - -- NB: demands is finite iff enough args and result_bot is True - - -- Main game plan: loop through the arguments, simplifying - -- each of them in turn. We carry with us a list of demands, - -- and the type of the function-applied-to-earlier-args - - -- Type argument - go acc ds fun_ty (ApplyTo _ arg@(Type ty_arg) se cont) - = getInScope `thenSmpl` \ in_scope -> - let - ty_arg' = substTy (mkSubst in_scope se) ty_arg - res_ty = applyTy fun_ty ty_arg' - in - seqType ty_arg' `seq` - go (Type ty_arg' : acc) ds res_ty cont - - -- Value argument - go acc (d:ds) fun_ty (ApplyTo _ val_arg se cont) - = case splitFunTy_maybe fun_ty of { - Nothing -> pprTrace "prepareArgs" (pp_fun $$ ppr orig_fun_ty $$ ppr orig_cont) - (thing_inside (reverse acc) cont) ; - Just (arg_ty, res_ty) -> - simplArg arg_ty d val_arg se (contResultType cont) $ \ arg' -> - go (arg':acc) ds res_ty cont } - - -- We've run out of demands, which only happens for functions - -- we *know* now return bottom - -- This deals with - -- * case (error "hello") of { ... } - -- * (error "Hello") arg - -- * f (error "Hello") where f is strict - -- etc - go acc [] fun_ty cont = tick_case_of_error cont `thenSmpl_` - thing_inside (reverse acc) (discardCont cont) - - -- We're run out of arguments - go acc ds fun_ty cont = thing_inside (reverse acc) cont - --- Boring: we must only record a tick if there was an interesting --- continuation to discard. If not, we tick forever. -tick_case_of_error (Stop _) = returnSmpl () -tick_case_of_error (CoerceIt _ (Stop _)) = returnSmpl () -tick_case_of_error other = tick BottomFound -\end{code} %************************************************************************ %* * @@ -939,7 +954,7 @@ even if they occur exactly once. Reason: (a) some might appear as a function argument, so we simply replace static allocation with dynamic allocation: l = <...> - x = f x + x = f l becomes x = f <...> @@ -976,43 +991,10 @@ preInlineUnconditionally :: Bool {- Black listed -} -> InId -> Bool preInlineUnconditionally black_listed bndr | black_listed || opt_SimplNoPreInlining = False - | otherwise = case getIdOccInfo bndr of + | otherwise = case idOccInfo bndr of OneOcc in_lam once -> not in_lam && once -- Not inside a lambda, one occurrence ==> safe! other -> False - - -postInlineUnconditionally :: Bool -- Black listed - -> OccInfo - -> InId -> OutExpr -> Bool - -- Examines a (bndr = rhs) binding, AFTER the rhs has been simplified - -- It returns True if it's ok to discard the binding and inline the - -- RHS at every use site. - - -- NOTE: This isn't our last opportunity to inline. - -- We're at the binding site right now, and - -- we'll get another opportunity when we get to the ocurrence(s) - -postInlineUnconditionally black_listed occ_info bndr rhs - | isExportedId bndr || - black_listed || - loop_breaker = False -- Don't inline these - | otherwise = exprIsTrivial rhs -- Duplicating is free - -- Don't inline even WHNFs inside lambdas; doing so may - -- simply increase allocation when the function is called - -- This isn't the last chance; see NOTE above. - -- - -- NB: Even inline pragmas (e.g. IMustBeINLINEd) are ignored here - -- Why? Because we don't even want to inline them into the - -- RHS of constructor arguments. See NOTE above - -- - -- NB: Even NOINLINEis ignored here: if the rhs is trivial - -- it's best to inline it anyway. We often get a=E; b=a - -- from desugaring, with both a and b marked NOINLINE. - where - loop_breaker = case occ_info of - IAmALoopBreaker -> True - other -> False \end{code} @@ -1026,15 +1008,13 @@ postInlineUnconditionally black_listed occ_info bndr rhs \begin{code} ------------------------------------------------------------------- -- Finish rebuilding -rebuild_done expr - = getInScope `thenSmpl` \ in_scope -> - returnSmpl ([], (in_scope, expr)) +rebuild_done expr = returnOutStuff expr --------------------------------------------------------- rebuild :: OutExpr -> SimplCont -> SimplM OutExprStuff -- Stop continuation -rebuild expr (Stop _) = rebuild_done expr +rebuild expr (Stop _ _) = rebuild_done expr -- ArgOf continuation rebuild expr (ArgOf _ _ cont_fn) = cont_fn expr @@ -1046,7 +1026,7 @@ rebuild expr cont@(ApplyTo _ arg se cont') -- Coerce continuation rebuild expr (CoerceIt to_ty cont) - = rebuild (mkCoerce to_ty expr) cont + = rebuild (mkCoerce to_ty (exprType expr) expr) cont -- Inline continuation rebuild expr (InlinePlease cont) @@ -1054,7 +1034,6 @@ rebuild expr (InlinePlease cont) rebuild scrut (Select _ bndr alts se cont) = rebuild_case scrut bndr alts se cont - \end{code} Case elimination [see the code above] @@ -1139,19 +1118,32 @@ If so, then we can replace the case with one of the rhss. Blob of helper functions for the "case-of-something-else" situation. \begin{code} - ---------------------------------------------------------- --- Case of known constructor or literal - -rebuild_case scrut@(Con con args) bndr alts se cont - | conOkForAlt con -- Knocks out PrimOps and NoRepLits - = knownCon scrut con args bndr alts se cont - --------------------------------------------------------- -- Eliminate the case if possible rebuild_case scrut bndr alts se cont - | -- Check that the RHSs are all the same, and + | maybeToBool maybe_con_app + = knownCon scrut (DataAlt con) args bndr alts se cont + + | canEliminateCase scrut bndr alts + = tick (CaseElim bndr) `thenSmpl_` ( + setSubstEnv se $ + simplBinder bndr $ \ bndr' -> + -- Remember to bind the case binder! + completeBinding bndr bndr' False False scrut $ + simplExprF (head (rhssOfAlts alts)) cont) + + | otherwise + = complete_case scrut bndr alts se cont + + where + maybe_con_app = exprIsConApp_maybe scrut + Just (con, args) = maybe_con_app + + -- See if we can get rid of the case altogether + -- See the extensive notes on case-elimination above +canEliminateCase scrut bndr alts + = -- Check that the RHSs are all the same, and -- don't use the binders in the alternatives -- This test succeeds rapidly in the common case of -- a single DEFAULT alternative @@ -1179,34 +1171,21 @@ rebuild_case scrut bndr alts se cont -- other problems ) --- && opt_SimplDoCaseElim --- [June 99; don't test this flag. The code generator dies if it sees --- case (\x.e) of f -> ... --- so better to always do it - - -- Get rid of the case altogether - -- See the extensive notes on case-elimination above - -- Remember to bind the binder though! - = tick (CaseElim bndr) `thenSmpl_` ( - setSubstEnv se $ - simplBinder bndr $ \ bndr' -> - completeBinding bndr bndr' False False scrut $ - simplExprF rhs1 cont) - where - (rhs1:other_rhss) = [rhs | (_,_,rhs) <- alts] + (rhs1:other_rhss) = rhssOfAlts alts binders_unused (_, bndrs, _) = all isDeadBinder bndrs - var_demanded_later (Var v) = isStrict (getIdDemandInfo bndr) -- It's going to be evaluated later + var_demanded_later (Var v) = isStrict (idDemandInfo bndr) -- It's going to be evaluated later var_demanded_later other = False + --------------------------------------------------------- -- Case of something else -rebuild_case scrut case_bndr alts se cont +complete_case scrut case_bndr alts se cont = -- Prepare case alternatives prepareCaseAlts case_bndr (splitTyConApp_maybe (idType case_bndr)) - scrut_cons alts `thenSmpl` \ better_alts -> + impossible_cons alts `thenSmpl` \ better_alts -> -- Set the new subst-env in place (before dealing with the case binder) setSubstEnv se $ @@ -1217,10 +1196,13 @@ rebuild_case scrut case_bndr alts se cont -- Deal with variable scrutinee - ( simplCaseBinder scrut case_bndr $ \ case_bndr' zap_occ_info -> + ( + getSwitchChecker `thenSmpl` \ chkr -> + simplCaseBinder (switchIsOn chkr NoCaseOfCase) + scrut case_bndr $ \ case_bndr' zap_occ_info -> -- Deal with the case alternatives - simplAlts zap_occ_info scrut_cons + simplAlts zap_occ_info impossible_cons case_bndr' better_alts cont' `thenSmpl` \ alts' -> mkCase scrut case_bndr' alts' @@ -1231,37 +1213,37 @@ rebuild_case scrut case_bndr alts se cont -- that should not include these chaps! rebuild_done case_expr where - -- scrut_cons tells what constructors the scrutinee can't possibly match - scrut_cons = case scrut of - Var v -> otherCons (getIdUnfolding v) - other -> [] + impossible_cons = case scrut of + Var v -> otherCons (idUnfolding v) + other -> [] + +knownCon :: OutExpr -> AltCon -> [OutExpr] + -> InId -> [InAlt] -> SubstEnv -> SimplCont + -> SimplM OutExprStuff knownCon expr con args bndr alts se cont - = tick (KnownBranch bndr) `thenSmpl_` + = -- Arguments should be atomic; + -- yell if not + WARN( not (all exprIsTrivial args), + text "knownCon" <+> ppr expr ) + tick (KnownBranch bndr) `thenSmpl_` setSubstEnv se ( simplBinder bndr $ \ bndr' -> + completeBinding bndr bndr' False False expr $ + -- Don't use completeBeta here. The expr might be + -- an unboxed literal, like 3, or a variable + -- whose unfolding is an unboxed literal... and + -- completeBeta will just construct another case + -- expression! case findAlt con alts of (DEFAULT, bs, rhs) -> ASSERT( null bs ) - completeBinding bndr bndr' False False expr $ - -- Don't use completeBeta here. The expr might be - -- an unboxed literal, like 3, or a variable - -- whose unfolding is an unboxed literal... and - -- completeBeta will just construct another case - -- expression! simplExprF rhs cont - (Literal lit, bs, rhs) -> ASSERT( null bs ) - extendSubst bndr (DoneEx expr) $ - -- Unconditionally substitute, because expr must - -- be a variable or a literal. It can't be a - -- NoRep literal because they don't occur in - -- case patterns. + (LitAlt lit, bs, rhs) -> ASSERT( null bs ) simplExprF rhs cont - (DataCon dc, bs, rhs) -> ASSERT( length bs == length real_args ) - completeBinding bndr bndr' False False expr $ - -- See note above + (DataAlt dc, bs, rhs) -> ASSERT( length bs == length real_args ) extendSubstList bs (map mk real_args) $ simplExprF rhs cont where @@ -1286,9 +1268,21 @@ prepareCaseCont alts cont thing_inside = simplType (coreAltsType alts) `thenSm -- (using funResultTy) in mkDupableCont. \end{code} -simplCaseBinder checks whether the scrutinee is a variable, v. -If so, try to eliminate uses of v in the RHSs in favour of case_bndr; -that way, there's a chance that v will now only be used once, and hence inlined. +simplCaseBinder checks whether the scrutinee is a variable, v. If so, +try to eliminate uses of v in the RHSs in favour of case_bndr; that +way, there's a chance that v will now only be used once, and hence +inlined. + +There is a time we *don't* want to do that, namely when +-fno-case-of-case is on. This happens in the first simplifier pass, +and enhances full laziness. Here's the bad case: + f = \ y -> ...(case x of I# v -> ...(case x of ...) ... ) +If we eliminate the inner case, we trap it inside the I# v -> arm, +which might prevent some full laziness happening. I've seen this +in action in spectral/cichelli/Prog.hs: + [(m,n) | m <- [1..max], n <- [1..max]] +Hence the no_case_of_case argument + If we do this, then we have to nuke any occurrence info (eg IAmDead) in the case binder, because the case-binder now effectively occurs @@ -1306,7 +1300,8 @@ Urk! b is alive! Reason: the scrutinee was a variable, and case elimination happened. Hence the zap_occ_info function returned by simplCaseBinder \begin{code} -simplCaseBinder (Var v) case_bndr thing_inside +simplCaseBinder no_case_of_case (Var v) case_bndr thing_inside + | not no_case_of_case = simplBinder (zap case_bndr) $ \ case_bndr' -> modifyInScope v case_bndr' $ -- We could extend the substitution instead, but it would be @@ -1316,7 +1311,7 @@ simplCaseBinder (Var v) case_bndr thing_inside where zap b = b `setIdOccInfo` NoOccInfo -simplCaseBinder other_scrut case_bndr thing_inside +simplCaseBinder add_eval_info other_scrut case_bndr thing_inside = simplBinder case_bndr $ \ case_bndr' -> thing_inside case_bndr' (\ bndr -> bndr) -- NoOp on bndr \end{code} @@ -1348,11 +1343,11 @@ prepareCaseAlts bndr (Just (tycon, inst_tys)) scrut_cons alts let ex_tyvars' = zipWithEqual "simpl_alt" mk tv_uniqs ex_tyvars mk uniq tv = mkSysTyVar uniq (tyVarKind tv) + arg_tys = dataConArgTys data_con + (inst_tys ++ mkTyVarTys ex_tyvars') in - newIds (dataConArgTys - data_con - (inst_tys ++ mkTyVarTys ex_tyvars')) $ \ bndrs -> - returnSmpl ((DataCon data_con, ex_tyvars' ++ bndrs, rhs) : alts_no_deflt) + newIds SLIT("a") arg_tys $ \ bndrs -> + returnSmpl ((DataAlt data_con, ex_tyvars' ++ bndrs, rhs) : alts_no_deflt) other -> returnSmpl filtered_alts where @@ -1361,10 +1356,10 @@ prepareCaseAlts bndr (Just (tycon, inst_tys)) scrut_cons alts [] -> alts other -> [alt | alt@(con,_,_) <- alts, not (con `elem` scrut_cons)] - missing_cons = [data_con | data_con <- tyConDataCons tycon, + missing_cons = [data_con | data_con <- tyConDataConsIfAvailable tycon, not (data_con `elem` handled_data_cons)] - handled_data_cons = [data_con | DataCon data_con <- scrut_cons] ++ - [data_con | (DataCon data_con, _, _) <- filtered_alts] + handled_data_cons = [data_con | DataAlt data_con <- scrut_cons] ++ + [data_con | (DataAlt data_con, _, _) <- filtered_alts] -- The default case prepareCaseAlts _ _ scrut_cons alts @@ -1375,8 +1370,7 @@ prepareCaseAlts _ _ scrut_cons alts simplAlts zap_occ_info scrut_cons case_bndr' alts cont' = mapSmpl simpl_alt alts where - inst_tys' = case splitTyConApp_maybe (idType case_bndr') of - Just (tycon, inst_tys) -> inst_tys + inst_tys' = tyConAppArgs (idType case_bndr') -- handled_cons is all the constructors that are dealt -- with, either by being impossible, or by there being an alternative @@ -1399,11 +1393,11 @@ simplAlts zap_occ_info scrut_cons case_bndr' alts cont' -- doing simplBinders simplBinders (add_evals con vs) $ \ vs' -> - -- Bind the case-binder to (Con args) + -- Bind the case-binder to (con args) let - con_app = Con con (map Type inst_tys' ++ map varToCoreExpr vs') + unfolding = mkUnfolding False (mkAltExpr con vs' inst_tys') in - modifyInScope case_bndr' (case_bndr' `setIdUnfolding` mkUnfolding False con_app) $ + modifyInScope case_bndr' (case_bndr' `setIdUnfolding` unfolding) $ simplExprC rhs cont' `thenSmpl` \ rhs' -> returnSmpl (con, vs', rhs') @@ -1417,7 +1411,7 @@ simplAlts zap_occ_info scrut_cons case_bndr' alts cont' -- We really must record that b is already evaluated so that we don't -- go and re-evaluate it when constructing the result. - add_evals (DataCon dc) vs = cat_evals vs (dataConRepStrictness dc) + add_evals (DataAlt dc) vs = cat_evals vs (dataConRepStrictness dc) add_evals other_con vs = vs cat_evals [] [] = [] @@ -1455,13 +1449,16 @@ mkDupableCont ty (InlinePlease cont) thing_inside mkDupableCont join_arg_ty (ArgOf _ cont_ty cont_fn) thing_inside = -- Build the RHS of the join point - newId join_arg_ty ( \ arg_id -> - cont_fn (Var arg_id) `thenSmpl` \ (binds, (_, rhs)) -> - returnSmpl (Lam (setOneShotLambda arg_id) (mkLets binds rhs)) + newId SLIT("a") join_arg_ty ( \ arg_id -> + cont_fn (Var arg_id) `thenSmpl` \ (floats, (_, rhs)) -> + returnSmpl (Lam (setOneShotLambda arg_id) (wrapFloats floats rhs)) ) `thenSmpl` \ join_rhs -> -- Build the join Id and continuation - newId (coreExprType join_rhs) $ \ join_id -> + -- We give it a "$j" name just so that for later amusement + -- we can identify any join points that don't end up as let-no-escapes + -- [NOTE: the type used to be exprType join_rhs, but this seems more elegant.] + newId SLIT("$j") (mkFunTy join_arg_ty cont_ty) $ \ join_id -> let new_cont = ArgOf OkToDup cont_ty (\arg' -> rebuild_done (App (Var join_id) arg')) @@ -1471,8 +1468,8 @@ mkDupableCont join_arg_ty (ArgOf _ cont_ty cont_fn) thing_inside -- Want to tick here so that we go round again, -- and maybe copy or inline the code; -- not strictly CaseOf Case - thing_inside new_cont `thenSmpl` \ res -> - returnSmpl (addBind (NonRec join_id join_rhs) res) + addLetBind (NonRec join_id join_rhs) $ + thing_inside new_cont mkDupableCont ty (ApplyTo _ arg se cont) thing_inside = mkDupableCont (funResultTy ty) cont $ \ cont' -> @@ -1480,25 +1477,32 @@ mkDupableCont ty (ApplyTo _ arg se cont) thing_inside if exprIsDupable arg' then thing_inside (ApplyTo OkToDup arg' emptySubstEnv cont') else - newId (coreExprType arg') $ \ bndr -> + newId SLIT("a") (exprType arg') $ \ bndr -> - tick (CaseOfCase bndr) `thenSmpl_` + tick (CaseOfCase bndr) `thenSmpl_` -- Want to tick here so that we go round again, -- and maybe copy or inline the code; -- not strictly CaseOf Case - thing_inside (ApplyTo OkToDup (Var bndr) emptySubstEnv cont') `thenSmpl` \ res -> - returnSmpl (addBind (NonRec bndr arg') res) + + addLetBind (NonRec bndr arg') $ + -- But what if the arg should be case-bound? We can't use + -- addNonRecBind here because its type is too specific. + -- This has been this way for a long time, so I'll leave it, + -- but I can't convince myself that it's right. + + thing_inside (ApplyTo OkToDup (Var bndr) emptySubstEnv cont') + mkDupableCont ty (Select _ case_bndr alts se cont) thing_inside = tick (CaseOfCase case_bndr) `thenSmpl_` setSubstEnv se ( simplBinder case_bndr $ \ case_bndr' -> prepareCaseCont alts cont $ \ cont' -> - mapAndUnzipSmpl (mkDupableAlt case_bndr case_bndr' cont') alts `thenSmpl` \ (alt_binds_s, alts') -> - returnSmpl (concat alt_binds_s, alts') - ) `thenSmpl` \ (alt_binds, alts') -> + mkDupableAlts case_bndr case_bndr' cont' alts $ \ alts' -> + returnOutStuff alts' + ) `thenSmpl` \ (alt_binds, (in_scope, alts')) -> - extendInScopes [b | NonRec b _ <- alt_binds] $ + addFloats alt_binds in_scope $ -- NB that the new alternatives, alts', are still InAlts, using the original -- binders. That means we can keep the case_bndr intact. This is important @@ -1507,17 +1511,23 @@ mkDupableCont ty (Select _ case_bndr alts se cont) thing_inside -- This is VITAL when the type of case_bndr is an unboxed pair (often the -- case in I/O rich code. We aren't allowed a lambda bound -- arg of unboxed tuple type, and indeed such a case_bndr is always dead - thing_inside (Select OkToDup case_bndr alts' se (Stop (contResultType cont))) `thenSmpl` \ res -> - - returnSmpl (addBinds alt_binds res) - - -mkDupableAlt :: InId -> OutId -> SimplCont -> InAlt -> SimplM (OutStuff InAlt) -mkDupableAlt case_bndr case_bndr' cont alt@(con, bndrs, rhs) + thing_inside (Select OkToDup case_bndr alts' se (mkStop (contResultType cont))) + +mkDupableAlts :: InId -> OutId -> SimplCont -> [InAlt] + -> ([InAlt] -> SimplM (OutStuff a)) + -> SimplM (OutStuff a) +mkDupableAlts case_bndr case_bndr' cont [] thing_inside + = thing_inside [] +mkDupableAlts case_bndr case_bndr' cont (alt:alts) thing_inside + = mkDupableAlt case_bndr case_bndr' cont alt $ \ alt' -> + mkDupableAlts case_bndr case_bndr' cont alts $ \ alts' -> + thing_inside (alt' : alts') + +mkDupableAlt case_bndr case_bndr' cont alt@(con, bndrs, rhs) thing_inside = simplBinders bndrs $ \ bndrs' -> simplExprC rhs cont `thenSmpl` \ rhs' -> - if (case cont of { Stop _ -> exprIsDupable rhs'; other -> False}) then + if (case cont of { Stop _ _ -> exprIsDupable rhs'; other -> False}) then -- It is worth checking for a small RHS because otherwise we -- get extra let bindings that may cause an extra iteration of the simplifier to -- inline back in place. Quite often the rhs is just a variable or constructor. @@ -1535,11 +1545,11 @@ mkDupableAlt case_bndr case_bndr' cont alt@(con, bndrs, rhs) -- because otherwise we'd need to pair it up with an empty subst-env. -- (Remember we must zap the subst-env before re-simplifying something). -- Rather than do this we simply agree to re-simplify the original (small) thing later. - returnSmpl ([], alt) + thing_inside alt else let - rhs_ty' = coreExprType rhs' + rhs_ty' = exprType rhs' (used_bndrs, used_bndrs') = unzip [pr | pr@(bndr,bndr') <- zip (case_bndr : bndrs) (case_bndr' : bndrs'), @@ -1573,19 +1583,39 @@ mkDupableAlt case_bndr case_bndr' cont alt@(con, bndrs, rhs) -- then 78 -- else 5 - then newId realWorldStatePrimTy $ \ rw_id -> + then newId SLIT("w") realWorldStatePrimTy $ \ rw_id -> returnSmpl ([rw_id], [Var realWorldPrimId]) else returnSmpl (used_bndrs', map varToCoreExpr used_bndrs) ) `thenSmpl` \ (final_bndrs', final_args) -> - newId (foldr (mkFunTy . idType) rhs_ty' final_bndrs') $ \ join_bndr -> - - -- Notice that we make the lambdas into one-shot-lambdas. The + -- See comment about "$j" name above + newId SLIT("$j") (foldr mkPiType rhs_ty' final_bndrs') $ \ join_bndr -> + -- Notice the funky mkPiType. If the contructor has existentials + -- it's possible that the join point will be abstracted over + -- type varaibles as well as term variables. + -- Example: Suppose we have + -- data T = forall t. C [t] + -- Then faced with + -- case (case e of ...) of + -- C t xs::[t] -> rhs + -- We get the join point + -- let j :: forall t. [t] -> ... + -- j = /\t \xs::[t] -> rhs + -- in + -- case (case e of ...) of + -- C t xs::[t] -> j t xs + + let + -- We make the lambdas into one-shot-lambdas. The -- join point is sure to be applied at most once, and doing so -- prevents the body of the join point being floated out by -- the full laziness pass - returnSmpl ([NonRec join_bndr (mkLams (map setOneShotLambda final_bndrs') rhs')], - (con, bndrs, mkApps (Var join_bndr) final_args)) + really_final_bndrs = map one_shot final_bndrs' + one_shot v | isId v = setOneShotLambda v + | otherwise = v + in + addLetBind (NonRec join_bndr (mkLams really_final_bndrs rhs')) $ + thing_inside (con, bndrs, mkApps (Var join_bndr) final_args) \end{code}