X-Git-Url: http://git.megacz.com/?a=blobdiff_plain;f=ghc%2Fcompiler%2Ftypecheck%2FTcBinds.lhs;h=b5d2cb74770412effb48c8bcfd4579a1aa910a9a;hb=dbaa3bb30eaf9d806357e41435dab32695c47842;hp=a33e7f4eee1a1e1cc3b1f835e5e60871559f5b61;hpb=2540a99f8e67237f7fa9cd49143ae2cd9d7f84d6;p=ghc-hetmet.git diff --git a/ghc/compiler/typecheck/TcBinds.lhs b/ghc/compiler/typecheck/TcBinds.lhs index a33e7f4..b5d2cb7 100644 --- a/ghc/compiler/typecheck/TcBinds.lhs +++ b/ghc/compiler/typecheck/TcBinds.lhs @@ -4,61 +4,51 @@ \section[TcBinds]{TcBinds} \begin{code} -module TcBinds ( tcBindsAndThen, tcTopBinds, - tcSpecSigs, tcBindWithSigs ) where +module TcBinds ( tcBindsAndThen, tcTopBinds, tcMonoBinds, tcSpecSigs ) where #include "HsVersions.h" -import {-# SOURCE #-} TcMatches ( tcGRHSs, tcMatchesFun ) -import {-# SOURCE #-} TcExpr ( tcExpr ) +import {-# SOURCE #-} TcMatches ( tcGRHSsPat, tcMatchesFun ) +import {-# SOURCE #-} TcExpr ( tcCheckSigma, tcCheckRho ) -import HsSyn ( HsExpr(..), HsBinds(..), MonoBinds(..), Sig(..), StmtCtxt(..), - Match(..), collectMonoBinders, andMonoBinds +import CmdLineOpts ( DynFlag(Opt_NoMonomorphismRestriction) ) +import HsSyn ( HsExpr(..), HsBinds(..), MonoBinds(..), Sig(..), + Match(..), mkMonoBind, + collectMonoBinders, andMonoBinds, + collectSigTysFromMonoBinds ) import RnHsSyn ( RenamedHsBinds, RenamedSig, RenamedMonoBinds ) -import TcHsSyn ( TcMonoBinds, TcId, zonkId, mkHsLet ) - -import TcMonad -import Inst ( LIE, emptyLIE, mkLIE, plusLIE, InstOrigin(..), - newDicts, tyVarsOfInst, instToId, - getAllFunDepsOfLIE, getIPsOfLIE, zonkFunDeps - ) -import TcEnv ( tcExtendLocalValEnv, - newSpecPragmaId, newLocalId, - tcLookupTyCon, - tcGetGlobalTyVars, tcExtendGlobalTyVars - ) -import TcSimplify ( tcSimplify, tcSimplifyAndCheck, tcSimplifyToDicts ) -import TcImprove ( tcImprove ) -import TcMonoType ( tcHsSigType, checkSigTyVars, - TcSigInfo(..), tcTySig, maybeSig, sigCtxt +import TcHsSyn ( TcHsBinds, TcMonoBinds, TcId, zonkId, mkHsLet ) + +import TcRnMonad +import Inst ( InstOrigin(..), newDicts, newIPDict, instToId ) +import TcEnv ( tcExtendLocalValEnv, tcExtendLocalValEnv2, newLocalName ) +import TcUnify ( Expected(..), newHole, unifyTauTyLists, checkSigTyVarsWrt, sigCtxt ) +import TcSimplify ( tcSimplifyInfer, tcSimplifyInferCheck, tcSimplifyRestricted, + tcSimplifyToDicts, tcSimplifyIPs ) +import TcMonoType ( tcHsSigType, UserTypeCtxt(..), TcSigInfo(..), + tcTySig, maybeSig, tcSigPolyId, tcSigMonoId, tcAddScopedTyVars ) -import TcPat ( tcPat ) +import TcPat ( tcPat, tcSubPat, tcMonoPatBndr ) import TcSimplify ( bindInstsOfLocalFuns ) -import TcType ( TcThetaType, newTyVarTy, newTyVar, - zonkTcTypes, zonkTcThetaType, zonkTcTyVarToTyVar +import TcMType ( newTyVar, newTyVarTy, zonkTcTyVarToTyVar ) +import TcType ( TcTyVar, mkTyVarTy, mkForAllTys, mkFunTys, tyVarsOfType, + mkPredTy, mkForAllTy, isUnLiftedType, + unliftedTypeKind, liftedTypeKind, openTypeKind, eqKind ) -import TcUnify ( unifyTauTy, unifyTauTyLists ) -import Id ( mkVanillaId, setInlinePragma, idFreeTyVars ) +import CoreFVs ( idFreeTyVars ) +import Id ( mkLocalId, mkSpecPragmaId, setInlinePragma ) import Var ( idType, idName ) -import IdInfo ( InlinePragInfo(..) ) -import Name ( Name, getOccName, getSrcLoc ) +import Name ( Name, getSrcLoc ) import NameSet -import Type ( mkTyVarTy, tyVarsOfTypes, mkTyConApp, - mkForAllTys, mkFunTys, - mkPredTy, mkForAllTy, isUnLiftedType, - isUnboxedType, unboxedTypeKind, boxedTypeKind, openTypeKind - ) -import FunDeps ( tyVarFunDep, oclose ) import Var ( tyVarKind ) import VarSet import Bag -import Util ( isIn ) -import Maybes ( maybeToBool ) -import BasicTypes ( TopLevelFlag(..), RecFlag(..), isNotTopLevel ) +import Util ( isIn, equalLength ) +import BasicTypes ( TopLevelFlag(..), RecFlag(..), isNonRec, isRec, + isNotTopLevel, isAlwaysActive ) import FiniteMap ( listToFM, lookupFM ) -import PrelNames ( ioTyConName, mainKey, hasKey ) import Outputable \end{code} @@ -95,20 +85,29 @@ At the top-level the LIE is sure to contain nothing but constant dictionaries, which we resolve at the module level. \begin{code} -tcTopBinds :: RenamedHsBinds -> TcM ((TcMonoBinds, TcEnv), LIE) +tcTopBinds :: RenamedHsBinds -> TcM (TcMonoBinds, TcLclEnv) + -- Note: returning the TcLclEnv is more than we really + -- want. The bit we care about is the local bindings + -- and the free type variables thereof tcTopBinds binds = tc_binds_and_then TopLevel glue binds $ - tcGetEnv `thenNF_Tc` \ env -> - returnTc ((EmptyMonoBinds, env), emptyLIE) + getLclEnv `thenM` \ env -> + returnM (EmptyMonoBinds, env) where - glue is_rec binds1 (binds2, thing) = (binds1 `AndMonoBinds` binds2, thing) + -- The top level bindings are flattened into a giant + -- implicitly-mutually-recursive MonoBinds + glue binds1 (binds2, env) = (flatten binds1 `AndMonoBinds` binds2, env) + flatten EmptyBinds = EmptyMonoBinds + flatten (b1 `ThenBinds` b2) = flatten b1 `AndMonoBinds` flatten b2 + flatten (MonoBind b _ _) = b + -- Can't have a IPBinds at top level tcBindsAndThen - :: (RecFlag -> TcMonoBinds -> thing -> thing) -- Combinator + :: (TcHsBinds -> thing -> thing) -- Combinator -> RenamedHsBinds - -> TcM (thing, LIE) - -> TcM (thing, LIE) + -> TcM thing + -> TcM thing tcBindsAndThen = tc_binds_and_then NotTopLevel @@ -122,91 +121,88 @@ tc_binds_and_then top_lvl combiner (ThenBinds b1 b2) do_next tc_binds_and_then top_lvl combiner b2 $ do_next +tc_binds_and_then top_lvl combiner (IPBinds binds is_with) do_next + = getLIE do_next `thenM` \ (result, expr_lie) -> + mapAndUnzipM tc_ip_bind binds `thenM` \ (avail_ips, binds') -> + + -- If the binding binds ?x = E, we must now + -- discharge any ?x constraints in expr_lie + tcSimplifyIPs avail_ips expr_lie `thenM` \ dict_binds -> + + returnM (combiner (IPBinds binds' is_with) $ + combiner (mkMonoBind Recursive dict_binds) result) + where + -- I wonder if we should do these one at at time + -- Consider ?x = 4 + -- ?y = ?x + 1 + tc_ip_bind (ip, expr) + = newTyVarTy openTypeKind `thenM` \ ty -> + getSrcLocM `thenM` \ loc -> + newIPDict (IPBind ip) ip ty `thenM` \ (ip', ip_inst) -> + tcCheckRho expr ty `thenM` \ expr' -> + returnM (ip_inst, (ip', expr')) + tc_binds_and_then top_lvl combiner (MonoBind bind sigs is_rec) do_next - = -- TYPECHECK THE SIGNATURES - mapTc tcTySig [sig | sig@(Sig name _ _) <- sigs] `thenTc` \ tc_ty_sigs -> - - tcBindWithSigs top_lvl bind tc_ty_sigs - sigs is_rec `thenTc` \ (poly_binds, poly_lie, poly_ids) -> - - -- Extend the environment to bind the new polymorphic Ids - tcExtendLocalValEnv [(idName poly_id, poly_id) | poly_id <- poly_ids] $ + = -- BRING ANY SCOPED TYPE VARIABLES INTO SCOPE + -- Notice that they scope over + -- a) the type signatures in the binding group + -- b) the bindings in the group + -- c) the scope of the binding group (the "in" part) + tcAddScopedTyVars (collectSigTysFromMonoBinds bind) $ + + tcBindWithSigs top_lvl bind sigs is_rec `thenM` \ (poly_binds, poly_ids) -> - -- Build bindings and IdInfos corresponding to user pragmas - tcSpecSigs sigs `thenTc` \ (prag_binds, prag_lie) -> - - -- Now do whatever happens next, in the augmented envt - do_next `thenTc` \ (thing, thing_lie) -> - - -- Create specialisations of functions bound here - -- We want to keep non-recursive things non-recursive - -- so that we desugar unboxed bindings correctly - case (top_lvl, is_rec) of - - -- For the top level don't bother will all this bindInstsOfLocalFuns stuff - -- All the top level things are rec'd together anyway, so it's fine to - -- leave them to the tcSimplifyTop, and quite a bit faster too - (TopLevel, _) - -> returnTc (combiner Recursive (poly_binds `andMonoBinds` prag_binds) thing, - thing_lie `plusLIE` prag_lie `plusLIE` poly_lie) - - (NotTopLevel, NonRecursive) - -> bindInstsOfLocalFuns - (thing_lie `plusLIE` prag_lie) - poly_ids `thenTc` \ (thing_lie', lie_binds) -> - - returnTc ( - combiner NonRecursive poly_binds $ - combiner NonRecursive prag_binds $ - combiner Recursive lie_binds $ + case top_lvl of + TopLevel -- For the top level don't bother will all this + -- bindInstsOfLocalFuns stuff. All the top level + -- things are rec'd together anyway, so it's fine to + -- leave them to the tcSimplifyTop, and quite a bit faster too + -- + -- Subtle (and ugly) point: furthermore at top level we + -- return the TcLclEnv, which contains the LIE var; we + -- don't want to return the wrong one! + -> tc_body poly_ids `thenM` \ (prag_binds, thing) -> + returnM (combiner (mkMonoBind Recursive (poly_binds `andMonoBinds` prag_binds)) + thing) + + NotTopLevel -- For nested bindings we must do teh bindInstsOfLocalFuns thing + -> getLIE (tc_body poly_ids) `thenM` \ ((prag_binds, thing), lie) -> + + -- Create specialisations of functions bound here + bindInstsOfLocalFuns lie poly_ids `thenM` \ lie_binds -> + + -- We want to keep non-recursive things non-recursive + -- so that we desugar unlifted bindings correctly + if isRec is_rec then + returnM ( + combiner (mkMonoBind Recursive ( + poly_binds `andMonoBinds` + lie_binds `andMonoBinds` + prag_binds)) thing + ) + else + returnM ( + combiner (mkMonoBind NonRecursive poly_binds) $ + combiner (mkMonoBind NonRecursive prag_binds) $ + combiner (mkMonoBind Recursive lie_binds) $ -- NB: the binds returned by tcSimplify and bindInstsOfLocalFuns -- aren't guaranteed in dependency order (though we could change -- that); hence the Recursive marker. - thing, - - thing_lie' `plusLIE` poly_lie - ) + thing) + where + tc_body poly_ids -- Type check the pragmas and "thing inside" + = -- Extend the environment to bind the new polymorphic Ids + tcExtendLocalValEnv poly_ids $ + + -- Build bindings and IdInfos corresponding to user pragmas + tcSpecSigs sigs `thenM` \ prag_binds -> - (NotTopLevel, Recursive) - -> bindInstsOfLocalFuns - (thing_lie `plusLIE` poly_lie `plusLIE` prag_lie) - poly_ids `thenTc` \ (final_lie, lie_binds) -> + -- Now do whatever happens next, in the augmented envt + do_next `thenM` \ thing -> - returnTc ( - combiner Recursive ( - poly_binds `andMonoBinds` - lie_binds `andMonoBinds` - prag_binds) thing, - final_lie - ) + returnM (prag_binds, thing) \end{code} -An aside. The original version of @tcBindsAndThen@ which lacks a -combiner function, appears below. Though it is perfectly well -behaved, it cannot be typed by Haskell, because the recursive call is -at a different type to the definition itself. There aren't too many -examples of this, which is why I thought it worth preserving! [SLPJ] - -\begin{pseudocode} -% tcBindsAndThen -% :: RenamedHsBinds -% -> TcM (thing, LIE, thing_ty)) -% -> TcM ((TcHsBinds, thing), LIE, thing_ty) -% -% tcBindsAndThen EmptyBinds do_next -% = do_next `thenTc` \ (thing, lie, thing_ty) -> -% returnTc ((EmptyBinds, thing), lie, thing_ty) -% -% tcBindsAndThen (ThenBinds binds1 binds2) do_next -% = tcBindsAndThen binds1 (tcBindsAndThen binds2 do_next) -% `thenTc` \ ((binds1', (binds2', thing')), lie1, thing_ty) -> -% -% returnTc ((binds1' `ThenBinds` binds2', thing'), lie1, thing_ty) -% -% tcBindsAndThen (MonoBind bind sigs is_rec) do_next -% = tcBindAndThen bind sigs do_next -\end{pseudocode} - %************************************************************************ %* * @@ -228,218 +224,166 @@ so all the clever stuff is in here. tcBindWithSigs :: TopLevelFlag -> RenamedMonoBinds - -> [TcSigInfo] -> [RenamedSig] -- Used solely to get INLINE, NOINLINE sigs -> RecFlag - -> TcM (TcMonoBinds, LIE, [TcId]) + -> TcM (TcMonoBinds, [TcId]) + +tcBindWithSigs top_lvl mbind sigs is_rec + = -- TYPECHECK THE SIGNATURES + recoverM (returnM []) ( + mappM tcTySig [sig | sig@(Sig name _ _) <- sigs] + ) `thenM` \ tc_ty_sigs -> -tcBindWithSigs top_lvl mbind tc_ty_sigs inline_sigs is_rec - = recoverTc ( + -- SET UP THE MAIN RECOVERY; take advantage of any type sigs + recoverM ( -- If typechecking the binds fails, then return with each -- signature-less binder given type (forall a.a), to minimise subsequent -- error messages - newTyVar boxedTypeKind `thenNF_Tc` \ alpha_tv -> + newTyVar liftedTypeKind `thenM` \ alpha_tv -> let forall_a_a = mkForAllTy alpha_tv (mkTyVarTy alpha_tv) binder_names = collectMonoBinders mbind poly_ids = map mk_dummy binder_names mk_dummy name = case maybeSig tc_ty_sigs name of - Just (TySigInfo _ poly_id _ _ _ _ _ _) -> poly_id -- Signature - Nothing -> mkVanillaId name forall_a_a -- No signature + Just sig -> tcSigPolyId sig -- Signature + Nothing -> mkLocalId name forall_a_a -- No signature in - returnTc (EmptyMonoBinds, emptyLIE, poly_ids) - ) $ + traceTc (text "tcBindsWithSigs: error recovery" <+> ppr binder_names) `thenM_` + returnM (EmptyMonoBinds, poly_ids) + ) $ -- TYPECHECK THE BINDINGS - tcMonoBinds mbind tc_ty_sigs is_rec `thenTc` \ (mbind', lie_req, binder_names, mono_ids) -> - - -- CHECK THAT THE SIGNATURES MATCH - -- (must do this before getTyVarsToGen) - checkSigMatch top_lvl binder_names mono_ids tc_ty_sigs `thenTc` \ maybe_sig_theta -> - - -- IMPROVE the LIE - -- Force any unifications dictated by functional dependencies. - -- Because unification may happen, it's important that this step - -- come before: - -- - computing vars over which to quantify - -- - zonking the generalized type vars - let lie_avail = case maybe_sig_theta of - Nothing -> emptyLIE - Just (_, la) -> la - lie_avail_req = lie_avail `plusLIE` lie_req in - tcImprove lie_avail_req `thenTc_` - - -- COMPUTE VARIABLES OVER WHICH TO QUANTIFY, namely tyvars_to_gen - -- The tyvars_not_to_gen are free in the environment, and hence - -- candidates for generalisation, but sometimes the monomorphism - -- restriction means we can't generalise them nevertheless + getLIE (tcMonoBinds mbind tc_ty_sigs is_rec) `thenM` \ ((mbind', bndr_names_w_ids), lie_req) -> let - mono_id_tys = map idType mono_ids + (binder_names, mono_ids) = unzip (bagToList bndr_names_w_ids) + tau_tvs = foldr (unionVarSet . tyVarsOfType . idType) emptyVarSet mono_ids in - getTyVarsToGen is_unrestricted mono_id_tys lie_req `thenNF_Tc` \ (tyvars_not_to_gen, tyvars_to_gen) -> - - -- Finally, zonk the generalised type variables to real TyVars - -- This commits any unbound kind variables to boxed kind - -- I'm a little worried that such a kind variable might be - -- free in the environment, but I don't think it's possible for - -- this to happen when the type variable is not free in the envt - -- (which it isn't). SLPJ Nov 98 - mapTc zonkTcTyVarToTyVar (varSetElems tyvars_to_gen) `thenTc` \ real_tyvars_to_gen_list -> - let - real_tyvars_to_gen = mkVarSet real_tyvars_to_gen_list - -- It's important that the final list - -- (real_tyvars_to_gen and real_tyvars_to_gen_list) is fully - -- zonked, *including boxity*, because they'll be included in the forall types of - -- the polymorphic Ids, and instances of these Ids will be generated from them. - -- - -- Also NB that tcSimplify takes zonked tyvars as its arg, hence we pass - -- real_tyvars_to_gen - in - - -- SIMPLIFY THE LIE - tcExtendGlobalTyVars tyvars_not_to_gen ( - let ips = getIPsOfLIE lie_avail_req in - if null real_tyvars_to_gen_list && (null ips || not is_unrestricted) then - -- No polymorphism, and no IPs, so no need to simplify context - returnTc (lie_req, EmptyMonoBinds, []) - else - case maybe_sig_theta of - Nothing -> - -- No signatures, so just simplify the lie - -- NB: no signatures => no polymorphic recursion, so no - -- need to use lie_avail (which will be empty anyway) - tcSimplify (text "tcBinds1" <+> ppr binder_names) - real_tyvars_to_gen lie_req `thenTc` \ (lie_free, dict_binds, lie_bound) -> - returnTc (lie_free, dict_binds, map instToId (bagToList lie_bound)) - - Just (sig_theta, lie_avail) -> - -- There are signatures, and their context is sig_theta - -- Furthermore, lie_avail is an LIE containing the 'method insts' - -- for the things bound here - - zonkTcThetaType sig_theta `thenNF_Tc` \ sig_theta' -> - newDicts SignatureOrigin sig_theta' `thenNF_Tc` \ (dicts_sig, dict_ids) -> - -- It's important that sig_theta is zonked, because - -- dict_id is later used to form the type of the polymorphic thing, - -- and forall-types must be zonked so far as their bound variables - -- are concerned - - let - -- The "givens" is the stuff available. We get that from - -- the context of the type signature, BUT ALSO the lie_avail - -- so that polymorphic recursion works right (see comments at end of fn) - givens = dicts_sig `plusLIE` lie_avail - in - - -- Check that the needed dicts can be expressed in - -- terms of the signature ones - tcAddErrCtxt (bindSigsCtxt tysig_names) $ - tcSimplifyAndCheck - (ptext SLIT("type signature for") <+> pprQuotedList binder_names) - real_tyvars_to_gen givens lie_req `thenTc` \ (lie_free, dict_binds) -> - - returnTc (lie_free, dict_binds, dict_ids) - - ) `thenTc` \ (lie_free, dict_binds, dicts_bound) -> - - -- GET THE FINAL MONO_ID_TYS - zonkTcTypes mono_id_tys `thenNF_Tc` \ zonked_mono_id_types -> - - - -- CHECK FOR BOGUS UNPOINTED BINDINGS - (if any isUnLiftedType zonked_mono_id_types then - -- Unlifted bindings must be non-recursive, - -- not top level, and non-polymorphic - checkTc (isNotTopLevel top_lvl) - (unliftedBindErr "Top-level" mbind) `thenTc_` - checkTc (case is_rec of {Recursive -> False; NonRecursive -> True}) - (unliftedBindErr "Recursive" mbind) `thenTc_` - checkTc (null real_tyvars_to_gen_list) - (unliftedBindErr "Polymorphic" mbind) - else - returnTc () - ) `thenTc_` - - ASSERT( not (any ((== unboxedTypeKind) . tyVarKind) real_tyvars_to_gen_list) ) - -- The instCantBeGeneralised stuff in tcSimplify should have - -- already raised an error if we're trying to generalise an - -- unboxed tyvar (NB: unboxed tyvars are always introduced - -- along with a class constraint) and it's better done there - -- because we have more precise origin information. - -- That's why we just use an ASSERT here. - - -- BUILD THE POLYMORPHIC RESULT IDs - mapNF_Tc zonkId mono_ids `thenNF_Tc` \ zonked_mono_ids -> + -- GENERALISE + -- (it seems a bit crude to have to do getLIE twice, + -- but I can't see a better way just now) + addSrcLoc (minimum (map getSrcLoc binder_names)) $ + addErrCtxt (genCtxt binder_names) $ + getLIE (generalise binder_names mbind tau_tvs lie_req tc_ty_sigs) + `thenM` \ ((tc_tyvars_to_gen, dict_binds, dict_ids), lie_free) -> + + + -- ZONK THE GENERALISED TYPE VARIABLES TO REAL TyVars + -- This commits any unbound kind variables to boxed kind, by unification + -- It's important that the final quanfified type variables + -- are fully zonked, *including boxity*, because they'll be + -- included in the forall types of the polymorphic Ids. + -- At calls of these Ids we'll instantiate fresh type variables from + -- them, and we use their boxity then. + mappM zonkTcTyVarToTyVar tc_tyvars_to_gen `thenM` \ real_tyvars_to_gen -> + + -- ZONK THE Ids + -- It's important that the dict Ids are zonked, including the boxity set + -- in the previous step, because they are later used to form the type of + -- the polymorphic thing, and forall-types must be zonked so far as + -- their bound variables are concerned + mappM zonkId dict_ids `thenM` \ zonked_dict_ids -> + mappM zonkId mono_ids `thenM` \ zonked_mono_ids -> + + -- BUILD THE POLYMORPHIC RESULT IDs let exports = zipWith mk_export binder_names zonked_mono_ids - dict_tys = map idType dicts_bound + poly_ids = [poly_id | (_, poly_id, _) <- exports] + dict_tys = map idType zonked_dict_ids - inlines = mkNameSet [name | InlineSig name _ loc <- inline_sigs] - no_inlines = listToFM ([(name, IMustNotBeINLINEd False phase) | NoInlineSig name phase loc <- inline_sigs] ++ - [(name, IMustNotBeINLINEd True phase) | InlineSig name phase loc <- inline_sigs, maybeToBool phase]) - -- "INLINE n foo" means inline foo, but not until at least phase n - -- "NOINLINE n foo" means don't inline foo until at least phase n, and even - -- then only if it is small enough etc. - -- "NOINLINE foo" means don't inline foo ever, which we signal with a (IMustNotBeINLINEd Nothing) - -- See comments in CoreUnfold.blackListed for the Authorised Version + inlines = mkNameSet [name | InlineSig True name _ loc <- sigs] + -- Any INLINE sig (regardless of phase control) + -- makes the RHS look small + inline_phases = listToFM [(name, phase) | InlineSig _ name phase _ <- sigs, + not (isAlwaysActive phase)] + -- Set the IdInfo field to control the inline phase + -- AlwaysActive is the default, so don't bother with them mk_export binder_name zonked_mono_id = (tyvars, - attachNoInlinePrag no_inlines poly_id, + attachInlinePhase inline_phases poly_id, zonked_mono_id) where (tyvars, poly_id) = case maybeSig tc_ty_sigs binder_name of - Just (TySigInfo _ sig_poly_id sig_tyvars _ _ _ _ _) -> + Just (TySigInfo sig_poly_id sig_tyvars _ _ _ _ _) -> (sig_tyvars, sig_poly_id) - Nothing -> (real_tyvars_to_gen_list, new_poly_id) + Nothing -> (real_tyvars_to_gen, new_poly_id) - new_poly_id = mkVanillaId binder_name poly_ty - poly_ty = mkForAllTys real_tyvars_to_gen_list - $ mkFunTys dict_tys - $ idType (zonked_mono_id) + new_poly_id = mkLocalId binder_name poly_ty + poly_ty = mkForAllTys real_tyvars_to_gen + $ mkFunTys dict_tys + $ idType zonked_mono_id -- It's important to build a fully-zonked poly_ty, because -- we'll slurp out its free type variables when extending the -- local environment (tcExtendLocalValEnv); if it's not zonked -- it appears to have free tyvars that aren't actually free -- at all. - - pat_binders :: [Name] - pat_binders = collectMonoBinders (justPatBindings mbind EmptyMonoBinds) in - -- CHECK FOR UNBOXED BINDERS IN PATTERN BINDINGS - mapTc (\id -> checkTc (not (idName id `elem` pat_binders - && isUnboxedType (idType id))) - (unboxedPatBindErr id)) zonked_mono_ids - `thenTc_` - - -- BUILD RESULTS - returnTc ( - -- pprTrace "binding.." (ppr ((dicts_bound, dict_binds), exports, [idType poly_id | (_, poly_id, _) <- exports])) $ - AbsBinds real_tyvars_to_gen_list - dicts_bound - exports - inlines - (dict_binds `andMonoBinds` mbind'), - lie_free, - [poly_id | (_, poly_id, _) <- exports] - ) - where - tysig_names = [name | (TySigInfo name _ _ _ _ _ _ _) <- tc_ty_sigs] - is_unrestricted = isUnRestrictedGroup tysig_names mbind -justPatBindings bind@(PatMonoBind _ _ _) binds = bind `andMonoBinds` binds -justPatBindings (AndMonoBinds b1 b2) binds = - justPatBindings b1 (justPatBindings b2 binds) -justPatBindings other_bind binds = binds + traceTc (text "binding:" <+> ppr ((zonked_dict_ids, dict_binds), + exports, map idType poly_ids)) `thenM_` -attachNoInlinePrag no_inlines bndr - = case lookupFM no_inlines (idName bndr) of + -- Check for an unlifted, non-overloaded group + -- In that case we must make extra checks + if any (isUnLiftedType . idType) zonked_mono_ids && null zonked_dict_ids + then -- Some bindings are unlifted + checkUnliftedBinds top_lvl is_rec real_tyvars_to_gen mbind `thenM_` + + extendLIEs lie_req `thenM_` + returnM ( + AbsBinds [] [] exports inlines mbind', + -- Do not generate even any x=y bindings + poly_ids + ) + + else -- The normal case + extendLIEs lie_free `thenM_` + returnM ( + AbsBinds real_tyvars_to_gen + zonked_dict_ids + exports + inlines + (dict_binds `andMonoBinds` mbind'), + poly_ids + ) + +attachInlinePhase inline_phases bndr + = case lookupFM inline_phases (idName bndr) of Just prag -> bndr `setInlinePragma` prag Nothing -> bndr + +-- Check that non-overloaded unlifted bindings are +-- a) non-recursive, +-- b) not top level, +-- c) non-polymorphic +-- d) not a multiple-binding group (more or less implied by (a)) + +checkUnliftedBinds top_lvl is_rec real_tyvars_to_gen mbind + = ASSERT( not (any ((eqKind unliftedTypeKind) . tyVarKind) real_tyvars_to_gen) ) + -- The instCantBeGeneralised stuff in tcSimplify should have + -- already raised an error if we're trying to generalise an + -- unboxed tyvar (NB: unboxed tyvars are always introduced + -- along with a class constraint) and it's better done there + -- because we have more precise origin information. + -- That's why we just use an ASSERT here. + + checkTc (isNotTopLevel top_lvl) + (unliftedBindErr "Top-level" mbind) `thenM_` + checkTc (isNonRec is_rec) + (unliftedBindErr "Recursive" mbind) `thenM_` + checkTc (single_bind mbind) + (unliftedBindErr "Multiple" mbind) `thenM_` + checkTc (null real_tyvars_to_gen) + (unliftedBindErr "Polymorphic" mbind) + + where + single_bind (PatMonoBind _ _ _) = True + single_bind (FunMonoBind _ _ _ _) = True + single_bind other = False \end{code} + Polymorphic recursion ~~~~~~~~~~~~~~~~~~~~~ The game plan for polymorphic recursion in the code above is @@ -502,6 +446,109 @@ is doing. %* * %************************************************************************ +\begin{code} +generalise binder_names mbind tau_tvs lie_req sigs = + + -- check for -fno-monomorphism-restriction + doptM Opt_NoMonomorphismRestriction `thenM` \ no_MR -> + let is_unrestricted | no_MR = True + | otherwise = isUnRestrictedGroup tysig_names mbind + in + + if not is_unrestricted then -- RESTRICTED CASE + -- Check signature contexts are empty + checkTc (all is_mono_sig sigs) + (restrictedBindCtxtErr binder_names) `thenM_` + + -- Now simplify with exactly that set of tyvars + -- We have to squash those Methods + tcSimplifyRestricted doc tau_tvs lie_req `thenM` \ (qtvs, binds) -> + + -- Check that signature type variables are OK + checkSigsTyVars qtvs sigs `thenM` \ final_qtvs -> + + returnM (final_qtvs, binds, []) + + else if null sigs then -- UNRESTRICTED CASE, NO TYPE SIGS + tcSimplifyInfer doc tau_tvs lie_req + + else -- UNRESTRICTED CASE, WITH TYPE SIGS + -- CHECKING CASE: Unrestricted group, there are type signatures + -- Check signature contexts are identical + checkSigsCtxts sigs `thenM` \ (sig_avails, sig_dicts) -> + + -- Check that the needed dicts can be + -- expressed in terms of the signature ones + tcSimplifyInferCheck doc tau_tvs sig_avails lie_req `thenM` \ (forall_tvs, dict_binds) -> + + -- Check that signature type variables are OK + checkSigsTyVars forall_tvs sigs `thenM` \ final_qtvs -> + + returnM (final_qtvs, dict_binds, sig_dicts) + + where + tysig_names = map (idName . tcSigPolyId) sigs + is_mono_sig (TySigInfo _ _ theta _ _ _ _) = null theta + + doc = ptext SLIT("type signature(s) for") <+> pprBinders binder_names + +----------------------- + -- CHECK THAT ALL THE SIGNATURE CONTEXTS ARE UNIFIABLE + -- The type signatures on a mutually-recursive group of definitions + -- must all have the same context (or none). + -- + -- We unify them because, with polymorphic recursion, their types + -- might not otherwise be related. This is a rather subtle issue. + -- ToDo: amplify +checkSigsCtxts sigs@(TySigInfo id1 sig_tvs theta1 _ _ _ src_loc : other_sigs) + = addSrcLoc src_loc $ + mappM_ check_one other_sigs `thenM_` + if null theta1 then + returnM ([], []) -- Non-overloaded type signatures + else + newDicts SignatureOrigin theta1 `thenM` \ sig_dicts -> + let + -- The "sig_avails" is the stuff available. We get that from + -- the context of the type signature, BUT ALSO the lie_avail + -- so that polymorphic recursion works right (see comments at end of fn) + sig_avails = sig_dicts ++ sig_meths + in + returnM (sig_avails, map instToId sig_dicts) + where + sig1_dict_tys = map mkPredTy theta1 + sig_meths = concat [insts | TySigInfo _ _ _ _ _ insts _ <- sigs] + + check_one sig@(TySigInfo id _ theta _ _ _ _) + = addErrCtxt (sigContextsCtxt id1 id) $ + checkTc (equalLength theta theta1) sigContextsErr `thenM_` + unifyTauTyLists sig1_dict_tys (map mkPredTy theta) + +checkSigsTyVars :: [TcTyVar] -> [TcSigInfo] -> TcM [TcTyVar] +checkSigsTyVars qtvs sigs + = mappM check_one sigs `thenM` \ sig_tvs_s -> + let + -- Sigh. Make sure that all the tyvars in the type sigs + -- appear in the returned ty var list, which is what we are + -- going to generalise over. Reason: we occasionally get + -- silly types like + -- type T a = () -> () + -- f :: T a + -- f () = () + -- Here, 'a' won't appear in qtvs, so we have to add it + + sig_tvs = foldr (unionVarSet . mkVarSet) emptyVarSet sig_tvs_s + all_tvs = mkVarSet qtvs `unionVarSet` sig_tvs + in + returnM (varSetElems all_tvs) + where + check_one (TySigInfo id sig_tyvars sig_theta sig_tau _ _ src_loc) + = addSrcLoc src_loc $ + addErrCtxt (ptext SLIT("When checking the type signature for") + <+> quotes (ppr id)) $ + addErrCtxtM (sigCtxt id sig_tyvars sig_theta sig_tau) $ + checkSigTyVarsWrt (idFreeTyVars id) sig_tyvars +\end{code} + @getTyVarsToGen@ decides what type variables to generalise over. For a "restricted group" -- see the monomorphism restriction @@ -530,6 +577,8 @@ generalise. We must be careful about doing this: Another, more common, example is when there's a Method inst in the LIE, whose type might very well involve non-overloaded type variables. + [NOTE: Jan 2001: I don't understand the problem here so I'm doing + the simple thing instead] (b) On the other hand, we mustn't generalise tyvars which are constrained, because we are going to pass on out the unmodified LIE, with those @@ -540,43 +589,6 @@ constrained tyvars. We don't use any of the results, except to find which tyvars are constrained. \begin{code} -getTyVarsToGen is_unrestricted mono_id_tys lie - = tcGetGlobalTyVars `thenNF_Tc` \ free_tyvars -> - zonkTcTypes mono_id_tys `thenNF_Tc` \ zonked_mono_id_tys -> - let - body_tyvars = tyVarsOfTypes zonked_mono_id_tys `minusVarSet` free_tyvars - fds = getAllFunDepsOfLIE lie - in - if is_unrestricted - then - -- We need to augment the type variables that appear explicitly in - -- the type by those that are determined by the functional dependencies. - -- e.g. suppose our type is C a b => a -> a - -- with the fun-dep a->b - -- Then we should generalise over b too; otherwise it will be - -- reported as ambiguous. - zonkFunDeps fds `thenNF_Tc` \ fds' -> - let tvFundep = tyVarFunDep fds' - extended_tyvars = oclose tvFundep body_tyvars - in - returnNF_Tc (emptyVarSet, extended_tyvars) - else - -- This recover and discard-errs is to avoid duplicate error - -- messages; this, after all, is an "extra" call to tcSimplify - recoverNF_Tc (returnNF_Tc (emptyVarSet, body_tyvars)) $ - discardErrsTc $ - - tcSimplify (text "getTVG") body_tyvars lie `thenTc` \ (_, _, constrained_dicts) -> - let - -- ASSERT: dicts_sig is already zonked! - constrained_tyvars = foldrBag (unionVarSet . tyVarsOfInst) emptyVarSet constrained_dicts - reduced_tyvars_to_gen = body_tyvars `minusVarSet` constrained_tyvars - in - returnTc (constrained_tyvars, reduced_tyvars_to_gen) -\end{code} - - -\begin{code} isUnRestrictedGroup :: [Name] -- Signatures given for these -> RenamedMonoBinds -> Bool @@ -585,14 +597,14 @@ is_elem v vs = isIn "isUnResMono" v vs isUnRestrictedGroup sigs (PatMonoBind other _ _) = False isUnRestrictedGroup sigs (VarMonoBind v _) = v `is_elem` sigs -isUnRestrictedGroup sigs (FunMonoBind v _ matches _) = any isUnRestrictedMatch matches || +isUnRestrictedGroup sigs (FunMonoBind v _ matches _) = isUnRestrictedMatch matches || v `is_elem` sigs isUnRestrictedGroup sigs (AndMonoBinds mb1 mb2) = isUnRestrictedGroup sigs mb1 && isUnRestrictedGroup sigs mb2 isUnRestrictedGroup sigs EmptyMonoBinds = True -isUnRestrictedMatch (Match _ [] Nothing _) = False -- No args, no signature -isUnRestrictedMatch other = True -- Some args or a signature +isUnRestrictedMatch (Match [] _ _ : _) = False -- No args => like a pattern binding +isUnRestrictedMatch other = True -- Some args => a function binding \end{code} @@ -607,219 +619,129 @@ The signatures have been dealt with already. \begin{code} tcMonoBinds :: RenamedMonoBinds - -> [TcSigInfo] - -> RecFlag + -> [TcSigInfo] -> RecFlag -> TcM (TcMonoBinds, - LIE, -- LIE required - [Name], -- Bound names - [TcId]) -- Corresponding monomorphic bound things + Bag (Name, -- Bound names + TcId)) -- Corresponding monomorphic bound things tcMonoBinds mbinds tc_ty_sigs is_rec - = tc_mb_pats mbinds `thenTc` \ (complete_it, lie_req_pat, tvs, ids, lie_avail) -> - let - id_list = bagToList ids - (names, mono_ids) = unzip id_list - - -- This last defn is the key one: - -- extend the val envt with bindings for the - -- things bound in this group, overriding the monomorphic - -- ids with the polymorphic ones from the pattern - extra_val_env = case is_rec of - Recursive -> map mk_bind id_list - NonRecursive -> [] - in - -- Don't know how to deal with pattern-bound existentials yet - checkTc (isEmptyBag tvs && isEmptyBag lie_avail) - (existentialExplode mbinds) `thenTc_` - - -- *Before* checking the RHSs, but *after* checking *all* the patterns, - -- extend the envt with bindings for all the bound ids; - -- and *then* override with the polymorphic Ids from the signatures - -- That is the whole point of the "complete_it" stuff. - -- - -- There's a further wrinkle: we have to delay extending the environment - -- until after we've dealt with any pattern-bound signature type variables - -- Consider f (x::a) = ...f... - -- We're going to check that a isn't unified with anything in the envt, - -- so f itself had better not be! So we pass the envt binding f into - -- complete_it, which extends the actual envt in TcMatches.tcMatch, after - -- dealing with the signature tyvars - - complete_it extra_val_env `thenTc` \ (mbinds', lie_req_rhss) -> - - returnTc (mbinds', lie_req_pat `plusLIE` lie_req_rhss, names, mono_ids) + -- Three stages: + -- 1. Check the patterns, building up an environment binding + -- the variables in this group (in the recursive case) + -- 2. Extend the environment + -- 3. Check the RHSs + = tc_mb_pats mbinds `thenM` \ (complete_it, xve) -> + tcExtendLocalValEnv2 (bagToList xve) complete_it where - - -- This function is used when dealing with a LHS binder; we make a monomorphic - -- version of the Id. We check for type signatures - tc_pat_bndr name pat_ty - = case maybeSig tc_ty_sigs name of - Nothing - -> newLocalId (getOccName name) pat_ty (getSrcLoc name) - - Just (TySigInfo _ _ _ _ _ mono_id _ _) - -> tcAddSrcLoc (getSrcLoc name) $ - unifyTauTy (idType mono_id) pat_ty `thenTc_` - returnTc mono_id - - mk_bind (name, mono_id) = case maybeSig tc_ty_sigs name of - Nothing -> (name, mono_id) - Just (TySigInfo name poly_id _ _ _ _ _ _) -> (name, poly_id) - - tc_mb_pats EmptyMonoBinds - = returnTc (\ xve -> returnTc (EmptyMonoBinds, emptyLIE), emptyLIE, emptyBag, emptyBag, emptyLIE) + tc_mb_pats EmptyMonoBinds + = returnM (returnM (EmptyMonoBinds, emptyBag), emptyBag) tc_mb_pats (AndMonoBinds mb1 mb2) - = tc_mb_pats mb1 `thenTc` \ (complete_it1, lie_req1, tvs1, ids1, lie_avail1) -> - tc_mb_pats mb2 `thenTc` \ (complete_it2, lie_req2, tvs2, ids2, lie_avail2) -> + = tc_mb_pats mb1 `thenM` \ (complete_it1, xve1) -> + tc_mb_pats mb2 `thenM` \ (complete_it2, xve2) -> let - complete_it xve = complete_it1 xve `thenTc` \ (mb1', lie1) -> - complete_it2 xve `thenTc` \ (mb2', lie2) -> - returnTc (AndMonoBinds mb1' mb2', lie1 `plusLIE` lie2) + complete_it = complete_it1 `thenM` \ (mb1', bs1) -> + complete_it2 `thenM` \ (mb2', bs2) -> + returnM (AndMonoBinds mb1' mb2', bs1 `unionBags` bs2) in - returnTc (complete_it, - lie_req1 `plusLIE` lie_req2, - tvs1 `unionBags` tvs2, - ids1 `unionBags` ids2, - lie_avail1 `plusLIE` lie_avail2) + returnM (complete_it, xve1 `unionBags` xve2) tc_mb_pats (FunMonoBind name inf matches locn) - = newTyVarTy kind `thenNF_Tc` \ bndr_ty -> - tc_pat_bndr name bndr_ty `thenTc` \ bndr_id -> + -- Three cases: + -- a) Type sig supplied + -- b) No type sig and recursive + -- c) No type sig and non-recursive + + | Just sig <- maybeSig tc_ty_sigs name + = let -- (a) There is a type signature + -- Use it for the environment extension, and check + -- the RHS has the appropriate type (with outer for-alls stripped off) + mono_id = tcSigMonoId sig + mono_ty = idType mono_id + complete_it = addSrcLoc locn $ + tcMatchesFun name matches (Check mono_ty) `thenM` \ matches' -> + returnM (FunMonoBind mono_id inf matches' locn, + unitBag (name, mono_id)) + in + returnM (complete_it, if isRec is_rec then unitBag (name,tcSigPolyId sig) + else emptyBag) + + | isRec is_rec + = -- (b) No type signature, and recursive + -- So we must use an ordinary H-M type variable + -- which means the variable gets an inferred tau-type + newLocalName name `thenM` \ mono_name -> + newTyVarTy openTypeKind `thenM` \ mono_ty -> let - complete_it xve = tcAddSrcLoc locn $ - tcMatchesFun xve name bndr_ty matches `thenTc` \ (matches', lie) -> - returnTc (FunMonoBind bndr_id inf matches' locn, lie) + mono_id = mkLocalId mono_name mono_ty + complete_it = addSrcLoc locn $ + tcMatchesFun name matches (Check mono_ty) `thenM` \ matches' -> + returnM (FunMonoBind mono_id inf matches' locn, + unitBag (name, mono_id)) in - returnTc (complete_it, emptyLIE, emptyBag, unitBag (name, bndr_id), emptyLIE) - + returnM (complete_it, unitBag (name, mono_id)) + + | otherwise -- (c) No type signature, and non-recursive + = let -- So we can use a 'hole' type to infer a higher-rank type + complete_it + = addSrcLoc locn $ + newHole `thenM` \ hole -> + tcMatchesFun name matches (Infer hole) `thenM` \ matches' -> + readMutVar hole `thenM` \ fun_ty -> + newLocalName name `thenM` \ mono_name -> + let + mono_id = mkLocalId mono_name fun_ty + in + returnM (FunMonoBind mono_id inf matches' locn, + unitBag (name, mono_id)) + in + returnM (complete_it, emptyBag) + tc_mb_pats bind@(PatMonoBind pat grhss locn) - = tcAddSrcLoc locn $ - newTyVarTy kind `thenNF_Tc` \ pat_ty -> + = addSrcLoc locn $ -- Now typecheck the pattern - -- We don't support binding fresh type variables in the - -- pattern of a pattern binding. For example, this is illegal: + -- We do now support binding fresh (not-already-in-scope) scoped + -- type variables in the pattern of a pattern binding. + -- For example, this is now legal: -- (x::a, y::b) = e - -- whereas this is ok - -- (x::Int, y::Bool) = e - -- - -- We don't check explicitly for this problem. Instead, we simply - -- type check the pattern with tcPat. If the pattern mentions any - -- fresh tyvars we simply get an out-of-scope type variable error - tcPat tc_pat_bndr pat pat_ty `thenTc` \ (pat', lie_req, tvs, ids, lie_avail) -> - let - complete_it xve = tcAddSrcLoc locn $ - tcAddErrCtxt (patMonoBindsCtxt bind) $ - tcExtendLocalValEnv xve $ - tcGRHSs grhss pat_ty PatBindRhs `thenTc` \ (grhss', lie) -> - returnTc (PatMonoBind pat' grhss' locn, lie) - in - returnTc (complete_it, lie_req, tvs, ids, lie_avail) + -- The type variables are brought into scope in tc_binds_and_then, + -- so we don't have to do anything here. - -- Figure out the appropriate kind for the pattern, - -- and generate a suitable type variable - kind = case is_rec of - Recursive -> boxedTypeKind -- Recursive, so no unboxed types - NonRecursive -> openTypeKind -- Non-recursive, so we permit unboxed types -\end{code} - -%************************************************************************ -%* * -\subsection{Signatures} -%* * -%************************************************************************ - -@checkSigMatch@ does the next step in checking signature matching. -The tau-type part has already been unified. What we do here is to -check that this unification has not over-constrained the (polymorphic) -type variables of the original signature type. - -The error message here is somewhat unsatisfactory, but it'll do for -now (ToDo). - -\begin{code} -checkSigMatch :: TopLevelFlag -> [Name] -> [TcId] -> [TcSigInfo] -> TcM (Maybe (TcThetaType, LIE)) -checkSigMatch top_lvl binder_names mono_ids sigs - | main_bound_here - = -- First unify the main_id with IO t, for any old t - tcSetErrCtxt mainTyCheckCtxt ( - tcLookupTyCon ioTyConName `thenTc` \ ioTyCon -> - newTyVarTy boxedTypeKind `thenNF_Tc` \ t_tv -> - unifyTauTy ((mkTyConApp ioTyCon [t_tv])) - (idType main_mono_id) - ) `thenTc_` - - -- Now check the signatures - -- Must do this after the unification with IO t, - -- in case of a silly signature like - -- main :: forall a. a - -- The unification to IO t will bind the type variable 'a', - -- which is just waht check_one_sig looks for - mapTc check_one_sig sigs `thenTc_` - mapTc check_main_ctxt sigs `thenTc_` - - returnTc (Just ([], emptyLIE)) - - | not (null sigs) - = mapTc check_one_sig sigs `thenTc_` - mapTc check_one_ctxt all_sigs_but_first `thenTc_` - returnTc (Just (theta1, sig_lie)) - - | otherwise - = returnTc Nothing -- No constraints from type sigs - - where - (TySigInfo _ id1 _ theta1 _ _ _ _ : all_sigs_but_first) = sigs - - sig1_dict_tys = mk_dict_tys theta1 - n_sig1_dict_tys = length sig1_dict_tys - sig_lie = mkLIE (concat [insts | TySigInfo _ _ _ _ _ _ insts _ <- sigs]) - - maybe_main = find_main top_lvl binder_names mono_ids - main_bound_here = maybeToBool maybe_main - Just main_mono_id = maybe_main - - -- CHECK THAT THE SIGNATURE TYVARS AND TAU_TYPES ARE OK - -- Doesn't affect substitution - check_one_sig (TySigInfo _ id sig_tyvars sig_theta sig_tau _ _ src_loc) - = tcAddSrcLoc src_loc $ - tcAddErrCtxtM (sigCtxt (sig_msg id) sig_tyvars sig_theta sig_tau) $ - checkSigTyVars sig_tyvars (idFreeTyVars id) + newHole `thenM` \ hole -> + tcPat tc_pat_bndr pat (Infer hole) `thenM` \ (pat', tvs, ids, lie_avail) -> + readMutVar hole `thenM` \ pat_ty -> + -- Don't know how to deal with pattern-bound existentials yet + checkTc (isEmptyBag tvs && null lie_avail) + (existentialExplode bind) `thenM_` - -- CHECK THAT ALL THE SIGNATURE CONTEXTS ARE UNIFIABLE - -- The type signatures on a mutually-recursive group of definitions - -- must all have the same context (or none). - -- - -- We unify them because, with polymorphic recursion, their types - -- might not otherwise be related. This is a rather subtle issue. - -- ToDo: amplify - check_one_ctxt sig@(TySigInfo _ id _ theta _ _ _ src_loc) - = tcAddSrcLoc src_loc $ - tcAddErrCtxt (sigContextsCtxt id1 id) $ - checkTc (length this_sig_dict_tys == n_sig1_dict_tys) - sigContextsErr `thenTc_` - unifyTauTyLists sig1_dict_tys this_sig_dict_tys - where - this_sig_dict_tys = mk_dict_tys theta - - -- CHECK THAT FOR A GROUP INVOLVING Main.main, all - -- the signature contexts are empty (what a bore) - check_main_ctxt sig@(TySigInfo _ id _ theta _ _ _ src_loc) - = tcAddSrcLoc src_loc $ - checkTc (null theta) (mainContextsErr id) - - mk_dict_tys theta = map mkPredTy theta - - sig_msg id = ptext SLIT("When checking the type signature for") <+> quotes (ppr id) - - -- Search for Main.main in the binder_names, return corresponding mono_id - find_main NotTopLevel binder_names mono_ids = Nothing - find_main TopLevel binder_names mono_ids = go binder_names mono_ids - go [] [] = Nothing - go (n:ns) (m:ms) | n `hasKey` mainKey = Just m - | otherwise = go ns ms + let + complete_it = addSrcLoc locn $ + addErrCtxt (patMonoBindsCtxt bind) $ + tcGRHSsPat grhss (Check pat_ty) `thenM` \ grhss' -> + returnM (PatMonoBind pat' grhss' locn, ids) + in + returnM (complete_it, if isRec is_rec then ids else emptyBag) + + -- tc_pat_bndr is used when dealing with a LHS binder in a pattern. + -- If there was a type sig for that Id, we want to make it much + -- as if that type signature had been on the binder as a SigPatIn. + -- We check for a type signature; if there is one, we use the mono_id + -- from the signature. This is how we make sure the tau part of the + -- signature actually matches the type of the LHS; then tc_mb_pats + -- ensures the LHS and RHS have the same type + + tc_pat_bndr name pat_ty + = case maybeSig tc_ty_sigs name of + Nothing -> newLocalName name `thenM` \ bndr_name -> + tcMonoPatBndr bndr_name pat_ty + + Just sig -> addSrcLoc (getSrcLoc name) $ + tcSubPat (idType mono_id) pat_ty `thenM` \ co_fn -> + returnM (co_fn, mono_id) + where + mono_id = tcSigMonoId sig \end{code} @@ -865,34 +787,37 @@ a RULE now: {-# SPECIALISE (f:: TcM (TcMonoBinds, LIE) +tcSpecSigs :: [RenamedSig] -> TcM TcMonoBinds tcSpecSigs (SpecSig name poly_ty src_loc : sigs) = -- SPECIALISE f :: forall b. theta => tau = g - tcAddSrcLoc src_loc $ - tcAddErrCtxt (valSpecSigCtxt name poly_ty) $ + addSrcLoc src_loc $ + addErrCtxt (valSpecSigCtxt name poly_ty) $ -- Get and instantiate its alleged specialised type - tcHsSigType poly_ty `thenTc` \ sig_ty -> + tcHsSigType (FunSigCtxt name) poly_ty `thenM` \ sig_ty -> -- Check that f has a more general type, and build a RHS for -- the spec-pragma-id at the same time - tcExpr (HsVar name) sig_ty `thenTc` \ (spec_expr, spec_lie) -> + getLIE (tcCheckSigma (HsVar name) sig_ty) `thenM` \ (spec_expr, spec_lie) -> -- Squeeze out any Methods (see comments with tcSimplifyToDicts) - tcSimplifyToDicts spec_lie `thenTc` \ (spec_lie1, spec_binds) -> + tcSimplifyToDicts spec_lie `thenM` \ spec_binds -> -- Just specialise "f" by building a SpecPragmaId binding -- It is the thing that makes sure we don't prematurely -- dead-code-eliminate the binding we are really interested in. - newSpecPragmaId name sig_ty `thenNF_Tc` \ spec_id -> + newLocalName name `thenM` \ spec_name -> + let + spec_bind = VarMonoBind (mkSpecPragmaId spec_name sig_ty) + (mkHsLet spec_binds spec_expr) + in -- Do the rest and combine - tcSpecSigs sigs `thenTc` \ (binds_rest, lie_rest) -> - returnTc (binds_rest `andMonoBinds` VarMonoBind spec_id (mkHsLet spec_binds spec_expr), - lie_rest `plusLIE` spec_lie1) + tcSpecSigs sigs `thenM` \ binds_rest -> + returnM (binds_rest `andMonoBinds` spec_bind) tcSpecSigs (other_sig : sigs) = tcSpecSigs sigs -tcSpecSigs [] = returnTc (EmptyMonoBinds, emptyLIE) +tcSpecSigs [] = returnM EmptyMonoBinds \end{code} @@ -913,41 +838,37 @@ valSpecSigCtxt v ty nest 4 (ppr v <+> dcolon <+> ppr ty)] ----------------------------------------------- -unboxedPatBindErr id - = ptext SLIT("variable in a lazy pattern binding has unboxed type: ") - <+> quotes (ppr id) - ------------------------------------------------ -bindSigsCtxt ids - = ptext SLIT("When checking the type signature(s) for") <+> pprQuotedList ids - ------------------------------------------------ -sigContextsErr - = ptext SLIT("Mismatched contexts") +sigContextsErr = ptext SLIT("Mismatched contexts") sigContextsCtxt s1 s2 - = hang (hsep [ptext SLIT("When matching the contexts of the signatures for"), - quotes (ppr s1), ptext SLIT("and"), quotes (ppr s2)]) - 4 (ptext SLIT("(the signature contexts in a mutually recursive group should all be identical)")) - -mainContextsErr id - | id `hasKey` mainKey = ptext SLIT("Main.main cannot be overloaded") - | otherwise - = quotes (ppr id) <+> ptext SLIT("cannot be overloaded") <> char ',' <> -- sigh; workaround for cpp's inability to deal - ptext SLIT("because it is mutually recursive with Main.main") -- with commas inside SLIT strings. - -mainTyCheckCtxt - = hsep [ptext SLIT("When checking that"), quotes (ptext SLIT("main")), - ptext SLIT("has the required type")] + = vcat [ptext SLIT("When matching the contexts of the signatures for"), + nest 2 (vcat [ppr s1 <+> dcolon <+> ppr (idType s1), + ppr s2 <+> dcolon <+> ppr (idType s2)]), + ptext SLIT("The signature contexts in a mutually recursive group should all be identical")] ----------------------------------------------- unliftedBindErr flavour mbind - = hang (text flavour <+> ptext SLIT("bindings for unlifted types aren't allowed")) + = hang (text flavour <+> ptext SLIT("bindings for unlifted types aren't allowed:")) 4 (ppr mbind) +----------------------------------------------- existentialExplode mbinds = hang (vcat [text "My brain just exploded.", text "I can't handle pattern bindings for existentially-quantified constructors.", text "In the binding group"]) 4 (ppr mbinds) + +----------------------------------------------- +restrictedBindCtxtErr binder_names + = hang (ptext SLIT("Illegal overloaded type signature(s)")) + 4 (vcat [ptext SLIT("in a binding group for") <+> pprBinders binder_names, + ptext SLIT("that falls under the monomorphism restriction")]) + +genCtxt binder_names + = ptext SLIT("When generalising the type(s) for") <+> pprBinders binder_names + +-- Used in error messages +-- Use quotes for a single one; they look a bit "busy" for several +pprBinders [bndr] = quotes (ppr bndr) +pprBinders bndrs = pprWithCommas ppr bndrs \end{code}