X-Git-Url: http://git.megacz.com/?a=blobdiff_plain;f=ghc%2Fcompiler%2Ftypecheck%2FInst.lhs;h=3d3ea8bf7fd3e27a07d1ef34b1750c3964e270a6;hb=aca101dd54968a1da6decc86716f5d0fdb2fd989;hp=c73497e33a92b708b50ead34f0b5688bda3f3a13;hpb=5f3528244ad3ec004bb67a8a2ec086fe90318ce7;p=ghc-hetmet.git diff --git a/ghc/compiler/typecheck/Inst.lhs b/ghc/compiler/typecheck/Inst.lhs index c73497e..3d3ea8b 100644 --- a/ghc/compiler/typecheck/Inst.lhs +++ b/ghc/compiler/typecheck/Inst.lhs @@ -5,278 +5,153 @@ \begin{code} module Inst ( - LIE, emptyLIE, unitLIE, plusLIE, consLIE, zonkLIE, - plusLIEs, mkLIE, isEmptyLIE, lieToList, listToLIE, + Inst, - Inst, OverloadedLit(..), - pprInst, pprInsts, pprInstsInFull, tidyInst, tidyInsts, + pprDFuns, pprDictsTheta, pprDictsInFull, -- User error messages + showLIE, pprInst, pprInsts, pprInstInFull, -- Debugging messages - InstanceMapper, + tidyInsts, tidyMoreInsts, - newDictFromOld, newDicts, newClassDicts, newDictsAtLoc, - newMethod, newMethodWithGivenTy, newOverloadedLit, - newIPDict, instOverloadedFun, - instantiateFdClassTys, instFunDeps, instFunDepsOfTheta, - newFunDepFromDict, + newDicts, newDictAtLoc, newDictsAtLoc, cloneDict, + newOverloadedLit, newIPDict, + newMethod, newMethodFromName, newMethodWithGivenTy, + tcInstClassOp, tcInstCall, tcInstStupidTheta, + tcSyntaxName, tcStdSyntaxName, - tyVarsOfInst, tyVarsOfInsts, tyVarsOfLIE, instLoc, getDictClassTys, - getDictPred_maybe, getMethodTheta_maybe, - getFunDeps, getFunDepsOfLIE, - getIPs, getIPsOfLIE, - getAllFunDeps, getAllFunDepsOfLIE, + tyVarsOfInst, tyVarsOfInsts, tyVarsOfLIE, + ipNamesOfInst, ipNamesOfInsts, fdPredsOfInst, fdPredsOfInsts, + instLoc, getDictClassTys, dictPred, - lookupInst, lookupSimpleInst, LookupInstResult(..), + lookupInst, LookupInstResult(..), lookupPred, + tcExtendLocalInstEnv, tcGetInstEnvs, - isDict, isClassDict, isMethod, - isTyVarDict, isStdClassTyVarDict, isMethodFor, notFunDep, - instBindingRequired, instCanBeGeneralised, + isDict, isClassDict, isMethod, + isLinearInst, linearInstType, isIPDict, isInheritableInst, + isTyVarDict, isStdClassTyVarDict, isMethodFor, + instBindingRequired, - zonkInst, zonkInsts, zonkFunDeps, zonkTvFunDeps, - instToId, instToIdBndr, ipToId, + zonkInst, zonkInsts, + instToId, instName, - InstOrigin(..), InstLoc, pprInstLoc + InstOrigin(..), InstLoc(..), pprInstLoc ) where #include "HsVersions.h" -import HsSyn ( HsLit(..), HsExpr(..) ) -import RnHsSyn ( RenamedArithSeqInfo, RenamedHsExpr, RenamedPat ) -import TcHsSyn ( TcExpr, TcId, - mkHsTyApp, mkHsDictApp, mkHsConApp, zonkId - ) -import TcMonad -import TcEnv ( TcIdSet, tcLookupValueByKey, tcLookupTyConByKey ) -import TcType ( TcThetaType, - TcType, TcTauType, TcTyVarSet, - zonkTcTyVars, zonkTcType, zonkTcTypes, - zonkTcThetaType +import {-# SOURCE #-} TcExpr( tcCheckSigma ) +import {-# SOURCE #-} TcUnify ( unifyTauTy ) -- Used in checkKind (sigh) + +import HsSyn ( HsLit(..), HsOverLit(..), HsExpr(..), LHsExpr, mkHsApp ) +import TcHsSyn ( TcId, TcIdSet, + mkHsTyApp, mkHsDictApp, mkHsConApp, zonkId, + mkCoercion, ExprCoFn ) -import Bag -import Class ( classInstEnv, Class, FunDep ) -import FunDeps ( instantiateFdClassTys ) -import Id ( Id, idFreeTyVars, idType, mkUserLocal, mkSysLocal ) -import PrelInfo ( isStandardClass, isCcallishClass, isNoDictClass ) -import Name ( OccName, Name, mkDictOcc, mkMethodOcc, mkIPOcc, - getOccName, nameUnique ) -import PprType ( pprPred ) -import InstEnv ( InstEnv, lookupInstEnv, InstEnvResult(..) ) -import SrcLoc ( SrcLoc ) -import Type ( Type, PredType(..), ThetaType, - mkTyVarTy, isTyVarTy, mkDictTy, mkPredTy, - splitForAllTys, splitSigmaTy, - splitRhoTy, tyVarsOfType, tyVarsOfTypes, tyVarsOfPred, - mkSynTy, tidyOpenType, tidyOpenTypes +import TcRnMonad +import TcEnv ( tcLookupId, checkWellStaged, topIdLvl, tcMetaTy ) +import InstEnv ( DFunId, InstEnv, lookupInstEnv, checkFunDeps, extendInstEnv ) +import TcIface ( loadImportedInsts ) +import TcMType ( zonkTcType, zonkTcTypes, zonkTcPredType, zonkTcThetaType, + tcInstTyVar, tcInstType, tcSkolType ) -import InstEnv ( InstEnv ) -import Subst ( emptyInScopeSet, mkSubst, - substTy, substClasses, mkTyVarSubst, mkTopTyVarSubst +import TcType ( Type, TcType, TcThetaType, TcTyVarSet, TcTyVar, TcPredType, + PredType(..), SkolemInfo(..), typeKind, mkSigmaTy, + tcSplitForAllTys, tcSplitForAllTys, + tcSplitPhiTy, tcIsTyVarTy, tcSplitDFunTy, tcSplitDFunHead, + isIntTy,isFloatTy, isIntegerTy, isDoubleTy, + tcIsTyVarTy, mkPredTy, mkTyVarTy, mkTyVarTys, + tyVarsOfType, tyVarsOfTypes, tyVarsOfPred, tidyPred, + isClassPred, isTyVarClassPred, isLinearPred, + getClassPredTys, getClassPredTys_maybe, mkPredName, + isInheritablePred, isIPPred, + tidyType, tidyTypes, tidyFreeTyVars, tcSplitSigmaTy, + pprPred, pprParendType, pprThetaArrow, pprTheta, pprClassPred ) -import TyCon ( TyCon ) +import Type ( TvSubst, substTy, substTyVar, substTyWith, substTheta, zipTopTvSubst, + notElemTvSubst, extendTvSubstList ) +import Unify ( tcMatchTys ) +import Kind ( isSubKind ) +import Packages ( isHomeModule ) +import HscTypes ( ExternalPackageState(..) ) +import CoreFVs ( idFreeTyVars ) +import DataCon ( DataCon, dataConTyVars, dataConStupidTheta, dataConName ) +import Id ( Id, idName, idType, mkUserLocal, mkLocalId ) +import PrelInfo ( isStandardClass, isNoDictClass ) +import Name ( Name, mkMethodOcc, getOccName, getSrcLoc, nameModule, + isInternalName, setNameUnique, mkSystemVarNameEncoded ) +import NameSet ( addOneToNameSet ) import Literal ( inIntRange ) -import Var ( TyVar ) -import VarEnv ( lookupVarEnv, TidyEnv, - lookupSubstEnv, SubstResult(..) - ) -import VarSet ( elemVarSet, emptyVarSet, unionVarSet ) -import TysPrim ( intPrimTy, floatPrimTy, doublePrimTy ) -import TysWiredIn ( intDataCon, isIntTy, - floatDataCon, isFloatTy, - doubleDataCon, isDoubleTy, - integerTy, isIntegerTy, - voidTy - ) -import Unique ( fromRationalClassOpKey, rationalTyConKey, - fromIntClassOpKey, fromIntegerClassOpKey, Unique - ) -import Maybes ( expectJust ) -import Maybe ( catMaybes ) -import Util ( thenCmp, zipWithEqual, mapAccumL ) +import Var ( TyVar, tyVarKind, setIdType ) +import VarEnv ( TidyEnv, emptyTidyEnv ) +import VarSet ( elemVarSet, emptyVarSet, unionVarSet, mkVarSet ) +import TysWiredIn ( floatDataCon, doubleDataCon ) +import PrelNames ( integerTyConName, fromIntegerName, fromRationalName, rationalTyConName ) +import BasicTypes( IPName(..), mapIPName, ipNameName ) +import UniqSupply( uniqsFromSupply ) +import SrcLoc ( mkSrcSpan, noLoc, unLoc, Located(..) ) +import CmdLineOpts( DynFlags ) +import Maybes ( isJust ) import Outputable \end{code} -%************************************************************************ -%* * -\subsection[Inst-collections]{LIE: a collection of Insts} -%* * -%************************************************************************ - -\begin{code} -type LIE = Bag Inst - -isEmptyLIE = isEmptyBag -emptyLIE = emptyBag -unitLIE inst = unitBag inst -mkLIE insts = listToBag insts -plusLIE lie1 lie2 = lie1 `unionBags` lie2 -consLIE inst lie = inst `consBag` lie -plusLIEs lies = unionManyBags lies -lieToList = bagToList -listToLIE = listToBag - -zonkLIE :: LIE -> NF_TcM s LIE -zonkLIE lie = mapBagNF_Tc zonkInst lie - -pprInsts :: [Inst] -> SDoc -pprInsts insts = parens (sep (punctuate comma (map pprInst insts))) - - -pprInstsInFull insts - = vcat (map go insts) - where - go inst = quotes (ppr inst) <+> pprInstLoc (instLoc inst) -\end{code} - -%************************************************************************ -%* * -\subsection[Inst-types]{@Inst@ types} -%* * -%************************************************************************ - -An @Inst@ is either a dictionary, an instance of an overloaded -literal, or an instance of an overloaded value. We call the latter a -``method'' even though it may not correspond to a class operation. -For example, we might have an instance of the @double@ function at -type Int, represented by - - Method 34 doubleId [Int] origin - -\begin{code} -data Inst - = Dict - Unique - TcPredType - InstLoc - - | Method - Unique - - TcId -- The overloaded function - -- This function will be a global, local, or ClassOpId; - -- inside instance decls (only) it can also be an InstId! - -- The id needn't be completely polymorphic. - -- You'll probably find its name (for documentation purposes) - -- inside the InstOrigin - - [TcType] -- The types to which its polymorphic tyvars - -- should be instantiated. - -- These types must saturate the Id's foralls. - - TcThetaType -- The (types of the) dictionaries to which the function - -- must be applied to get the method - - TcTauType -- The type of the method - - InstLoc - - -- INVARIANT: in (Method u f tys theta tau loc) - -- type of (f tys dicts(from theta)) = tau - - | LitInst - Unique - OverloadedLit - TcType -- The type at which the literal is used - InstLoc - - | FunDep - Unique - Class -- the class from which this arises - [FunDep TcType] - InstLoc - -data OverloadedLit - = OverloadedIntegral Integer -- The number - | OverloadedFractional Rational -- The number -\end{code} - -Ordering -~~~~~~~~ -@Insts@ are ordered by their class/type info, rather than by their -unique. This allows the context-reduction mechanism to use standard finite -maps to do their stuff. - -\begin{code} -instance Ord Inst where - compare = cmpInst - -instance Eq Inst where - (==) i1 i2 = case i1 `cmpInst` i2 of - EQ -> True - other -> False - -cmpInst (Dict _ pred1 _) (Dict _ pred2 _) = (pred1 `compare` pred2) -cmpInst (Dict _ _ _) other = LT - -cmpInst (Method _ _ _ _ _ _) (Dict _ _ _) = GT -cmpInst (Method _ id1 tys1 _ _ _) (Method _ id2 tys2 _ _ _) = (id1 `compare` id2) `thenCmp` (tys1 `compare` tys2) -cmpInst (Method _ _ _ _ _ _) other = LT - -cmpInst (LitInst _ lit1 ty1 _) (LitInst _ lit2 ty2 _) = (lit1 `cmpOverLit` lit2) `thenCmp` (ty1 `compare` ty2) -cmpInst (LitInst _ _ _ _) (FunDep _ _ _ _) = LT -cmpInst (LitInst _ _ _ _) other = GT - -cmpInst (FunDep _ clas1 fds1 _) (FunDep _ clas2 fds2 _) = (clas1 `compare` clas2) `thenCmp` (fds1 `compare` fds2) -cmpInst (FunDep _ _ _ _) other = GT - -cmpOverLit (OverloadedIntegral i1) (OverloadedIntegral i2) = i1 `compare` i2 -cmpOverLit (OverloadedFractional f1) (OverloadedFractional f2) = f1 `compare` f2 -cmpOverLit (OverloadedIntegral _) (OverloadedFractional _) = LT -cmpOverLit (OverloadedFractional _) (OverloadedIntegral _) = GT -\end{code} - Selection ~~~~~~~~~ \begin{code} -instLoc (Dict u pred loc) = loc -instLoc (Method u _ _ _ _ loc) = loc -instLoc (LitInst u lit ty loc) = loc -instLoc (FunDep _ _ _ loc) = loc +instName :: Inst -> Name +instName inst = idName (instToId inst) -getDictPred_maybe (Dict _ p _) = Just p -getDictPred_maybe _ = Nothing +instToId :: Inst -> TcId +instToId (LitInst nm _ ty _) = mkLocalId nm ty +instToId (Dict nm pred _) = mkLocalId nm (mkPredTy pred) +instToId (Method id _ _ _ _ _) = id -getMethodTheta_maybe (Method _ _ _ theta _ _) = Just theta -getMethodTheta_maybe _ = Nothing +instLoc (Dict _ _ loc) = loc +instLoc (Method _ _ _ _ _ loc) = loc +instLoc (LitInst _ _ _ loc) = loc -getDictClassTys (Dict u (Class clas tys) _) = (clas, tys) +dictPred (Dict _ pred _ ) = pred +dictPred inst = pprPanic "dictPred" (ppr inst) -getFunDeps (FunDep _ clas fds _) = Just (clas, fds) -getFunDeps _ = Nothing +getDictClassTys (Dict _ pred _) = getClassPredTys pred -getFunDepsOfLIE lie = catMaybes (map getFunDeps (lieToList lie)) +-- fdPredsOfInst is used to get predicates that contain functional +-- dependencies *or* might do so. The "might do" part is because +-- a constraint (C a b) might have a superclass with FDs +-- Leaving these in is really important for the call to fdPredsOfInsts +-- in TcSimplify.inferLoop, because the result is fed to 'grow', +-- which is supposed to be conservative +fdPredsOfInst (Dict _ pred _) = [pred] +fdPredsOfInst (Method _ _ _ theta _ _) = theta +fdPredsOfInst other = [] -- LitInsts etc -getIPsOfPred (IParam n ty) = [(n, ty)] -getIPsOfPred _ = [] -getIPsOfTheta theta = concatMap getIPsOfPred theta +fdPredsOfInsts :: [Inst] -> [PredType] +fdPredsOfInsts insts = concatMap fdPredsOfInst insts -getIPs (Dict u (IParam n ty) loc) = [(n, ty)] -getIPs (Method u id _ theta t loc) = getIPsOfTheta theta -getIPs _ = [] +isInheritableInst (Dict _ pred _) = isInheritablePred pred +isInheritableInst (Method _ _ _ theta _ _) = all isInheritablePred theta +isInheritableInst other = True -getIPsOfLIE lie = concatMap getIPs (lieToList lie) -getAllFunDeps (FunDep _ clas fds _) = fds -getAllFunDeps inst = map (\(n,ty) -> ([], [ty])) (getIPs inst) +ipNamesOfInsts :: [Inst] -> [Name] +ipNamesOfInst :: Inst -> [Name] +-- Get the implicit parameters mentioned by these Insts +-- NB: ?x and %x get different Names +ipNamesOfInsts insts = [n | inst <- insts, n <- ipNamesOfInst inst] -getAllFunDepsOfLIE lie = concat (map getAllFunDeps (lieToList lie)) +ipNamesOfInst (Dict _ (IParam n _) _) = [ipNameName n] +ipNamesOfInst (Method _ _ _ theta _ _) = [ipNameName n | IParam n _ <- theta] +ipNamesOfInst other = [] tyVarsOfInst :: Inst -> TcTyVarSet +tyVarsOfInst (LitInst _ _ ty _) = tyVarsOfType ty tyVarsOfInst (Dict _ pred _) = tyVarsOfPred pred tyVarsOfInst (Method _ id tys _ _ _) = tyVarsOfTypes tys `unionVarSet` idFreeTyVars id -- The id might have free type variables; in the case of -- locally-overloaded class methods, for example -tyVarsOfInst (LitInst _ _ ty _) = tyVarsOfType ty -tyVarsOfInst (FunDep _ _ fds _) - = foldr unionVarSet emptyVarSet (map tyVarsOfFd fds) - where tyVarsOfFd (ts1, ts2) = - tyVarsOfTypes ts1 `unionVarSet` tyVarsOfTypes ts2 -tyVarsOfInsts insts - = foldr unionVarSet emptyVarSet (map tyVarsOfInst insts) -tyVarsOfLIE lie - = foldr unionVarSet emptyVarSet (map tyVarsOfInst insts) - where insts = lieToList lie +tyVarsOfInsts insts = foldr (unionVarSet . tyVarsOfInst) emptyVarSet insts +tyVarsOfLIE lie = tyVarsOfInsts (lieToList lie) \end{code} Predicates @@ -285,32 +160,42 @@ Predicates isDict :: Inst -> Bool isDict (Dict _ _ _) = True isDict other = False + isClassDict :: Inst -> Bool -isClassDict (Dict _ (Class _ _) _) = True -isClassDict other = False +isClassDict (Dict _ pred _) = isClassPred pred +isClassDict other = False + +isTyVarDict :: Inst -> Bool +isTyVarDict (Dict _ pred _) = isTyVarClassPred pred +isTyVarDict other = False + +isIPDict :: Inst -> Bool +isIPDict (Dict _ pred _) = isIPPred pred +isIPDict other = False isMethod :: Inst -> Bool isMethod (Method _ _ _ _ _ _) = True isMethod other = False isMethodFor :: TcIdSet -> Inst -> Bool -isMethodFor ids (Method uniq id tys _ _ loc) - = id `elemVarSet` ids -isMethodFor ids inst - = False +isMethodFor ids (Method uniq id tys _ _ loc) = id `elemVarSet` ids +isMethodFor ids inst = False -isTyVarDict :: Inst -> Bool -isTyVarDict (Dict _ (Class _ tys) _) = all isTyVarTy tys -isTyVarDict other = False +isLinearInst :: Inst -> Bool +isLinearInst (Dict _ pred _) = isLinearPred pred +isLinearInst other = False + -- We never build Method Insts that have + -- linear implicit paramters in them. + -- Hence no need to look for Methods + -- See TcExpr.tcId + +linearInstType :: Inst -> TcType -- %x::t --> t +linearInstType (Dict _ (IParam _ ty) _) = ty -isStdClassTyVarDict (Dict _ (Class clas [ty]) _) - = isStandardClass clas && isTyVarTy ty -isStdClassTyVarDict other - = False -notFunDep :: Inst -> Bool -notFunDep (FunDep _ _ _ _) = False -notFunDep other = True +isStdClassTyVarDict (Dict _ pred _) = case getClassPredTys_maybe pred of + Just (clas, [ty]) -> isStandardClass clas && tcIsTyVarTy ty + other -> False \end{code} Two predicates which deal with the case where class constraints don't @@ -320,110 +205,155 @@ must be witnessed by an actual binding; the second tells whether an \begin{code} instBindingRequired :: Inst -> Bool -instBindingRequired (Dict _ (Class clas _) _) = not (isNoDictClass clas) -instBindingRequired (Dict _ (IParam _ _) _) = False -instBindingRequired other = True - -instCanBeGeneralised :: Inst -> Bool -instCanBeGeneralised (Dict _ (Class clas _) _) = not (isCcallishClass clas) -instCanBeGeneralised other = True +instBindingRequired (Dict _ (ClassP clas _) _) = not (isNoDictClass clas) +instBindingRequired other = True \end{code} -Construction -~~~~~~~~~~~~ +%************************************************************************ +%* * +\subsection{Building dictionaries} +%* * +%************************************************************************ \begin{code} newDicts :: InstOrigin -> TcThetaType - -> NF_TcM s (LIE, [TcId]) + -> TcM [Inst] newDicts orig theta - = tcGetInstLoc orig `thenNF_Tc` \ loc -> - newDictsAtLoc loc theta `thenNF_Tc` \ (dicts, ids) -> - returnNF_Tc (listToBag dicts, ids) - -newClassDicts :: InstOrigin - -> [(Class,[TcType])] - -> NF_TcM s (LIE, [TcId]) -newClassDicts orig theta - = newDicts orig (map (uncurry Class) theta) - --- Local function, similar to newDicts, --- but with slightly different interface -newDictsAtLoc :: InstLoc - -> TcThetaType - -> NF_TcM s ([Inst], [TcId]) -newDictsAtLoc loc theta = - tcGetUniques (length theta) `thenNF_Tc` \ new_uniqs -> - let - mk_dict u pred = Dict u pred loc - dicts = zipWithEqual "newDictsAtLoc" mk_dict new_uniqs theta - in - returnNF_Tc (dicts, map instToId dicts) - -newDictFromOld :: Inst -> Class -> [TcType] -> NF_TcM s Inst -newDictFromOld (Dict _ _ loc) clas tys - = tcGetUnique `thenNF_Tc` \ uniq -> - returnNF_Tc (Dict uniq (Class clas tys) loc) - - -newMethod :: InstOrigin - -> TcId - -> [TcType] - -> NF_TcM s (LIE, TcId) -newMethod orig id tys - = -- Get the Id type and instantiate it at the specified types + = getInstLoc orig `thenM` \ loc -> + newDictsAtLoc loc theta + +cloneDict :: Inst -> TcM Inst +cloneDict (Dict nm ty loc) = newUnique `thenM` \ uniq -> + returnM (Dict (setNameUnique nm uniq) ty loc) + +newDictAtLoc :: InstLoc -> TcPredType -> TcM Inst +newDictAtLoc inst_loc pred + = do { uniq <- newUnique + ; return (mkDict inst_loc uniq pred) } + +newDictsAtLoc :: InstLoc -> TcThetaType -> TcM [Inst] +newDictsAtLoc inst_loc theta + = newUniqueSupply `thenM` \ us -> + returnM (zipWith (mkDict inst_loc) (uniqsFromSupply us) theta) + +mkDict inst_loc uniq pred + = Dict name pred inst_loc + where + name = mkPredName uniq (instLocSrcLoc inst_loc) pred + +-- For vanilla implicit parameters, there is only one in scope +-- at any time, so we used to use the name of the implicit parameter itself +-- But with splittable implicit parameters there may be many in +-- scope, so we make up a new name. +newIPDict :: InstOrigin -> IPName Name -> Type + -> TcM (IPName Id, Inst) +newIPDict orig ip_name ty + = getInstLoc orig `thenM` \ inst_loc -> + newUnique `thenM` \ uniq -> let - (tyvars, rho) = splitForAllTys (idType id) - rho_ty = substTy (mkTyVarSubst tyvars tys) rho - (theta, tau) = splitRhoTy rho_ty + pred = IParam ip_name ty + name = mkPredName uniq (instLocSrcLoc inst_loc) pred + dict = Dict name pred inst_loc in - newMethodWithGivenTy orig id tys theta tau `thenNF_Tc` \ meth_inst -> - returnNF_Tc (unitLIE meth_inst, instToId meth_inst) - -instOverloadedFun orig v arg_tys theta tau --- This is where we introduce new functional dependencies into the LIE - = newMethodWithGivenTy orig v arg_tys theta tau `thenNF_Tc` \ inst -> - instFunDeps orig theta `thenNF_Tc` \ fds -> - returnNF_Tc (instToId inst, mkLIE (inst : fds)) - -instFunDeps orig theta - = tcGetUnique `thenNF_Tc` \ uniq -> - tcGetInstLoc orig `thenNF_Tc` \ loc -> - let ifd (Class clas tys) = - let fds = instantiateFdClassTys clas tys in - if null fds then Nothing else Just (FunDep uniq clas fds loc) - ifd _ = Nothing - in returnNF_Tc (catMaybes (map ifd theta)) - -instFunDepsOfTheta theta - = let ifd (Class clas tys) = instantiateFdClassTys clas tys - ifd (IParam n ty) = [([], [ty])] - in concat (map ifd theta) + returnM (mapIPName (\n -> instToId dict) ip_name, dict) +\end{code} + + + +%************************************************************************ +%* * +\subsection{Building methods (calls of overloaded functions)} +%* * +%************************************************************************ + + +\begin{code} +tcInstCall :: InstOrigin -> TcType -> TcM (ExprCoFn, [TcTyVar], TcType) +tcInstCall orig fun_ty -- fun_ty is usually a sigma-type + = do { (tyvars, theta, tau) <- tcInstType fun_ty + ; dicts <- newDicts orig theta + ; extendLIEs dicts + ; let inst_fn e = unLoc (mkHsDictApp (mkHsTyApp (noLoc e) (mkTyVarTys tyvars)) + (map instToId dicts)) + ; return (mkCoercion inst_fn, tyvars, tau) } + +tcInstStupidTheta :: DataCon -> [TcType] -> TcM () +-- Instantiate the "stupid theta" of the data con, and throw +-- the constraints into the constraint set +tcInstStupidTheta data_con inst_tys + | null stupid_theta + = return () + | otherwise + = do { stupid_dicts <- newDicts (OccurrenceOf (dataConName data_con)) + (substTheta tenv stupid_theta) + ; extendLIEs stupid_dicts } + where + stupid_theta = dataConStupidTheta data_con + tenv = zipTopTvSubst (dataConTyVars data_con) inst_tys + +newMethodFromName :: InstOrigin -> TcType -> Name -> TcM TcId +newMethodFromName origin ty name + = tcLookupId name `thenM` \ id -> + -- Use tcLookupId not tcLookupGlobalId; the method is almost + -- always a class op, but with -fno-implicit-prelude GHC is + -- meant to find whatever thing is in scope, and that may + -- be an ordinary function. + getInstLoc origin `thenM` \ loc -> + tcInstClassOp loc id [ty] `thenM` \ inst -> + extendLIE inst `thenM_` + returnM (instToId inst) newMethodWithGivenTy orig id tys theta tau - = tcGetInstLoc orig `thenNF_Tc` \ loc -> - newMethodWith id tys theta tau loc - -newMethodWith id tys theta tau loc - = tcGetUnique `thenNF_Tc` \ new_uniq -> - returnNF_Tc (Method new_uniq id tys theta tau loc) - -newMethodAtLoc :: InstLoc - -> Id -> [TcType] - -> NF_TcM s (Inst, TcId) -newMethodAtLoc loc real_id tys -- Local function, similar to newMethod but with - -- slightly different interface - = -- Get the Id type and instantiate it at the specified types - tcGetUnique `thenNF_Tc` \ new_uniq -> + = getInstLoc orig `thenM` \ loc -> + newMethod loc id tys theta tau `thenM` \ inst -> + extendLIE inst `thenM_` + returnM (instToId inst) + +-------------------------------------------- +-- tcInstClassOp, and newMethod do *not* drop the +-- Inst into the LIE; they just returns the Inst +-- This is important because they are used by TcSimplify +-- to simplify Insts + +-- NB: the kind of the type variable to be instantiated +-- might be a sub-kind of the type to which it is applied, +-- notably when the latter is a type variable of kind ?? +-- Hence the call to checkKind +-- A worry: is this needed anywhere else? +tcInstClassOp :: InstLoc -> Id -> [TcType] -> TcM Inst +tcInstClassOp inst_loc sel_id tys + = let + (tyvars,rho) = tcSplitForAllTys (idType sel_id) + rho_ty = ASSERT( length tyvars == length tys ) + substTyWith tyvars tys rho + (preds,tau) = tcSplitPhiTy rho_ty + in + zipWithM_ checkKind tyvars tys `thenM_` + newMethod inst_loc sel_id tys preds tau + +checkKind :: TyVar -> TcType -> TcM () +-- Ensure that the type has a sub-kind of the tyvar +checkKind tv ty + = do { ty1 <- zonkTcType ty + ; if typeKind ty1 `isSubKind` tyVarKind tv + then return () + else do + { traceTc (text "checkKind: adding kind constraint" <+> ppr tv <+> ppr ty) + ; tv1 <- tcInstTyVar tv + ; unifyTauTy (mkTyVarTy tv1) ty1 }} + + +--------------------------- +newMethod inst_loc id tys theta tau + = newUnique `thenM` \ new_uniq -> let - (tyvars,rho) = splitForAllTys (idType real_id) - rho_ty = ASSERT( length tyvars == length tys ) - substTy (mkTopTyVarSubst tyvars tys) rho - (theta, tau) = splitRhoTy rho_ty - meth_inst = Method new_uniq real_id tys theta tau loc + meth_id = mkUserLocal (mkMethodOcc (getOccName id)) new_uniq tau loc + inst = Method meth_id id tys theta tau inst_loc + loc = instLocSrcLoc inst_loc in - returnNF_Tc (meth_inst, instToId meth_inst) + returnM inst \end{code} In newOverloadedLit we convert directly to an Int or Integer if we @@ -433,131 +363,119 @@ cases (the rest are caught in lookupInst). \begin{code} newOverloadedLit :: InstOrigin - -> OverloadedLit + -> HsOverLit -> TcType - -> NF_TcM s (TcExpr, LIE) -newOverloadedLit orig (OverloadedIntegral i) ty - | isIntTy ty && inIntRange i -- Short cut for Int - = returnNF_Tc (int_lit, emptyLIE) - - | isIntegerTy ty -- Short cut for Integer - = returnNF_Tc (integer_lit, emptyLIE) - - where - intprim_lit = HsLitOut (HsIntPrim i) intPrimTy - integer_lit = HsLitOut (HsInt i) integerTy - int_lit = mkHsConApp intDataCon [] [intprim_lit] - -newOverloadedLit orig lit ty -- The general case - = tcGetInstLoc orig `thenNF_Tc` \ loc -> - tcGetUnique `thenNF_Tc` \ new_uniq -> + -> TcM (LHsExpr TcId) +newOverloadedLit orig lit@(HsIntegral i fi) expected_ty + | fi /= fromIntegerName -- Do not generate a LitInst for rebindable syntax. + -- Reason: tcSyntaxName does unification + -- which is very inconvenient in tcSimplify + -- ToDo: noLoc sadness + = tcSyntaxName orig expected_ty (fromIntegerName, HsVar fi) `thenM` \ (_,expr) -> + mkIntegerLit i `thenM` \ integer_lit -> + returnM (mkHsApp (noLoc expr) integer_lit) + -- The mkHsApp will get the loc from the literal + | Just expr <- shortCutIntLit i expected_ty + = returnM expr + + | otherwise + = newLitInst orig lit expected_ty + +newOverloadedLit orig lit@(HsFractional r fr) expected_ty + | fr /= fromRationalName -- c.f. HsIntegral case + = tcSyntaxName orig expected_ty (fromRationalName, HsVar fr) `thenM` \ (_,expr) -> + mkRatLit r `thenM` \ rat_lit -> + returnM (mkHsApp (noLoc expr) rat_lit) + -- The mkHsApp will get the loc from the literal + + | Just expr <- shortCutFracLit r expected_ty + = returnM expr + + | otherwise + = newLitInst orig lit expected_ty + +newLitInst :: InstOrigin -> HsOverLit -> TcType -> TcM (LHsExpr TcId) +newLitInst orig lit expected_ty + = getInstLoc orig `thenM` \ loc -> + newUnique `thenM` \ new_uniq -> let - lit_inst = LitInst new_uniq lit ty loc - in - returnNF_Tc (HsVar (instToId lit_inst), unitLIE lit_inst) -\end{code} - -\begin{code} -newFunDepFromDict dict - = tcGetUnique `thenNF_Tc` \ uniq -> - let (clas, tys) = getDictClassTys dict - fds = instantiateFdClassTys clas tys - inst = FunDep uniq clas fds (instLoc dict) + lit_nm = mkSystemVarNameEncoded new_uniq FSLIT("lit") + -- The "encoded" bit means that we don't need to z-encode + -- the string every time we call this! + lit_inst = LitInst lit_nm lit expected_ty loc in - if null fds then returnNF_Tc Nothing else returnNF_Tc (Just inst) -\end{code} + extendLIE lit_inst `thenM_` + returnM (L (instLocSrcSpan loc) (HsVar (instToId lit_inst))) -\begin{code} -newIPDict name ty loc - = tcGetUnique `thenNF_Tc` \ new_uniq -> - let d = Dict new_uniq (IParam name ty) loc in - returnNF_Tc d +shortCutIntLit :: Integer -> TcType -> Maybe (LHsExpr TcId) -- Returns noLoc'd result :-) +shortCutIntLit i ty + | isIntTy ty && inIntRange i -- Short cut for Int + = Just (noLoc (HsLit (HsInt i))) + | isIntegerTy ty -- Short cut for Integer + = Just (noLoc (HsLit (HsInteger i ty))) + | otherwise = Nothing + +shortCutFracLit :: Rational -> TcType -> Maybe (LHsExpr TcId) -- Returns noLoc'd result :-) +shortCutFracLit f ty + | isFloatTy ty + = Just (mkHsConApp floatDataCon [] [HsLit (HsFloatPrim f)]) + | isDoubleTy ty + = Just (mkHsConApp doubleDataCon [] [HsLit (HsDoublePrim f)]) + | otherwise = Nothing + +mkIntegerLit :: Integer -> TcM (LHsExpr TcId) +mkIntegerLit i + = tcMetaTy integerTyConName `thenM` \ integer_ty -> + getSrcSpanM `thenM` \ span -> + returnM (L span $ HsLit (HsInteger i integer_ty)) + +mkRatLit :: Rational -> TcM (LHsExpr TcId) +mkRatLit r + = tcMetaTy rationalTyConName `thenM` \ rat_ty -> + getSrcSpanM `thenM` \ span -> + returnM (L span $ HsLit (HsRat r rat_ty)) \end{code} -\begin{code} -instToId :: Inst -> TcId -instToId inst = instToIdBndr inst - -instToIdBndr :: Inst -> TcId -instToIdBndr (Dict u (Class clas tys) (_,loc,_)) - = mkUserLocal (mkDictOcc (getOccName clas)) u (mkDictTy clas tys) loc -instToIdBndr (Dict u (IParam n ty) (_,loc,_)) - = ipToId n ty loc - -instToIdBndr (Method u id tys theta tau (_,loc,_)) - = mkUserLocal (mkMethodOcc (getOccName id)) u tau loc - -instToIdBndr (LitInst u list ty loc) - = mkSysLocal SLIT("lit") u ty - -instToIdBndr (FunDep u clas fds _) - = mkSysLocal SLIT("FunDep") u voidTy - -ipToId n ty loc - = mkUserLocal (mkIPOcc (getOccName n)) (nameUnique n) (mkPredTy (IParam n ty)) loc -\end{code} +%************************************************************************ +%* * +\subsection{Zonking} +%* * +%************************************************************************ -Zonking -~~~~~~~ -Zonking makes sure that the instance types are fully zonked, -but doesn't do the same for the Id in a Method. There's no -need, and it's a lot of extra work. +Zonking makes sure that the instance types are fully zonked. \begin{code} -zonkPred :: TcPredType -> NF_TcM s TcPredType -zonkPred (Class clas tys) - = zonkTcTypes tys `thenNF_Tc` \ new_tys -> - returnNF_Tc (Class clas new_tys) -zonkPred (IParam n ty) - = zonkTcType ty `thenNF_Tc` \ new_ty -> - returnNF_Tc (IParam n new_ty) - -zonkInst :: Inst -> NF_TcM s Inst -zonkInst (Dict u pred loc) - = zonkPred pred `thenNF_Tc` \ new_pred -> - returnNF_Tc (Dict u new_pred loc) - -zonkInst (Method u id tys theta tau loc) - = zonkId id `thenNF_Tc` \ new_id -> +zonkInst :: Inst -> TcM Inst +zonkInst (Dict name pred loc) + = zonkTcPredType pred `thenM` \ new_pred -> + returnM (Dict name new_pred loc) + +zonkInst (Method m id tys theta tau loc) + = zonkId id `thenM` \ new_id -> -- Essential to zonk the id in case it's a local variable -- Can't use zonkIdOcc because the id might itself be -- an InstId, in which case it won't be in scope - zonkTcTypes tys `thenNF_Tc` \ new_tys -> - zonkTcThetaType theta `thenNF_Tc` \ new_theta -> - zonkTcType tau `thenNF_Tc` \ new_tau -> - returnNF_Tc (Method u new_id new_tys new_theta new_tau loc) + zonkTcTypes tys `thenM` \ new_tys -> + zonkTcThetaType theta `thenM` \ new_theta -> + zonkTcType tau `thenM` \ new_tau -> + returnM (Method m new_id new_tys new_theta new_tau loc) -zonkInst (LitInst u lit ty loc) - = zonkTcType ty `thenNF_Tc` \ new_ty -> - returnNF_Tc (LitInst u lit new_ty loc) +zonkInst (LitInst nm lit ty loc) + = zonkTcType ty `thenM` \ new_ty -> + returnM (LitInst nm lit new_ty loc) -zonkInst (FunDep u clas fds loc) - = zonkFunDeps fds `thenNF_Tc` \ fds' -> - returnNF_Tc (FunDep u clas fds' loc) - -zonkPreds preds = mapNF_Tc zonkPred preds -zonkInsts insts = mapNF_Tc zonkInst insts - -zonkFunDeps fds = mapNF_Tc zonkFd fds - where - zonkFd (ts1, ts2) - = zonkTcTypes ts1 `thenNF_Tc` \ ts1' -> - zonkTcTypes ts2 `thenNF_Tc` \ ts2' -> - returnNF_Tc (ts1', ts2') - -zonkTvFunDeps fds = mapNF_Tc zonkFd fds - where - zonkFd (tvs1, tvs2) - = zonkTcTyVars tvs1 `thenNF_Tc` \ tvs1' -> - zonkTcTyVars tvs2 `thenNF_Tc` \ tvs2' -> - returnNF_Tc (tvs1', tvs2') +zonkInsts insts = mappM zonkInst insts \end{code} -Printing -~~~~~~~~ +%************************************************************************ +%* * +\subsection{Printing} +%* * +%************************************************************************ + ToDo: improve these pretty-printing things. The ``origin'' is really only relevant in error messages. @@ -565,207 +483,379 @@ relevant in error messages. instance Outputable Inst where ppr inst = pprInst inst -pprInst (LitInst u lit ty loc) - = hsep [case lit of - OverloadedIntegral i -> integer i - OverloadedFractional f -> rational f, - ptext SLIT("at"), - ppr ty, - show_uniq u] - -pprInst (Dict u pred loc) = pprPred pred <+> show_uniq u - -pprInst m@(Method u id tys theta tau loc) - = hsep [ppr id, ptext SLIT("at"), - brackets (interppSP tys) {- , - ppr theta, ppr tau, - show_uniq u, - ppr (instToId m) -}] - -pprInst (FunDep _ clas fds loc) - = hsep [ppr clas, ppr fds] - -tidyPred :: TidyEnv -> TcPredType -> (TidyEnv, TcPredType) -tidyPred env (Class clas tys) - = (env', Class clas tys') - where - (env', tys') = tidyOpenTypes env tys -tidyPred env (IParam n ty) - = (env', IParam n ty') - where - (env', ty') = tidyOpenType env ty +pprDictsTheta :: [Inst] -> SDoc +-- Print in type-like fashion (Eq a, Show b) +pprDictsTheta dicts = pprTheta (map dictPred dicts) -tidyInst :: TidyEnv -> Inst -> (TidyEnv, Inst) -tidyInst env (LitInst u lit ty loc) - = (env', LitInst u lit ty' loc) +pprDictsInFull :: [Inst] -> SDoc +-- Print in type-like fashion, but with source location +pprDictsInFull dicts + = vcat (map go dicts) where - (env', ty') = tidyOpenType env ty + go dict = sep [quotes (ppr (dictPred dict)), nest 2 (pprInstLoc (instLoc dict))] -tidyInst env (Dict u pred loc) - = (env', Dict u pred' loc) - where - (env', pred') = tidyPred env pred - -tidyInst env (Method u id tys theta tau loc) - = (env', Method u id tys' theta tau loc) - -- Leave theta, tau alone cos we don't print them +pprInsts :: [Inst] -> SDoc +-- Debugging: print the evidence :: type +pprInsts insts = brackets (interpp'SP insts) + +pprInst, pprInstInFull :: Inst -> SDoc +-- Debugging: print the evidence :: type +pprInst (LitInst nm lit ty loc) = ppr nm <+> dcolon <+> ppr ty +pprInst (Dict nm pred loc) = ppr nm <+> dcolon <+> pprPred pred + +pprInst m@(Method inst_id id tys theta tau loc) + = ppr inst_id <+> dcolon <+> + braces (sep [ppr id <+> ptext SLIT("at"), + brackets (sep (map pprParendType tys))]) + +pprInstInFull inst + = sep [quotes (pprInst inst), nest 2 (pprInstLoc (instLoc inst))] + +pprDFuns :: [DFunId] -> SDoc +-- Prints the dfun as an instance declaration +pprDFuns dfuns = vcat [ hang (ppr (getSrcLoc dfun) <> colon) + 2 (ptext SLIT("instance") <+> sep [pprThetaArrow theta, + pprClassPred clas tys]) + | dfun <- dfuns + , let (_, theta, clas, tys) = tcSplitDFunTy (idType dfun) ] + -- Print without the for-all, which the programmer doesn't write + +tidyInst :: TidyEnv -> Inst -> Inst +tidyInst env (LitInst nm lit ty loc) = LitInst nm lit (tidyType env ty) loc +tidyInst env (Dict nm pred loc) = Dict nm (tidyPred env pred) loc +tidyInst env (Method u id tys theta tau loc) = Method u id (tidyTypes env tys) theta tau loc + +tidyMoreInsts :: TidyEnv -> [Inst] -> (TidyEnv, [Inst]) +-- This function doesn't assume that the tyvars are in scope +-- so it works like tidyOpenType, returning a TidyEnv +tidyMoreInsts env insts + = (env', map (tidyInst env') insts) where - (env', tys') = tidyOpenTypes env tys + env' = tidyFreeTyVars env (tyVarsOfInsts insts) --- this case shouldn't arise... (we never print fundeps) -tidyInst env fd@(FunDep _ clas fds loc) - = (env, fd) +tidyInsts :: [Inst] -> (TidyEnv, [Inst]) +tidyInsts insts = tidyMoreInsts emptyTidyEnv insts -tidyInsts env insts = mapAccumL tidyInst env insts - -show_uniq u = ifPprDebug (text "{-" <> ppr u <> text "-}") +showLIE :: SDoc -> TcM () -- Debugging +showLIE str + = do { lie_var <- getLIEVar ; + lie <- readMutVar lie_var ; + traceTc (str <+> vcat (map pprInstInFull (lieToList lie))) } \end{code} %************************************************************************ %* * -\subsection[InstEnv-types]{Type declarations} + Extending the instance environment %* * %************************************************************************ \begin{code} -type InstanceMapper = Class -> InstEnv +tcExtendLocalInstEnv :: [DFunId] -> TcM a -> TcM a + -- Add new locally-defined instances +tcExtendLocalInstEnv dfuns thing_inside + = do { traceDFuns dfuns + ; env <- getGblEnv + ; dflags <- getDOpts + ; inst_env' <- foldlM (addInst dflags) (tcg_inst_env env) dfuns + ; let env' = env { tcg_insts = dfuns ++ tcg_insts env, + tcg_inst_env = inst_env' } + ; setGblEnv env' thing_inside } + +addInst :: DynFlags -> InstEnv -> DFunId -> TcM InstEnv +-- Check that the proposed new instance is OK, +-- and then add it to the home inst env +addInst dflags home_ie dfun + = do { -- Instantiate the dfun type so that we extend the instance + -- envt with completely fresh template variables + -- This is important because the template variables must + -- not overlap with anything in the things being looked up + -- (since we do unification). + -- We use tcSkolType because we don't want to allocate fresh + -- *meta* type variables. + (tvs', theta', tau') <- tcSkolType (InstSkol dfun) (idType dfun) + ; let (cls, tys') = tcSplitDFunHead tau' + dfun' = setIdType dfun (mkSigmaTy tvs' theta' tau') + + -- Load imported instances, so that we report + -- duplicates correctly + ; pkg_ie <- loadImportedInsts cls tys' + + -- Check functional dependencies + ; case checkFunDeps (pkg_ie, home_ie) dfun' of + Just dfuns -> funDepErr dfun dfuns + Nothing -> return () + + -- Check for duplicate instance decls + ; let { (matches, _) = lookupInstEnv dflags (pkg_ie, home_ie) cls tys' + ; dup_dfuns = [dup_dfun | (_, (_, dup_tys, dup_dfun)) <- matches, + isJust (tcMatchTys (mkVarSet tvs') tys' dup_tys)] } + -- Find memebers of the match list which + -- dfun itself matches. If the match is 2-way, it's a duplicate + ; case dup_dfuns of + dup_dfun : _ -> dupInstErr dfun dup_dfun + [] -> return () + + -- OK, now extend the envt + ; return (extendInstEnv home_ie dfun') } + + +traceDFuns dfuns + = traceTc (text "Adding instances:" <+> vcat (map pp dfuns)) + where + pp dfun = ppr dfun <+> dcolon <+> ppr (idType dfun) + +funDepErr dfun dfuns + = addDictLoc dfun $ + addErr (hang (ptext SLIT("Functional dependencies conflict between instance declarations:")) + 2 (pprDFuns (dfun:dfuns))) +dupInstErr dfun dup_dfun + = addDictLoc dfun $ + addErr (hang (ptext SLIT("Duplicate instance declarations:")) + 2 (pprDFuns [dfun, dup_dfun])) + +addDictLoc dfun thing_inside + = setSrcSpan (mkSrcSpan loc loc) thing_inside + where + loc = getSrcLoc dfun \end{code} + -A @ClassInstEnv@ lives inside a class, and identifies all the instances -of that class. The @Id@ inside a ClassInstEnv mapping is the dfun for -that instance. - -There is an important consistency constraint between the @MatchEnv@s -in and the dfun @Id@s inside them: the free type variables of the -@Type@ key in the @MatchEnv@ must be a subset of the universally-quantified -type variables of the dfun. Thus, the @ClassInstEnv@ for @Eq@ might -contain the following entry: -@ - [a] ===> dfun_Eq_List :: forall a. Eq a => Eq [a] -@ -The "a" in the pattern must be one of the forall'd variables in -the dfun type. +%************************************************************************ +%* * +\subsection{Looking up Insts} +%* * +%************************************************************************ \begin{code} -data LookupInstResult s +data LookupInstResult = NoInstance - | SimpleInst TcExpr -- Just a variable, type application, or literal - | GenInst [Inst] TcExpr -- The expression and its needed insts - -lookupInst :: Inst - -> NF_TcM s (LookupInstResult s) + | SimpleInst (LHsExpr TcId) -- Just a variable, type application, or literal + | GenInst [Inst] (LHsExpr TcId) -- The expression and its needed insts --- Dictionaries +lookupInst :: Inst -> TcM LookupInstResult +-- It's important that lookupInst does not put any new stuff into +-- the LIE. Instead, any Insts needed by the lookup are returned in +-- the LookupInstResult, where they can be further processed by tcSimplify -lookupInst dict@(Dict _ (Class clas tys) loc) - = case lookupInstEnv (classInstEnv clas) tys of - - FoundInst tenv dfun_id - -> let - subst = mkSubst (tyVarsOfTypes tys) tenv - (tyvars, rho) = splitForAllTys (idType dfun_id) - ty_args = map subst_tv tyvars - dfun_rho = substTy subst rho - (theta, tau) = splitRhoTy dfun_rho - ty_app = mkHsTyApp (HsVar dfun_id) ty_args - subst_tv tv = case lookupSubstEnv tenv tv of - Just (DoneTy ty) -> ty - -- tenv should bind all the tyvars - in - if null theta then - returnNF_Tc (SimpleInst ty_app) - else - newDictsAtLoc loc theta `thenNF_Tc` \ (dicts, dict_ids) -> - let - rhs = mkHsDictApp ty_app dict_ids - in - returnNF_Tc (GenInst dicts rhs) - - other -> returnNF_Tc NoInstance -lookupInst dict@(Dict _ _ loc) = returnNF_Tc NoInstance -- Methods lookupInst inst@(Method _ id tys theta _ loc) - = newDictsAtLoc loc theta `thenNF_Tc` \ (dicts, dict_ids) -> - returnNF_Tc (GenInst dicts (mkHsDictApp (mkHsTyApp (HsVar id) tys) dict_ids)) + = newDictsAtLoc loc theta `thenM` \ dicts -> + returnM (GenInst dicts (mkHsDictApp (mkHsTyApp (L span (HsVar id)) tys) (map instToId dicts))) + where + span = instLocSrcSpan loc -- Literals -lookupInst inst@(LitInst u (OverloadedIntegral i) ty loc) - | isIntTy ty && in_int_range -- Short cut for Int - = returnNF_Tc (GenInst [] int_lit) - -- GenInst, not SimpleInst, because int_lit is actually a constructor application +-- Look for short cuts first: if the literal is *definitely* a +-- int, integer, float or a double, generate the real thing here. +-- This is essential (see nofib/spectral/nucleic). +-- [Same shortcut as in newOverloadedLit, but we +-- may have done some unification by now] + + +lookupInst inst@(LitInst _nm (HsIntegral i from_integer_name) ty loc) + | Just expr <- shortCutIntLit i ty + = returnM (GenInst [] expr) -- GenInst, not SimpleInst, because + -- expr may be a constructor application + | otherwise + = ASSERT( from_integer_name == fromIntegerName ) -- A LitInst invariant + tcLookupId fromIntegerName `thenM` \ from_integer -> + tcInstClassOp loc from_integer [ty] `thenM` \ method_inst -> + mkIntegerLit i `thenM` \ integer_lit -> + returnM (GenInst [method_inst] + (mkHsApp (L (instLocSrcSpan loc) + (HsVar (instToId method_inst))) integer_lit)) + +lookupInst inst@(LitInst _nm (HsFractional f from_rat_name) ty loc) + | Just expr <- shortCutFracLit f ty + = returnM (GenInst [] expr) + + | otherwise + = ASSERT( from_rat_name == fromRationalName ) -- A LitInst invariant + tcLookupId fromRationalName `thenM` \ from_rational -> + tcInstClassOp loc from_rational [ty] `thenM` \ method_inst -> + mkRatLit f `thenM` \ rat_lit -> + returnM (GenInst [method_inst] (mkHsApp (L (instLocSrcSpan loc) + (HsVar (instToId method_inst))) rat_lit)) - | isIntegerTy ty -- Short cut for Integer - = returnNF_Tc (GenInst [] integer_lit) +-- Dictionaries +lookupInst (Dict _ pred loc) + = do { mb_result <- lookupPred pred + ; case mb_result of { + Nothing -> return NoInstance ; + Just (tenv, dfun_id) -> do + + -- tenv is a substitution that instantiates the dfun_id + -- to match the requested result type. + -- + -- We ASSUME that the dfun is quantified over the very same tyvars + -- that are bound by the tenv. + -- + -- However, the dfun + -- might have some tyvars that *only* appear in arguments + -- dfun :: forall a b. C a b, Ord b => D [a] + -- We instantiate b to a flexi type variable -- it'll presumably + -- become fixed later via functional dependencies + { use_stage <- getStage + ; checkWellStaged (ptext SLIT("instance for") <+> quotes (ppr pred)) + (topIdLvl dfun_id) use_stage + + -- It's possible that not all the tyvars are in + -- the substitution, tenv. For example: + -- instance C X a => D X where ... + -- (presumably there's a functional dependency in class C) + -- Hence the open_tvs to instantiate any un-substituted tyvars. + ; let (tyvars, rho) = tcSplitForAllTys (idType dfun_id) + open_tvs = filter (`notElemTvSubst` tenv) tyvars + ; open_tvs' <- mappM tcInstTyVar open_tvs + ; let + tenv' = extendTvSubstList tenv open_tvs (mkTyVarTys open_tvs') + -- Since the open_tvs' are freshly made, they cannot possibly be captured by + -- any nested for-alls in rho. So the in-scope set is unchanged + dfun_rho = substTy tenv' rho + (theta, _) = tcSplitPhiTy dfun_rho + ty_app = mkHsTyApp (L (instLocSrcSpan loc) (HsVar dfun_id)) + (map (substTyVar tenv') tyvars) + ; if null theta then + returnM (SimpleInst ty_app) + else do + { dicts <- newDictsAtLoc loc theta + ; let rhs = mkHsDictApp ty_app (map instToId dicts) + ; returnM (GenInst dicts rhs) + }}}} + +--------------- +lookupPred :: TcPredType -> TcM (Maybe (TvSubst, DFunId)) +-- Look up a class constraint in the instance environment +lookupPred pred@(ClassP clas tys) + = do { pkg_ie <- loadImportedInsts clas tys + -- Suck in any instance decls that may be relevant + ; tcg_env <- getGblEnv + ; dflags <- getDOpts + ; case lookupInstEnv dflags (pkg_ie, tcg_inst_env tcg_env) clas tys of { + ([(tenv, (_,_,dfun_id))], []) + -> do { traceTc (text "lookupInst success" <+> + vcat [text "dict" <+> ppr pred, + text "witness" <+> ppr dfun_id + <+> ppr (idType dfun_id) ]) + -- Record that this dfun is needed + ; record_dfun_usage dfun_id + ; return (Just (tenv, dfun_id)) } ; + + (matches, unifs) + -> do { traceTc (text "lookupInst fail" <+> + vcat [text "dict" <+> ppr pred, + text "matches" <+> ppr matches, + text "unifs" <+> ppr unifs]) + -- In the case of overlap (multiple matches) we report + -- NoInstance here. That has the effect of making the + -- context-simplifier return the dict as an irreducible one. + -- Then it'll be given to addNoInstanceErrs, which will do another + -- lookupInstEnv to get the detailed info about what went wrong. + ; return Nothing } + }} + +lookupPred ip_pred = return Nothing + +record_dfun_usage dfun_id + = do { dflags <- getDOpts + ; let dfun_name = idName dfun_id + dfun_mod = nameModule dfun_name + ; if isInternalName dfun_name || not (isHomeModule dflags dfun_mod) + then return () -- internal, or in another package + else do { tcg_env <- getGblEnv + ; updMutVar (tcg_inst_uses tcg_env) + (`addOneToNameSet` idName dfun_id) }} + + +tcGetInstEnvs :: TcM (InstEnv, InstEnv) +-- Gets both the external-package inst-env +-- and the home-pkg inst env (includes module being compiled) +tcGetInstEnvs = do { eps <- getEps; env <- getGblEnv; + return (eps_inst_env eps, tcg_inst_env env) } +\end{code} - | in_int_range -- It's overloaded but small enough to fit into an Int - = tcLookupValueByKey fromIntClassOpKey `thenNF_Tc` \ from_int -> - newMethodAtLoc loc from_int [ty] `thenNF_Tc` \ (method_inst, method_id) -> - returnNF_Tc (GenInst [method_inst] (HsApp (HsVar method_id) int_lit)) - | otherwise -- Alas, it is overloaded and a big literal! - = tcLookupValueByKey fromIntegerClassOpKey `thenNF_Tc` \ from_integer -> - newMethodAtLoc loc from_integer [ty] `thenNF_Tc` \ (method_inst, method_id) -> - returnNF_Tc (GenInst [method_inst] (HsApp (HsVar method_id) integer_lit)) - where - in_int_range = inIntRange i - intprim_lit = HsLitOut (HsIntPrim i) intPrimTy - integer_lit = HsLitOut (HsInt i) integerTy - int_lit = mkHsConApp intDataCon [] [intprim_lit] --- similar idea for overloaded floating point literals: if the literal is --- *definitely* a float or a double, generate the real thing here. --- This is essential (see nofib/spectral/nucleic). - -lookupInst inst@(LitInst u (OverloadedFractional f) ty loc) - | isFloatTy ty = returnNF_Tc (GenInst [] float_lit) - | isDoubleTy ty = returnNF_Tc (GenInst [] double_lit) +%************************************************************************ +%* * + Re-mappable syntax +%* * +%************************************************************************ - | otherwise - = tcLookupValueByKey fromRationalClassOpKey `thenNF_Tc` \ from_rational -> - -- The type Rational isn't wired in so we have to conjure it up - tcLookupTyConByKey rationalTyConKey `thenNF_Tc` \ rational_tycon -> - let - rational_ty = mkSynTy rational_tycon [] - rational_lit = HsLitOut (HsFrac f) rational_ty - in - newMethodAtLoc loc from_rational [ty] `thenNF_Tc` \ (method_inst, method_id) -> - returnNF_Tc (GenInst [method_inst] (HsApp (HsVar method_id) rational_lit)) +Suppose we are doing the -fno-implicit-prelude thing, and we encounter +a do-expression. We have to find (>>) in the current environment, which is +done by the rename. Then we have to check that it has the same type as +Control.Monad.(>>). Or, more precisely, a compatible type. One 'customer' had +this: - where - floatprim_lit = HsLitOut (HsFloatPrim f) floatPrimTy - float_lit = mkHsConApp floatDataCon [] [floatprim_lit] - doubleprim_lit = HsLitOut (HsDoublePrim f) doublePrimTy - double_lit = mkHsConApp doubleDataCon [] [doubleprim_lit] + (>>) :: HB m n mn => m a -> n b -> mn b --- there are no `instances' of functional dependencies or implicit params +So the idea is to generate a local binding for (>>), thus: -lookupInst _ = returnNF_Tc NoInstance + let then72 :: forall a b. m a -> m b -> m b + then72 = ...something involving the user's (>>)... + in + ...the do-expression... -\end{code} +Now the do-expression can proceed using then72, which has exactly +the expected type. -There is a second, simpler interface, when you want an instance of a -class at a given nullary type constructor. It just returns the -appropriate dictionary if it exists. It is used only when resolving -ambiguous dictionaries. +In fact tcSyntaxName just generates the RHS for then72, because we only +want an actual binding in the do-expression case. For literals, we can +just use the expression inline. \begin{code} -lookupSimpleInst :: InstEnv - -> Class - -> [Type] -- Look up (c,t) - -> NF_TcM s (Maybe [(Class,[Type])]) -- Here are the needed (c,t)s - -lookupSimpleInst class_inst_env clas tys - = case lookupInstEnv class_inst_env tys of - FoundInst tenv dfun - -> returnNF_Tc (Just (substClasses (mkSubst emptyInScopeSet tenv) theta')) - where - (_, theta, _) = splitSigmaTy (idType dfun) - theta' = map (\(Class clas tys) -> (clas,tys)) theta - - other -> returnNF_Tc Nothing +tcSyntaxName :: InstOrigin + -> TcType -- Type to instantiate it at + -> (Name, HsExpr Name) -- (Standard name, user name) + -> TcM (Name, HsExpr TcId) -- (Standard name, suitable expression) + +-- NB: tcSyntaxName calls tcExpr, and hence can do unification. +-- So we do not call it from lookupInst, which is called from tcSimplify + +tcSyntaxName orig ty (std_nm, HsVar user_nm) + | std_nm == user_nm + = tcStdSyntaxName orig ty std_nm + +tcSyntaxName orig ty (std_nm, user_nm_expr) + = tcLookupId std_nm `thenM` \ std_id -> + let + -- C.f. newMethodAtLoc + ([tv], _, tau) = tcSplitSigmaTy (idType std_id) + sigma1 = substTyWith [tv] [ty] tau + -- Actually, the "tau-type" might be a sigma-type in the + -- case of locally-polymorphic methods. + in + addErrCtxtM (syntaxNameCtxt user_nm_expr orig sigma1) $ + + -- Check that the user-supplied thing has the + -- same type as the standard one. + -- Tiresome jiggling because tcCheckSigma takes a located expression + getSrcSpanM `thenM` \ span -> + tcCheckSigma (L span user_nm_expr) sigma1 `thenM` \ expr -> + returnM (std_nm, unLoc expr) + +tcStdSyntaxName :: InstOrigin + -> TcType -- Type to instantiate it at + -> Name -- Standard name + -> TcM (Name, HsExpr TcId) -- (Standard name, suitable expression) + +tcStdSyntaxName orig ty std_nm + = newMethodFromName orig ty std_nm `thenM` \ id -> + returnM (std_nm, HsVar id) + +syntaxNameCtxt name orig ty tidy_env + = getInstLoc orig `thenM` \ inst_loc -> + let + msg = vcat [ptext SLIT("When checking that") <+> quotes (ppr name) <+> + ptext SLIT("(needed by a syntactic construct)"), + nest 2 (ptext SLIT("has the required type:") <+> ppr (tidyType tidy_env ty)), + nest 2 (pprInstLoc inst_loc)] + in + returnM (tidy_env, msg) \end{code}