X-Git-Url: http://git.megacz.com/?a=blobdiff_plain;f=ghc%2Fcompiler%2Ftypecheck%2FTcExpr.lhs;h=77161009275fbe4c12765a42a417002d9dfa5ec6;hb=8ddfc3c10a9d08e11812b5564da291d7024d5fc8;hp=73bede1aabdcf1be562d4f3c7d9655284351fe5d;hpb=63b9e02a40a1c30531bd22b3bc6a5be18943476c;p=ghc-hetmet.git diff --git a/ghc/compiler/typecheck/TcExpr.lhs b/ghc/compiler/typecheck/TcExpr.lhs index 73bede1..7716100 100644 --- a/ghc/compiler/typecheck/TcExpr.lhs +++ b/ghc/compiler/typecheck/TcExpr.lhs @@ -1,89 +1,177 @@ % -% (c) The GRASP/AQUA Project, Glasgow University, 1992-1996 +% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 % \section[TcExpr]{Typecheck an expression} \begin{code} -#include "HsVersions.h" - -module TcExpr ( tcExpr, tcStmt, tcId ) where +module TcExpr ( tcApp, tcExpr, tcPolyExpr, tcId ) where -IMP_Ubiq() +#include "HsVersions.h" -import HsSyn ( HsExpr(..), Stmt(..), DoOrListComp(..), - HsBinds(..), MonoBinds(..), - SYN_IE(RecFlag), nonRecursive, - ArithSeqInfo(..), HsLit(..), Sig, GRHSsAndBinds, - Match, Fake, InPat, OutPat, HsType, Fixity, - pprParendExpr, failureFreePat, collectPatBinders ) -import RnHsSyn ( SYN_IE(RenamedHsExpr), - SYN_IE(RenamedStmt), SYN_IE(RenamedRecordBinds) +import HsSyn ( HsExpr(..), HsLit(..), ArithSeqInfo(..), + HsBinds(..), MonoBinds(..), Stmt(..), StmtCtxt(..), + mkMonoBind, nullMonoBinds ) -import TcHsSyn ( SYN_IE(TcExpr), SYN_IE(TcStmt), - SYN_IE(TcRecordBinds), - mkHsTyApp +import RnHsSyn ( RenamedHsExpr, RenamedRecordBinds ) +import TcHsSyn ( TcExpr, TcRecordBinds, mkHsConApp, + mkHsTyApp, mkHsLet, maybeBoxedPrimType ) import TcMonad +import BasicTypes ( RecFlag(..) ) + import Inst ( Inst, InstOrigin(..), OverloadedLit(..), - SYN_IE(LIE), emptyLIE, plusLIE, plusLIEs, newOverloadedLit, - newMethod, newMethodWithGivenTy, newDicts ) -import TcBinds ( tcBindsAndThen, checkSigTyVars ) -import TcEnv ( tcLookupLocalValue, tcLookupGlobalValue, tcLookupClassByKey, - tcLookupGlobalValueByKey, newMonoIds, tcGetGlobalTyVars, - tcExtendGlobalTyVars, tcLookupGlobalValueMaybe + LIE, emptyLIE, unitLIE, consLIE, plusLIE, plusLIEs, + lieToList, listToLIE, + newOverloadedLit, newMethod, newIPDict, + instOverloadedFun, newDicts, newClassDicts, + getIPsOfLIE, instToId, ipToId + ) +import TcBinds ( tcBindsAndThen ) +import TcEnv ( tcInstId, + tcLookupValue, tcLookupClassByKey, + tcLookupValueByKey, + tcExtendGlobalTyVars, tcLookupValueMaybe, + tcLookupTyCon, tcLookupDataCon ) -import SpecEnv ( SpecEnv ) -import TcMatches ( tcMatchesCase, tcMatchExpected ) -import TcMonoType ( tcHsType ) -import TcPat ( tcPat ) -import TcSimplify ( tcSimplifyAndCheck, tcSimplifyRank2 ) -import TcType ( TcIdOcc(..), SYN_IE(TcType), TcMaybe(..), - tcInstId, tcInstType, tcInstSigTcType, tcInstTyVars, - tcInstSigType, tcInstTcType, tcInstTheta, tcSplitRhoTy, - newTyVarTy, newTyVarTys, zonkTcTyVars, zonkTcType ) -import TcKind ( TcKind ) - -import Class ( SYN_IE(Class) ) -import FieldLabel ( FieldLabel, fieldLabelName, fieldLabelType ) -import Id ( idType, dataConFieldLabels, dataConSig, recordSelectorFieldLabel, +import TcMatches ( tcMatchesCase, tcMatchLambda, tcStmts ) +import TcMonoType ( tcHsSigType, checkSigTyVars, sigCtxt ) +import TcPat ( badFieldCon ) +import TcSimplify ( tcSimplify, tcSimplifyAndCheck, partitionPredsOfLIE ) +import TcType ( TcType, TcTauType, + tcInstTyVars, + tcInstTcType, tcSplitRhoTy, + newTyVarTy, newTyVarTy_OpenKind, zonkTcType ) + +import Class ( Class ) +import FieldLabel ( FieldLabel, fieldLabelName, fieldLabelType + ) +import Id ( idType, recordSelectorFieldLabel, isRecordSelector, - SYN_IE(Id), GenId + Id, mkVanillaId ) -import Kind ( Kind, mkBoxedTypeKind, mkTypeKind, mkArrowKind ) -import Name ( Name{-instance Eq-} ) -import Type ( mkFunTy, mkAppTy, mkTyVarTy, mkTyVarTys, mkRhoTy, - getTyVar_maybe, getFunTy_maybe, instantiateTy, applyTyCon, - splitForAllTy, splitRhoTy, splitSigmaTy, splitFunTy, - isTauTy, mkFunTys, tyVarsOfType, tyVarsOfTypes, getForAllTy_maybe, - getAppDataTyCon, maybeAppDataTyCon +import DataCon ( dataConFieldLabels, dataConSig, + dataConStrictMarks, StrictnessMark(..) ) -import TyVar ( GenTyVar, SYN_IE(TyVarSet), unionTyVarSets, elementOfTyVarSet, mkTyVarSet ) -import TysPrim ( intPrimTy, charPrimTy, doublePrimTy, - floatPrimTy, addrPrimTy, realWorldTy +import Name ( Name, getName ) +import Type ( mkFunTy, mkAppTy, mkTyVarTy, mkTyVarTys, + ipName_maybe, + splitFunTy_maybe, splitFunTys, isNotUsgTy, + mkTyConApp, + splitForAllTys, splitRhoTy, + isTauTy, tyVarsOfType, tyVarsOfTypes, + isForAllTy, splitAlgTyConApp, splitAlgTyConApp_maybe, + boxedTypeKind, mkArrowKind, + tidyOpenType ) -import TysWiredIn ( addrTy, - boolTy, charTy, stringTy, mkListTy, - mkTupleTy, mkPrimIoTy, stDataCon +import Subst ( mkTopTyVarSubst, substClasses ) +import UsageSPUtils ( unannotTy ) +import VarSet ( emptyVarSet, unionVarSet, elemVarSet, mkVarSet ) +import TyCon ( tyConDataCons ) +import TysPrim ( intPrimTy, charPrimTy, doublePrimTy, + floatPrimTy, addrPrimTy ) -import Unify ( unifyTauTy, unifyTauTyList, unifyTauTyLists, unifyFunTy ) -import Unique ( Unique, cCallableClassKey, cReturnableClassKey, +import TysWiredIn ( boolTy, charTy, stringTy ) +import PrelInfo ( ioTyCon_NAME ) +import TcUnify ( unifyTauTy, unifyFunTy, unifyListTy, unifyTupleTy, + unifyUnboxedTupleTy ) +import Unique ( cCallableClassKey, cReturnableClassKey, enumFromClassOpKey, enumFromThenClassOpKey, enumFromToClassOpKey, enumFromThenToClassOpKey, - thenMClassOpKey, zeroClassOpKey, returnMClassOpKey + thenMClassOpKey, failMClassOpKey, returnMClassOpKey ) -import Outputable ( speakNth, interpp'SP, Outputable(..) ) -import PprType ( GenType, GenTyVar ) -- Instances -import Maybes ( maybeToBool ) -import Pretty +import Outputable +import Maybes ( maybeToBool, mapMaybe ) import ListSetOps ( minusList ) import Util +import CmdLineOpts ( opt_WarnMissingFields ) + \end{code} +%************************************************************************ +%* * +\subsection{Main wrappers} +%* * +%************************************************************************ + \begin{code} tcExpr :: RenamedHsExpr -- Expession to type check - -> TcType s -- Expected type (could be a type variable) - -> TcM s (TcExpr s, LIE s) + -> TcType -- Expected type (could be a polytpye) + -> TcM s (TcExpr, LIE) + +tcExpr expr ty | isForAllTy ty = -- Polymorphic case + tcPolyExpr expr ty `thenTc` \ (expr', lie, _, _, _) -> + returnTc (expr', lie) + + | otherwise = -- Monomorphic case + tcMonoExpr expr ty +\end{code} + + +%************************************************************************ +%* * +\subsection{@tcPolyExpr@ typchecks an application} +%* * +%************************************************************************ + +\begin{code} +-- tcPolyExpr is like tcMonoExpr, except that the expected type +-- can be a polymorphic one. +tcPolyExpr :: RenamedHsExpr + -> TcType -- Expected type + -> TcM s (TcExpr, LIE, -- Generalised expr with expected type, and LIE + TcExpr, TcTauType, LIE) -- Same thing, but instantiated; tau-type returned + +tcPolyExpr arg expected_arg_ty + = -- Ha! The argument type of the function is a for-all type, + -- An example of rank-2 polymorphism. + + -- To ensure that the forall'd type variables don't get unified with each + -- other or any other types, we make fresh copy of the alleged type + tcInstTcType expected_arg_ty `thenNF_Tc` \ (sig_tyvars, sig_rho) -> + let + (sig_theta, sig_tau) = splitRhoTy sig_rho + free_tyvars = tyVarsOfType expected_arg_ty + in + -- Type-check the arg and unify with expected type + tcMonoExpr arg sig_tau `thenTc` \ (arg', lie_arg) -> + + -- Check that the sig_tyvars havn't been constrained + -- The interesting bit here is that we must include the free variables + -- of the expected arg ty. Here's an example: + -- runST (newVar True) + -- Here, if we don't make a check, we'll get a type (ST s (MutVar s Bool)) + -- for (newVar True), with s fresh. Then we unify with the runST's arg type + -- forall s'. ST s' a. That unifies s' with s, and a with MutVar s Bool. + -- So now s' isn't unconstrained because it's linked to a. + -- Conclusion: include the free vars of the expected arg type in the + -- list of "free vars" for the signature check. + + tcExtendGlobalTyVars free_tyvars $ + tcAddErrCtxtM (sigCtxt sig_msg sig_tyvars sig_theta sig_tau) $ + + checkSigTyVars sig_tyvars free_tyvars `thenTc` \ zonked_sig_tyvars -> + + newDicts SignatureOrigin sig_theta `thenNF_Tc` \ (sig_dicts, dict_ids) -> + -- ToDo: better origin + tcSimplifyAndCheck + (text "the type signature of an expression") + (mkVarSet zonked_sig_tyvars) + sig_dicts lie_arg `thenTc` \ (free_insts, inst_binds) -> + + let + -- This HsLet binds any Insts which came out of the simplification. + -- It's a bit out of place here, but using AbsBind involves inventing + -- a couple of new names which seems worse. + generalised_arg = TyLam zonked_sig_tyvars $ + DictLam dict_ids $ + mkHsLet inst_binds $ + arg' + in + returnTc ( generalised_arg, free_insts, + arg', sig_tau, lie_arg ) + where + sig_msg = ptext SLIT("When checking an expression type signature") \end{code} %************************************************************************ @@ -93,9 +181,13 @@ tcExpr :: RenamedHsExpr -- Expession to type check %************************************************************************ \begin{code} -tcExpr (HsVar name) res_ty +tcMonoExpr :: RenamedHsExpr -- Expession to type check + -> TcTauType -- Expected type (could be a type variable) + -> TcM s (TcExpr, LIE) + +tcMonoExpr (HsVar name) res_ty = tcId name `thenNF_Tc` \ (expr', lie, id_ty) -> - unifyTauTy id_ty res_ty `thenTc_` + unifyTauTy res_ty id_ty `thenTc_` -- Check that the result type doesn't have any nested for-alls. -- For example, a "build" on its own is no good; it must be @@ -106,6 +198,15 @@ tcExpr (HsVar name) res_ty returnTc (expr', lie) \end{code} +\begin{code} +tcMonoExpr (HsIPVar name) res_ty + -- ZZ What's the `id' used for here... + = let id = mkVanillaId name res_ty in + tcGetInstLoc (OccurrenceOf id) `thenNF_Tc` \ loc -> + newIPDict name res_ty loc `thenNF_Tc` \ ip -> + returnNF_Tc (HsIPVar (instToId ip), unitLIE ip) +\end{code} + %************************************************************************ %* * \subsection{Literals} @@ -115,59 +216,59 @@ tcExpr (HsVar name) res_ty Overloaded literals. \begin{code} -tcExpr (HsLit (HsInt i)) res_ty +tcMonoExpr (HsLit (HsInt i)) res_ty = newOverloadedLit (LiteralOrigin (HsInt i)) (OverloadedIntegral i) res_ty `thenNF_Tc` \ stuff -> returnTc stuff -tcExpr (HsLit (HsFrac f)) res_ty +tcMonoExpr (HsLit (HsFrac f)) res_ty = newOverloadedLit (LiteralOrigin (HsFrac f)) (OverloadedFractional f) res_ty `thenNF_Tc` \ stuff -> returnTc stuff -tcExpr (HsLit lit@(HsLitLit s)) res_ty +tcMonoExpr (HsLit lit@(HsLitLit s)) res_ty = tcLookupClassByKey cCallableClassKey `thenNF_Tc` \ cCallableClass -> - newDicts (LitLitOrigin (_UNPK_ s)) - [(cCallableClass, res_ty)] `thenNF_Tc` \ (dicts, _) -> + newClassDicts (LitLitOrigin (_UNPK_ s)) + [(cCallableClass,[res_ty])] `thenNF_Tc` \ (dicts, _) -> returnTc (HsLitOut lit res_ty, dicts) \end{code} Primitive literals: \begin{code} -tcExpr (HsLit lit@(HsCharPrim c)) res_ty - = unifyTauTy charPrimTy res_ty `thenTc_` +tcMonoExpr (HsLit lit@(HsCharPrim c)) res_ty + = unifyTauTy res_ty charPrimTy `thenTc_` returnTc (HsLitOut lit charPrimTy, emptyLIE) -tcExpr (HsLit lit@(HsStringPrim s)) res_ty - = unifyTauTy addrPrimTy res_ty `thenTc_` +tcMonoExpr (HsLit lit@(HsStringPrim s)) res_ty + = unifyTauTy res_ty addrPrimTy `thenTc_` returnTc (HsLitOut lit addrPrimTy, emptyLIE) -tcExpr (HsLit lit@(HsIntPrim i)) res_ty - = unifyTauTy intPrimTy res_ty `thenTc_` +tcMonoExpr (HsLit lit@(HsIntPrim i)) res_ty + = unifyTauTy res_ty intPrimTy `thenTc_` returnTc (HsLitOut lit intPrimTy, emptyLIE) -tcExpr (HsLit lit@(HsFloatPrim f)) res_ty - = unifyTauTy floatPrimTy res_ty `thenTc_` +tcMonoExpr (HsLit lit@(HsFloatPrim f)) res_ty + = unifyTauTy res_ty floatPrimTy `thenTc_` returnTc (HsLitOut lit floatPrimTy, emptyLIE) -tcExpr (HsLit lit@(HsDoublePrim d)) res_ty - = unifyTauTy doublePrimTy res_ty `thenTc_` +tcMonoExpr (HsLit lit@(HsDoublePrim d)) res_ty + = unifyTauTy res_ty doublePrimTy `thenTc_` returnTc (HsLitOut lit doublePrimTy, emptyLIE) \end{code} Unoverloaded literals: \begin{code} -tcExpr (HsLit lit@(HsChar c)) res_ty - = unifyTauTy charTy res_ty `thenTc_` +tcMonoExpr (HsLit lit@(HsChar c)) res_ty + = unifyTauTy res_ty charTy `thenTc_` returnTc (HsLitOut lit charTy, emptyLIE) -tcExpr (HsLit lit@(HsString str)) res_ty - = unifyTauTy stringTy res_ty `thenTc_` +tcMonoExpr (HsLit lit@(HsString str)) res_ty + = unifyTauTy res_ty stringTy `thenTc_` returnTc (HsLitOut lit stringTy, emptyLIE) \end{code} @@ -178,16 +279,24 @@ tcExpr (HsLit lit@(HsString str)) res_ty %************************************************************************ \begin{code} -tcExpr (HsPar expr) res_ty -- preserve parens so printing needn't guess where they go - = tcExpr expr res_ty +tcMonoExpr (HsPar expr) res_ty -- preserve parens so printing needn't guess where they go + = tcMonoExpr expr res_ty -tcExpr (NegApp expr neg) res_ty = tcExpr (HsApp neg expr) res_ty +-- perform the negate *before* overloading the integer, since the case +-- of minBound on Ints fails otherwise. Could be done elsewhere, but +-- convenient to do it here. -tcExpr (HsLam match) res_ty - = tcMatchExpected res_ty match `thenTc` \ (match',lie) -> +tcMonoExpr (NegApp (HsLit (HsInt i)) neg) res_ty + = tcMonoExpr (HsLit (HsInt (-i))) res_ty + +tcMonoExpr (NegApp expr neg) res_ty + = tcMonoExpr (HsApp neg expr) res_ty + +tcMonoExpr (HsLam match) res_ty + = tcMatchLambda match res_ty `thenTc` \ (match',lie) -> returnTc (HsLam match', lie) -tcExpr (HsApp e1 e2) res_ty = accum e1 [e2] +tcMonoExpr (HsApp e1 e2) res_ty = accum e1 [e2] where accum (HsApp e1 e2) args = accum e1 (e2:args) accum fun args @@ -195,7 +304,7 @@ tcExpr (HsApp e1 e2) res_ty = accum e1 [e2] returnTc (foldl HsApp fun' args', lie) -- equivalent to (op e1) e2: -tcExpr (OpApp arg1 op fix arg2) res_ty +tcMonoExpr (OpApp arg1 op fix arg2) res_ty = tcApp op [arg1,arg2] res_ty `thenTc` \ (op', [arg1', arg2'], lie) -> returnTc (OpApp arg1' op' fix arg2', lie) \end{code} @@ -211,7 +320,7 @@ a type error will occur if they aren't. -- or just -- op e -tcExpr in_expr@(SectionL arg op) res_ty +tcMonoExpr in_expr@(SectionL arg op) res_ty = tcApp op [arg] res_ty `thenTc` \ (op', [arg'], lie) -> -- Check that res_ty is a function type @@ -228,12 +337,12 @@ tcExpr in_expr@(SectionL arg op) res_ty -- Right sections, equivalent to \ x -> x op expr, or -- \ x -> op x expr -tcExpr in_expr@(SectionR op expr) res_ty +tcMonoExpr in_expr@(SectionR op expr) res_ty = tcExpr_id op `thenTc` \ (op', lie1, op_ty) -> tcAddErrCtxt (sectionRAppCtxt in_expr) $ split_fun_ty op_ty 2 {- two args -} `thenTc` \ ([arg1_ty, arg2_ty], op_res_ty) -> - tcExpr expr arg2_ty `thenTc` \ (expr',lie2) -> - unifyTauTy (mkFunTy arg1_ty op_res_ty) res_ty `thenTc_` + tcMonoExpr expr arg2_ty `thenTc` \ (expr',lie2) -> + unifyTauTy res_ty (mkFunTy arg1_ty op_res_ty) `thenTc_` returnTc (SectionR op' expr', lie1 `plusLIE` lie2) \end{code} @@ -245,128 +354,162 @@ arg/result types); unify them with the args/result; and store them for later use. \begin{code} -tcExpr (CCall lbl args may_gc is_asm ignored_fake_result_ty) res_ty +tcMonoExpr (HsCCall lbl args may_gc is_asm ignored_fake_result_ty) res_ty = -- Get the callable and returnable classes. tcLookupClassByKey cCallableClassKey `thenNF_Tc` \ cCallableClass -> tcLookupClassByKey cReturnableClassKey `thenNF_Tc` \ cReturnableClass -> - + tcLookupTyCon ioTyCon_NAME `thenNF_Tc` \ ioTyCon -> let new_arg_dict (arg, arg_ty) - = newDicts (CCallOrigin (_UNPK_ lbl) (Just arg)) - [(cCallableClass, arg_ty)] `thenNF_Tc` \ (arg_dicts, _) -> + = newClassDicts (CCallOrigin (_UNPK_ lbl) (Just arg)) + [(cCallableClass, [arg_ty])] `thenNF_Tc` \ (arg_dicts, _) -> returnNF_Tc arg_dicts -- Actually a singleton bag result_origin = CCallOrigin (_UNPK_ lbl) Nothing {- Not an arg -} in -- Arguments - mapNF_Tc (\ _ -> newTyVarTy mkTypeKind) [1..(length args)] `thenNF_Tc` \ ty_vars -> - tcExprs args ty_vars `thenTc` \ (args', args_lie) -> + let n_args = length args + tv_idxs | n_args == 0 = [] + | otherwise = [1..n_args] + in + mapNF_Tc (\ _ -> newTyVarTy_OpenKind) tv_idxs `thenNF_Tc` \ arg_tys -> + tcMonoExprs args arg_tys `thenTc` \ (args', args_lie) -> -- The argument types can be unboxed or boxed; the result - -- type must, however, be boxed since it's an argument to the PrimIO + -- type must, however, be boxed since it's an argument to the IO -- type constructor. - newTyVarTy mkBoxedTypeKind `thenNF_Tc` \ result_ty -> - unifyTauTy (mkPrimIoTy result_ty) res_ty `thenTc_` + newTyVarTy boxedTypeKind `thenNF_Tc` \ result_ty -> + let + io_result_ty = mkTyConApp ioTyCon [result_ty] + [ioDataCon] = tyConDataCons ioTyCon + in + unifyTauTy res_ty io_result_ty `thenTc_` -- Construct the extra insts, which encode the -- constraints on the argument and result types. - mapNF_Tc new_arg_dict (zipEqual "tcExpr:CCall" args ty_vars) `thenNF_Tc` \ ccarg_dicts_s -> - newDicts result_origin [(cReturnableClass, result_ty)] `thenNF_Tc` \ (ccres_dict, _) -> - - returnTc (HsApp (HsVar (RealId stDataCon) `TyApp` [realWorldTy, result_ty]) - (CCall lbl args' may_gc is_asm result_ty), + mapNF_Tc new_arg_dict (zipEqual "tcMonoExpr:CCall" args arg_tys) `thenNF_Tc` \ ccarg_dicts_s -> + newClassDicts result_origin [(cReturnableClass, [result_ty])] `thenNF_Tc` \ (ccres_dict, _) -> + returnTc (mkHsConApp ioDataCon [result_ty] [HsCCall lbl args' may_gc is_asm result_ty], -- do the wrapping in the newtype constructor here foldr plusLIE ccres_dict ccarg_dicts_s `plusLIE` args_lie) \end{code} \begin{code} -tcExpr (HsSCC label expr) res_ty - = tcExpr expr res_ty `thenTc` \ (expr', lie) -> - returnTc (HsSCC label expr', lie) +tcMonoExpr (HsSCC lbl expr) res_ty + = tcMonoExpr expr res_ty `thenTc` \ (expr', lie) -> + returnTc (HsSCC lbl expr', lie) -tcExpr (HsLet binds expr) res_ty +tcMonoExpr (HsLet binds expr) res_ty = tcBindsAndThen combiner binds -- Bindings to check - (tc_expr) `thenTc` \ (expr', lie) -> + tc_expr `thenTc` \ (expr', lie) -> returnTc (expr', lie) where - tc_expr = tcExpr expr res_ty `thenTc` \ (expr', lie) -> + tc_expr = tcMonoExpr expr res_ty `thenTc` \ (expr', lie) -> returnTc (expr', lie) - combiner is_rec bind expr = HsLet (MonoBind bind [] is_rec) expr + combiner is_rec bind expr = HsLet (mkMonoBind bind [] is_rec) expr + +tcMonoExpr in_expr@(HsCase scrut matches src_loc) res_ty + = tcAddSrcLoc src_loc $ + tcAddErrCtxt (caseCtxt in_expr) $ + + -- Typecheck the case alternatives first. + -- The case patterns tend to give good type info to use + -- when typechecking the scrutinee. For example + -- case (map f) of + -- (x:xs) -> ... + -- will report that map is applied to too few arguments + -- + -- Not only that, but it's better to check the matches on their + -- own, so that we get the expected results for scoped type variables. + -- f x = case x of + -- (p::a, q::b) -> (q,p) + -- The above should work: the match (p,q) -> (q,p) is polymorphic as + -- claimed by the pattern signatures. But if we typechecked the + -- match with x in scope and x's type as the expected type, we'd be hosed. -tcExpr in_expr@(HsCase expr matches src_loc) res_ty - = tcAddSrcLoc src_loc $ - newTyVarTy mkTypeKind `thenNF_Tc` \ expr_ty -> - tcExpr expr expr_ty `thenTc` \ (expr',lie1) -> + tcMatchesCase matches res_ty `thenTc` \ (scrut_ty, matches', lie2) -> - tcAddErrCtxt (caseCtxt in_expr) $ - tcMatchesCase (mkFunTy expr_ty res_ty) matches - `thenTc` \ (matches',lie2) -> + tcAddErrCtxt (caseScrutCtxt scrut) ( + tcMonoExpr scrut scrut_ty + ) `thenTc` \ (scrut',lie1) -> - returnTc (HsCase expr' matches' src_loc, plusLIE lie1 lie2) + returnTc (HsCase scrut' matches' src_loc, plusLIE lie1 lie2) -tcExpr (HsIf pred b1 b2 src_loc) res_ty +tcMonoExpr (HsIf pred b1 b2 src_loc) res_ty = tcAddSrcLoc src_loc $ tcAddErrCtxt (predCtxt pred) ( - tcExpr pred boolTy ) `thenTc` \ (pred',lie1) -> + tcMonoExpr pred boolTy ) `thenTc` \ (pred',lie1) -> - tcAddErrCtxt (branchCtxt b1 b2) $ - tcExpr b1 res_ty `thenTc` \ (b1',lie2) -> - tcExpr b2 res_ty `thenTc` \ (b2',lie3) -> + tcMonoExpr b1 res_ty `thenTc` \ (b1',lie2) -> + tcMonoExpr b2 res_ty `thenTc` \ (b2',lie3) -> returnTc (HsIf pred' b1' b2' src_loc, plusLIE lie1 (plusLIE lie2 lie3)) \end{code} \begin{code} -tcExpr expr@(HsDo do_or_lc stmts src_loc) res_ty +tcMonoExpr expr@(HsDo do_or_lc stmts src_loc) res_ty = tcDoStmts do_or_lc stmts src_loc res_ty \end{code} \begin{code} -tcExpr in_expr@(ExplicitList exprs) res_ty -- Non-empty list +tcMonoExpr in_expr@(ExplicitList exprs) res_ty -- Non-empty list = unifyListTy res_ty `thenTc` \ elt_ty -> mapAndUnzipTc (tc_elt elt_ty) exprs `thenTc` \ (exprs', lies) -> returnTc (ExplicitListOut elt_ty exprs', plusLIEs lies) where tc_elt elt_ty expr = tcAddErrCtxt (listCtxt expr) $ - tcExpr expr elt_ty - -tcExpr (ExplicitTuple exprs) res_ty - -- ToDo: more direct way of testing if res_ty is a tuple type (cf. unifyListTy)? - = mapNF_Tc (\ _ -> newTyVarTy mkBoxedTypeKind) [1..len] `thenNF_Tc` \ ty_vars -> - unifyTauTy (mkTupleTy len ty_vars) res_ty `thenTc_` - mapAndUnzipTc (\ (expr,ty_var) -> tcExpr expr ty_var) - (exprs `zip` ty_vars) -- we know they're of equal length. - `thenTc` \ (exprs', lies) -> - returnTc (ExplicitTuple exprs', plusLIEs lies) - where - len = length exprs - -tcExpr (RecordCon (HsVar con) rbinds) res_ty - = tcId con `thenNF_Tc` \ (con_expr, con_lie, con_tau) -> + tcMonoExpr expr elt_ty + +tcMonoExpr (ExplicitTuple exprs boxed) res_ty + = (if boxed + then unifyTupleTy (length exprs) res_ty + else unifyUnboxedTupleTy (length exprs) res_ty + ) `thenTc` \ arg_tys -> + mapAndUnzipTc (\ (expr, arg_ty) -> tcMonoExpr expr arg_ty) + (exprs `zip` arg_tys) -- we know they're of equal length. + `thenTc` \ (exprs', lies) -> + returnTc (ExplicitTuple exprs' boxed, plusLIEs lies) + +tcMonoExpr expr@(RecordCon con_name rbinds) res_ty + = tcAddErrCtxt (recordConCtxt expr) $ + tcId con_name `thenNF_Tc` \ (con_expr, con_lie, con_tau) -> let - (_, record_ty) = splitFunTy con_tau + (_, record_ty) = splitFunTys con_tau in - -- Con is syntactically constrained to be a data constructor - ASSERT( maybeToBool (maybeAppDataTyCon record_ty ) ) - unifyTauTy record_ty res_ty `thenTc_` + ASSERT( maybeToBool (splitAlgTyConApp_maybe record_ty ) ) + unifyTauTy res_ty record_ty `thenTc_` -- Check that the record bindings match the constructor - tcLookupGlobalValue con `thenNF_Tc` \ con_id -> + -- con_name is syntactically constrained to be a data constructor + tcLookupDataCon con_name `thenTc` \ (data_con, _, _) -> let - bad_fields = badFields rbinds con_id + bad_fields = badFields rbinds data_con in - checkTc (null bad_fields) (badFieldsCon con bad_fields) `thenTc_` + if not (null bad_fields) then + mapNF_Tc (addErrTc . badFieldCon con_name) bad_fields `thenNF_Tc_` + failTc -- Fail now, because tcRecordBinds will crash on a bad field + else -- Typecheck the record bindings - -- (Do this after checkRecordFields in case there's a field that - -- doesn't match the constructor.) tcRecordBinds record_ty rbinds `thenTc` \ (rbinds', rbinds_lie) -> + + let + missing_s_fields = missingStrictFields rbinds data_con + in + checkTcM (null missing_s_fields) + (mapNF_Tc (addErrTc . missingStrictFieldCon con_name) missing_s_fields `thenNF_Tc_` + returnNF_Tc ()) `thenNF_Tc_` + let + missing_fields = missingFields rbinds data_con + in + checkTcM (not (opt_WarnMissingFields && not (null missing_fields))) + (mapNF_Tc ((warnTc True) . missingFieldCon con_name) missing_fields `thenNF_Tc_` + returnNF_Tc ()) `thenNF_Tc_` - returnTc (RecordCon con_expr rbinds', con_lie `plusLIE` rbinds_lie) - + returnTc (RecordConOut data_con con_expr rbinds', con_lie `plusLIE` rbinds_lie) -- The main complication with RecordUpd is that we need to explicitly -- handle the *non-updated* fields. Consider: @@ -394,40 +537,54 @@ tcExpr (RecordCon (HsVar con) rbinds) res_ty -- -- All this is done in STEP 4 below. -tcExpr (RecordUpd record_expr rbinds) res_ty - = tcAddErrCtxt recordUpdCtxt $ +tcMonoExpr expr@(RecordUpd record_expr rbinds) res_ty + = tcAddErrCtxt (recordUpdCtxt expr) $ - -- STEP 1 - -- Figure out the tycon and data cons from the first field name + -- STEP 0 + -- Check that the field names are really field names ASSERT( not (null rbinds) ) let - ((first_field_name, _, _) : rest) = rbinds + field_names = [field_name | (field_name, _, _) <- rbinds] + in + mapNF_Tc tcLookupValueMaybe field_names `thenNF_Tc` \ maybe_sel_ids -> + let + bad_guys = [field_name | (field_name, maybe_sel_id) <- field_names `zip` maybe_sel_ids, + case maybe_sel_id of + Nothing -> True + Just sel_id -> not (isRecordSelector sel_id) + ] in - tcLookupGlobalValueMaybe first_field_name `thenNF_Tc` \ maybe_sel_id -> - (case maybe_sel_id of - Just sel_id | isRecordSelector sel_id -> returnTc sel_id - other -> failTc (notSelector first_field_name) - ) `thenTc` \ sel_id -> + mapNF_Tc (addErrTc . notSelector) bad_guys `thenTc_` + if not (null bad_guys) then + failTc + else + + -- STEP 1 + -- Figure out the tycon and data cons from the first field name let - (_, tau) = splitForAllTy (idType sel_id) - Just (data_ty, _) = getFunTy_maybe tau -- Must succeed since sel_id is a selector - (tycon, _, data_cons) = getAppDataTyCon data_ty + (Just sel_id : _) = maybe_sel_ids + (_, tau) = ASSERT( isNotUsgTy (idType sel_id) ) + splitForAllTys (idType sel_id) + Just (data_ty, _) = splitFunTy_maybe tau -- Must succeed since sel_id is a selector + (tycon, _, data_cons) = splitAlgTyConApp data_ty (con_tyvars, theta, _, _, _, _) = dataConSig (head data_cons) in - tcInstTyVars con_tyvars `thenNF_Tc` \ (_, result_inst_tys, result_inst_env) -> + tcInstTyVars con_tyvars `thenNF_Tc` \ (_, result_inst_tys, _) -> -- STEP 2 - -- Check for bad fields + -- Check that at least one constructor has all the named fields + -- i.e. has an empty set of bad fields returned by badFields checkTc (any (null . badFields rbinds) data_cons) (badFieldsUpd rbinds) `thenTc_` + -- STEP 3 -- Typecheck the update bindings. -- (Do this after checking for bad fields in case there's a field that -- doesn't match the constructor.) let - result_record_ty = applyTyCon tycon result_inst_tys + result_record_ty = mkTyConApp tycon result_inst_tys in - unifyTauTy result_record_ty res_ty `thenTc_` + unifyTauTy res_ty result_record_ty `thenTc_` tcRecordBinds result_record_ty rbinds `thenTc` \ (rbinds', rbinds_lie) -> -- STEP 4 @@ -437,7 +594,7 @@ tcExpr (RecordUpd record_expr rbinds) res_ty -- WARNING: this code assumes that all data_cons in a common tycon -- have FieldLabels abstracted over the same tyvars. let - upd_field_lbls = [recordSelectorFieldLabel sel_id | (RealId sel_id, _, _) <- rbinds'] + upd_field_lbls = [recordSelectorFieldLabel sel_id | (sel_id, _, _) <- rbinds'] con_field_lbls_s = map dataConFieldLabels data_cons -- A constructor is only relevant to this process if @@ -449,17 +606,17 @@ tcExpr (RecordUpd record_expr rbinds) res_ty common_tyvars = tyVarsOfTypes (map fieldLabelType non_upd_field_lbls) mk_inst_ty (tyvar, result_inst_ty) - | tyvar `elementOfTyVarSet` common_tyvars = returnNF_Tc result_inst_ty -- Same as result type - | otherwise = newTyVarTy mkBoxedTypeKind -- Fresh type + | tyvar `elemVarSet` common_tyvars = returnNF_Tc result_inst_ty -- Same as result type + | otherwise = newTyVarTy boxedTypeKind -- Fresh type in mapNF_Tc mk_inst_ty (zip con_tyvars result_inst_tys) `thenNF_Tc` \ inst_tys -> -- STEP 5 -- Typecheck the expression to be updated let - record_ty = applyTyCon tycon inst_tys + record_ty = mkTyConApp tycon inst_tys in - tcExpr record_expr record_ty `thenTc` \ (record_expr', record_lie) -> + tcMonoExpr record_expr record_ty `thenTc` \ (record_expr', record_lie) -> -- STEP 6 -- Figure out the LIE we need. We have to generate some @@ -472,61 +629,61 @@ tcExpr (RecordUpd record_expr rbinds) res_ty -- union the ones that could participate in the update. let (tyvars, theta, _, _, _, _) = dataConSig (head data_cons) - inst_env = zipEqual "tcExpr:RecordUpd" tyvars result_inst_tys + inst_env = mkTopTyVarSubst tyvars result_inst_tys + theta' = substClasses inst_env theta in - tcInstTheta inst_env theta `thenNF_Tc` \ theta' -> - newDicts RecordUpdOrigin theta' `thenNF_Tc` \ (con_lie, dicts) -> + newClassDicts RecordUpdOrigin theta' `thenNF_Tc` \ (con_lie, dicts) -> -- Phew! returnTc (RecordUpdOut record_expr' result_record_ty dicts rbinds', con_lie `plusLIE` record_lie `plusLIE` rbinds_lie) -tcExpr (ArithSeqIn seq@(From expr)) res_ty - = unifyListTy res_ty `thenTc` \ elt_ty -> - tcExpr expr elt_ty `thenTc` \ (expr', lie1) -> +tcMonoExpr (ArithSeqIn seq@(From expr)) res_ty + = unifyListTy res_ty `thenTc` \ elt_ty -> + tcMonoExpr expr elt_ty `thenTc` \ (expr', lie1) -> - tcLookupGlobalValueByKey enumFromClassOpKey `thenNF_Tc` \ sel_id -> + tcLookupValueByKey enumFromClassOpKey `thenNF_Tc` \ sel_id -> newMethod (ArithSeqOrigin seq) - (RealId sel_id) [elt_ty] `thenNF_Tc` \ (lie2, enum_from_id) -> + sel_id [elt_ty] `thenNF_Tc` \ (lie2, enum_from_id) -> returnTc (ArithSeqOut (HsVar enum_from_id) (From expr'), lie1 `plusLIE` lie2) -tcExpr in_expr@(ArithSeqIn seq@(FromThen expr1 expr2)) res_ty +tcMonoExpr in_expr@(ArithSeqIn seq@(FromThen expr1 expr2)) res_ty = tcAddErrCtxt (arithSeqCtxt in_expr) $ unifyListTy res_ty `thenTc` \ elt_ty -> - tcExpr expr1 elt_ty `thenTc` \ (expr1',lie1) -> - tcExpr expr2 elt_ty `thenTc` \ (expr2',lie2) -> - tcLookupGlobalValueByKey enumFromThenClassOpKey `thenNF_Tc` \ sel_id -> + tcMonoExpr expr1 elt_ty `thenTc` \ (expr1',lie1) -> + tcMonoExpr expr2 elt_ty `thenTc` \ (expr2',lie2) -> + tcLookupValueByKey enumFromThenClassOpKey `thenNF_Tc` \ sel_id -> newMethod (ArithSeqOrigin seq) - (RealId sel_id) [elt_ty] `thenNF_Tc` \ (lie3, enum_from_then_id) -> + sel_id [elt_ty] `thenNF_Tc` \ (lie3, enum_from_then_id) -> returnTc (ArithSeqOut (HsVar enum_from_then_id) (FromThen expr1' expr2'), lie1 `plusLIE` lie2 `plusLIE` lie3) -tcExpr in_expr@(ArithSeqIn seq@(FromTo expr1 expr2)) res_ty +tcMonoExpr in_expr@(ArithSeqIn seq@(FromTo expr1 expr2)) res_ty = tcAddErrCtxt (arithSeqCtxt in_expr) $ unifyListTy res_ty `thenTc` \ elt_ty -> - tcExpr expr1 elt_ty `thenTc` \ (expr1',lie1) -> - tcExpr expr2 elt_ty `thenTc` \ (expr2',lie2) -> - tcLookupGlobalValueByKey enumFromToClassOpKey `thenNF_Tc` \ sel_id -> + tcMonoExpr expr1 elt_ty `thenTc` \ (expr1',lie1) -> + tcMonoExpr expr2 elt_ty `thenTc` \ (expr2',lie2) -> + tcLookupValueByKey enumFromToClassOpKey `thenNF_Tc` \ sel_id -> newMethod (ArithSeqOrigin seq) - (RealId sel_id) [elt_ty] `thenNF_Tc` \ (lie3, enum_from_to_id) -> + sel_id [elt_ty] `thenNF_Tc` \ (lie3, enum_from_to_id) -> returnTc (ArithSeqOut (HsVar enum_from_to_id) (FromTo expr1' expr2'), lie1 `plusLIE` lie2 `plusLIE` lie3) -tcExpr in_expr@(ArithSeqIn seq@(FromThenTo expr1 expr2 expr3)) res_ty +tcMonoExpr in_expr@(ArithSeqIn seq@(FromThenTo expr1 expr2 expr3)) res_ty = tcAddErrCtxt (arithSeqCtxt in_expr) $ unifyListTy res_ty `thenTc` \ elt_ty -> - tcExpr expr1 elt_ty `thenTc` \ (expr1',lie1) -> - tcExpr expr2 elt_ty `thenTc` \ (expr2',lie2) -> - tcExpr expr3 elt_ty `thenTc` \ (expr3',lie3) -> - tcLookupGlobalValueByKey enumFromThenToClassOpKey `thenNF_Tc` \ sel_id -> + tcMonoExpr expr1 elt_ty `thenTc` \ (expr1',lie1) -> + tcMonoExpr expr2 elt_ty `thenTc` \ (expr2',lie2) -> + tcMonoExpr expr3 elt_ty `thenTc` \ (expr3',lie3) -> + tcLookupValueByKey enumFromThenToClassOpKey `thenNF_Tc` \ sel_id -> newMethod (ArithSeqOrigin seq) - (RealId sel_id) [elt_ty] `thenNF_Tc` \ (lie4, eft_id) -> + sel_id [elt_ty] `thenNF_Tc` \ (lie4, eft_id) -> returnTc (ArithSeqOut (HsVar eft_id) (FromThenTo expr1' expr2' expr3'), @@ -540,68 +697,100 @@ tcExpr in_expr@(ArithSeqIn seq@(FromThenTo expr1 expr2 expr3)) res_ty %************************************************************************ \begin{code} -tcExpr in_expr@(ExprWithTySig expr poly_ty) res_ty +tcMonoExpr in_expr@(ExprWithTySig expr poly_ty) res_ty = tcSetErrCtxt (exprSigCtxt in_expr) $ - tcHsType poly_ty `thenTc` \ sigma_sig -> - - -- Check the tau-type part - tcInstSigType sigma_sig `thenNF_Tc` \ sigma_sig' -> - let - (sig_tyvars', sig_theta', sig_tau') = splitSigmaTy sigma_sig' - in - unifyTauTy sig_tau' res_ty `thenTc_` - - -- Type check the expression, *after* we've incorporated the signature - -- info into res_ty - tcExpr expr res_ty `thenTc` \ (texpr, lie) -> - - -- Check the type variables of the signature, - -- *after* typechecking the expression - checkSigTyVars sig_tyvars' sig_tau' `thenTc_` - - -- Check overloading constraints - newDicts SignatureOrigin sig_theta' `thenNF_Tc` \ (sig_dicts, _) -> - tcSimplifyAndCheck - (mkTyVarSet sig_tyvars') - sig_dicts lie `thenTc_` - - -- If everything is ok, return the stuff unchanged, except for - -- the effect of any substutions etc. We simply discard the - -- result of the tcSimplifyAndCheck, except for any default - -- resolution it may have done, which is recorded in the - -- substitution. - returnTc (texpr, lie) + tcHsSigType poly_ty `thenTc` \ sig_tc_ty -> + + if not (isForAllTy sig_tc_ty) then + -- Easy case + unifyTauTy sig_tc_ty res_ty `thenTc_` + tcMonoExpr expr sig_tc_ty + + else -- Signature is polymorphic + tcPolyExpr expr sig_tc_ty `thenTc` \ (_, _, expr, expr_ty, lie) -> + + -- Now match the signature type with res_ty. + -- We must not do this earlier, because res_ty might well + -- mention variables free in the environment, and we'd get + -- bogus complaints about not being able to for-all the + -- sig_tyvars + unifyTauTy res_ty expr_ty `thenTc_` + + -- If everything is ok, return the stuff unchanged, except for + -- the effect of any substutions etc. We simply discard the + -- result of the tcSimplifyAndCheck (inside tcPolyExpr), except for any default + -- resolution it may have done, which is recorded in the + -- substitution. + returnTc (expr, lie) +\end{code} + +Implicit Parameter bindings. +\begin{code} +tcMonoExpr (HsWith expr binds) res_ty + = tcMonoExpr expr res_ty `thenTc` \ (expr', lie) -> + tcIPBinds binds `thenTc` \ (binds', types, lie2) -> + partitionPredsOfLIE isBound lie `thenTc` \ (ips, lie', dict_binds) -> + pprTrace "tcMonoExpr With" (ppr (ips, lie', dict_binds)) $ + let expr'' = if nullMonoBinds dict_binds + then expr' + else HsLet (mkMonoBind (revBinds dict_binds) [] NonRecursive) + expr' + in + tcCheckIPBinds binds' types ips `thenTc_` + returnTc (HsWith expr'' binds', lie' `plusLIE` lie2) + where isBound p + = case ipName_maybe p of + Just n -> n `elem` names + Nothing -> False + names = map fst binds + -- revBinds is used because tcSimplify outputs the bindings + -- out-of-order. it's not a problem elsewhere because these + -- bindings are normally used in a recursive let + -- ZZ probably need to find a better solution + revBinds (b1 `AndMonoBinds` b2) = + (revBinds b2) `AndMonoBinds` (revBinds b1) + revBinds b = b + +tcIPBinds ((name, expr) : binds) + = newTyVarTy_OpenKind `thenTc` \ ty -> + tcGetSrcLoc `thenTc` \ loc -> + let id = ipToId name ty loc in + tcMonoExpr expr ty `thenTc` \ (expr', lie) -> + zonkTcType ty `thenTc` \ ty' -> + tcIPBinds binds `thenTc` \ (binds', types, lie2) -> + returnTc ((id, expr') : binds', ty : types, lie `plusLIE` lie2) +tcIPBinds [] = returnTc ([], [], emptyLIE) + +tcCheckIPBinds binds types ips + = foldrTc tcCheckIPBind (getIPsOfLIE ips) (zip binds types) + +-- ZZ how do we use the loc? +tcCheckIPBind bt@((v, _), t1) ((n, t2) : ips) | getName v == n + = unifyTauTy t1 t2 `thenTc_` + tcCheckIPBind bt ips `thenTc` \ ips' -> + returnTc ips' +tcCheckIPBind bt (ip : ips) + = tcCheckIPBind bt ips `thenTc` \ ips' -> + returnTc (ip : ips') +tcCheckIPBind bt [] + = returnTc [] \end{code} Typecheck expression which in most cases will be an Id. \begin{code} tcExpr_id :: RenamedHsExpr - -> TcM s (TcExpr s, - LIE s, - TcType s) + -> TcM s (TcExpr, + LIE, + TcType) tcExpr_id id_expr = case id_expr of - HsVar name -> tcId name `thenNF_Tc` \ stuff -> + HsVar name -> tcId name `thenNF_Tc` \ stuff -> returnTc stuff - other -> newTyVarTy mkTypeKind `thenNF_Tc` \ id_ty -> - tcExpr id_expr id_ty `thenTc` \ (id_expr', lie_id) -> + other -> newTyVarTy_OpenKind `thenNF_Tc` \ id_ty -> + tcMonoExpr id_expr id_ty `thenTc` \ (id_expr', lie_id) -> returnTc (id_expr', lie_id, id_ty) - - ---ToDo: move to Unify? -unifyListTy :: TcType s -- expected list type - -> TcM s (TcType s) -- list element type -unifyListTy res_ty - -- ToDo: more direct way of testing if res_ty is a list type (cf. unifyFunTy)? - = newTyVarTy mkBoxedTypeKind `thenNF_Tc` \ elt_ty -> - unifyTauTy (mkListTy elt_ty) res_ty `thenTc_` - - -- This zonking makes the returned type as informative - -- as possible. - zonkTcType elt_ty `thenNF_Tc` \ elt_ty' -> - returnTc elt_ty' \end{code} %************************************************************************ @@ -612,37 +801,60 @@ unifyListTy res_ty \begin{code} -tcApp :: RenamedHsExpr -> [RenamedHsExpr] -- Function and args - -> TcType s -- Expected result type of application - -> TcM s (TcExpr s, [TcExpr s], -- Translated fun and args - LIE s) +tcApp :: RenamedHsExpr -> [RenamedHsExpr] -- Function and args + -> TcType -- Expected result type of application + -> TcM s (TcExpr, [TcExpr], -- Translated fun and args + LIE) tcApp fun args res_ty = -- First type-check the function - tcExpr_id fun `thenTc` \ (fun', lie_fun, fun_ty) -> + tcExpr_id fun `thenTc` \ (fun', lie_fun, fun_ty) -> - tcAddErrCtxt (tooManyArgsCtxt fun) ( + tcAddErrCtxt (wrongArgsCtxt "too many" fun args) ( split_fun_ty fun_ty (length args) - ) `thenTc` \ (expected_arg_tys, actual_result_ty) -> + ) `thenTc` \ (expected_arg_tys, actual_result_ty) -> -- Unify with expected result before type-checking the args - unifyTauTy res_ty actual_result_ty `thenTc_` + -- This is when we might detect a too-few args situation + tcAddErrCtxtM (checkArgsCtxt fun args res_ty actual_result_ty) ( + unifyTauTy res_ty actual_result_ty + ) `thenTc_` -- Now typecheck the args - mapAndUnzipTc tcArg (zipEqual "tcApp" args expected_arg_tys) `thenTc` \ (args', lie_args_s) -> + mapAndUnzipTc (tcArg fun) + (zip3 args expected_arg_tys [1..]) `thenTc` \ (args', lie_args_s) -> -- Check that the result type doesn't have any nested for-alls. -- For example, a "build" on its own is no good; it must be applied to something. checkTc (isTauTy actual_result_ty) - (lurkingRank2Err fun fun_ty) `thenTc_` + (lurkingRank2Err fun fun_ty) `thenTc_` returnTc (fun', args', lie_fun `plusLIE` plusLIEs lie_args_s) -split_fun_ty :: TcType s -- The type of the function +-- If an error happens we try to figure out whether the +-- function has been given too many or too few arguments, +-- and say so +checkArgsCtxt fun args expected_res_ty actual_res_ty tidy_env + = zonkTcType expected_res_ty `thenNF_Tc` \ exp_ty' -> + zonkTcType actual_res_ty `thenNF_Tc` \ act_ty' -> + let + (env1, exp_ty'') = tidyOpenType tidy_env exp_ty' + (env2, act_ty'') = tidyOpenType env1 act_ty' + (exp_args, _) = splitFunTys exp_ty'' + (act_args, _) = splitFunTys act_ty'' + + message | length exp_args < length act_args = wrongArgsCtxt "too few" fun args + | length exp_args > length act_args = wrongArgsCtxt "too many" fun args + | otherwise = appCtxt fun args + in + returnNF_Tc (env2, message) + + +split_fun_ty :: TcType -- The type of the function -> Int -- Number of arguments - -> TcM s ([TcType s], -- Function argument types - TcType s) -- Function result types + -> TcM s ([TcType], -- Function argument types + TcType) -- Function result types split_fun_ty fun_ty 0 = returnTc ([], fun_ty) @@ -655,89 +867,41 @@ split_fun_ty fun_ty n \end{code} \begin{code} -tcArg :: (RenamedHsExpr, TcType s) -- Actual argument and expected arg type - -> TcM s (TcExpr s, LIE s) -- Resulting argument and LIE +tcArg :: RenamedHsExpr -- The function (for error messages) + -> (RenamedHsExpr, TcType, Int) -- Actual argument and expected arg type + -> TcM s (TcExpr, LIE) -- Resulting argument and LIE -tcArg (arg,expected_arg_ty) - | not (maybeToBool (getForAllTy_maybe expected_arg_ty)) - = -- The ordinary, non-rank-2 polymorphic case +tcArg the_fun (arg, expected_arg_ty, arg_no) + = tcAddErrCtxt (funAppCtxt the_fun arg arg_no) $ tcExpr arg expected_arg_ty - - | otherwise - = -- Ha! The argument type of the function is a for-all type, - -- An example of rank-2 polymorphism. - - -- No need to instantiate the argument type... it's must be the result - -- of instantiating a function involving rank-2 polymorphism, so there - -- isn't any danger of using the same tyvars twice - -- The argument type shouldn't be overloaded type (hence ASSERT) - - -- To ensure that the forall'd type variables don't get unified with each - -- other or any other types, we make fresh *signature* type variables - -- and unify them with the tyvars. - tcInstSigTcType expected_arg_ty `thenNF_Tc` \ (sig_tyvars, sig_rho) -> - let - (sig_theta, sig_tau) = splitRhoTy sig_rho - in - ASSERT( null sig_theta ) -- And expected_tyvars are all DontBind things - - -- Type-check the arg and unify with expected type - tcExpr arg sig_tau `thenTc` \ (arg', lie_arg) -> - - -- Check that the arg_tyvars havn't been constrained - -- The interesting bit here is that we must include the free variables - -- of the expected arg ty. Here's an example: - -- runST (newVar True) - -- Here, if we don't make a check, we'll get a type (ST s (MutVar s Bool)) - -- for (newVar True), with s fresh. Then we unify with the runST's arg type - -- forall s'. ST s' a. That unifies s' with s, and a with MutVar s Bool. - -- So now s' isn't unconstrained because it's linked to a. - -- Conclusion: include the free vars of the expected arg type in the - -- list of "free vars" for the signature check. - - tcAddErrCtxt (rank2ArgCtxt arg expected_arg_ty) ( - tcExtendGlobalTyVars (tyVarsOfType expected_arg_ty) ( - checkSigTyVars sig_tyvars sig_tau - ) `thenTc_` - - -- Check that there's no overloading involved - -- Even if there isn't, there may be some Insts which mention the expected_tyvars, - -- but which, on simplification, don't actually need a dictionary involving - -- the tyvar. So we have to do a proper simplification right here. - tcSimplifyRank2 (mkTyVarSet sig_tyvars) - lie_arg `thenTc` \ (free_insts, inst_binds) -> - - -- This HsLet binds any Insts which came out of the simplification. - -- It's a bit out of place here, but using AbsBind involves inventing - -- a couple of new names which seems worse. - returnTc (TyLam sig_tyvars (HsLet (mk_binds inst_binds) arg'), free_insts) - ) - where - mk_binds inst_binds = MonoBind inst_binds [] nonRecursive \end{code} + %************************************************************************ %* * \subsection{@tcId@ typchecks an identifier occurrence} %* * %************************************************************************ +Between the renamer and the first invocation of the UsageSP inference, +identifiers read from interface files will have usage information in +their types, whereas other identifiers will not. The unannotTy here +in @tcId@ prevents this information from pointlessly propagating +further prior to the first usage inference. + \begin{code} -tcId :: Name -> NF_TcM s (TcExpr s, LIE s, TcType s) +tcId :: Name -> NF_TcM s (TcExpr, LIE, TcType) tcId name = -- Look up the Id and instantiate its type - tcLookupLocalValue name `thenNF_Tc` \ maybe_local -> + tcLookupValueMaybe name `thenNF_Tc` \ maybe_local -> case maybe_local of - Just tc_id -> instantiate_it (TcId tc_id) (idType tc_id) + Just tc_id -> instantiate_it (OccurrenceOf tc_id) (HsVar tc_id) (unannotTy (idType tc_id)) - Nothing -> tcLookupGlobalValue name `thenNF_Tc` \ id -> - tcInstType [] (idType id) `thenNF_Tc` \ inst_ty -> - let - (tyvars, rho) = splitForAllTy inst_ty - in - instantiate_it2 (RealId id) tyvars rho + Nothing -> tcLookupValue name `thenNF_Tc` \ id -> + tcInstId id `thenNF_Tc` \ (tyvars, theta, tau) -> + instantiate_it2 (OccurrenceOf id) (HsVar id) tyvars theta tau where -- The instantiate_it loop runs round instantiating the Id. @@ -746,23 +910,22 @@ tcId name -- f:: forall a. Eq a => forall b. Baz b => tau -- We want to instantiate this to -- f2::tau {f2 = f1 b (Baz b), f1 = f a (Eq a)} - instantiate_it tc_id_occ ty + instantiate_it orig fun ty = tcInstTcType ty `thenNF_Tc` \ (tyvars, rho) -> - instantiate_it2 tc_id_occ tyvars rho + tcSplitRhoTy rho `thenNF_Tc` \ (theta, tau) -> + instantiate_it2 orig fun tyvars theta tau - instantiate_it2 tc_id_occ tyvars rho - = tcSplitRhoTy rho `thenNF_Tc` \ (theta, tau) -> - if null theta then -- Is it overloaded? - returnNF_Tc (mkHsTyApp (HsVar tc_id_occ) arg_tys, emptyLIE, tau) + instantiate_it2 orig fun tyvars theta tau + = if null theta then -- Is it overloaded? + returnNF_Tc (mkHsTyApp fun arg_tys, emptyLIE, tau) else -- Yes, it's overloaded - newMethodWithGivenTy (OccurrenceOf tc_id_occ) - tc_id_occ arg_tys rho `thenNF_Tc` \ (lie1, meth_id) -> - instantiate_it meth_id tau `thenNF_Tc` \ (expr, lie2, final_tau) -> + instOverloadedFun orig fun arg_tys theta tau `thenNF_Tc` \ (fun', lie1) -> + instantiate_it orig fun' tau `thenNF_Tc` \ (expr, lie2, final_tau) -> returnNF_Tc (expr, lie1 `plusLIE` lie2, final_tau) where - arg_tys = mkTyVarTys tyvars + arg_tys = mkTyVarTys tyvars \end{code} %************************************************************************ @@ -777,20 +940,19 @@ tcDoStmts do_or_lc stmts src_loc res_ty -- create type consisting of a fresh monad tyvar ASSERT( not (null stmts) ) tcAddSrcLoc src_loc $ - newTyVarTy (mkArrowKind mkBoxedTypeKind mkBoxedTypeKind) `thenNF_Tc` \ m -> - let - tc_stmts [] = returnTc (([], error "tc_stmts"), emptyLIE) - tc_stmts (stmt:stmts) = tcStmt tcExpr do_or_lc (mkAppTy m) combine_stmts stmt $ - tc_stmts stmts - - combine_stmts stmt@(ReturnStmt _) (Just ty) ([], _) = ([stmt], ty) - combine_stmts stmt@(ExprStmt e _) (Just ty) ([], _) = ([stmt], ty) - combine_stmts stmt _ ([], _) = panic "Bad last stmt tcDoStmts" - combine_stmts stmt _ (stmts, ty) = (stmt:stmts, ty) - in - tc_stmts stmts `thenTc` \ ((stmts', result_ty), final_lie) -> - unifyTauTy result_ty res_ty `thenTc_` + newTyVarTy (mkArrowKind boxedTypeKind boxedTypeKind) `thenNF_Tc` \ m -> + newTyVarTy boxedTypeKind `thenNF_Tc` \ elt_ty -> + unifyTauTy res_ty (mkAppTy m elt_ty) `thenTc_` + + -- If it's a comprehension we're dealing with, + -- force it to be a list comprehension. + -- (as of Haskell 98, monad comprehensions are no more.) + (case do_or_lc of + ListComp -> unifyListTy res_ty `thenTc_` returnTc () + _ -> returnTc ()) `thenTc_` + + tcStmts do_or_lc (mkAppTy m) stmts elt_ty `thenTc` \ (stmts', stmts_lie) -> -- Build the then and zero methods in case we need them -- It's important that "then" and "return" appear just once in the final LIE, @@ -800,108 +962,19 @@ tcDoStmts do_or_lc stmts src_loc res_ty -- then = then -- where the second "then" sees that it already exists in the "available" stuff. -- - tcLookupGlobalValueByKey returnMClassOpKey `thenNF_Tc` \ return_sel_id -> - tcLookupGlobalValueByKey thenMClassOpKey `thenNF_Tc` \ then_sel_id -> - tcLookupGlobalValueByKey zeroClassOpKey `thenNF_Tc` \ zero_sel_id -> - newMethod DoOrigin - (RealId return_sel_id) [m] `thenNF_Tc` \ (return_lie, return_id) -> - newMethod DoOrigin - (RealId then_sel_id) [m] `thenNF_Tc` \ (then_lie, then_id) -> - newMethod DoOrigin - (RealId zero_sel_id) [m] `thenNF_Tc` \ (zero_lie, zero_id) -> + tcLookupValueByKey returnMClassOpKey `thenNF_Tc` \ return_sel_id -> + tcLookupValueByKey thenMClassOpKey `thenNF_Tc` \ then_sel_id -> + tcLookupValueByKey failMClassOpKey `thenNF_Tc` \ fail_sel_id -> + newMethod DoOrigin return_sel_id [m] `thenNF_Tc` \ (return_lie, return_id) -> + newMethod DoOrigin then_sel_id [m] `thenNF_Tc` \ (then_lie, then_id) -> + newMethod DoOrigin fail_sel_id [m] `thenNF_Tc` \ (fail_lie, fail_id) -> let - monad_lie = then_lie `plusLIE` return_lie `plusLIE` perhaps_zero_lie - perhaps_zero_lie | all failure_free stmts' = emptyLIE - | otherwise = zero_lie - - failure_free (BindStmt pat _ _) = failureFreePat pat - failure_free (GuardStmt _ _) = False - failure_free other_stmt = True + monad_lie = then_lie `plusLIE` return_lie `plusLIE` fail_lie in - returnTc (HsDoOut do_or_lc stmts' return_id then_id zero_id res_ty src_loc, - final_lie `plusLIE` monad_lie) - + returnTc (HsDoOut do_or_lc stmts' return_id then_id fail_id res_ty src_loc, + stmts_lie `plusLIE` monad_lie) \end{code} -\begin{code} -tcStmt :: (RenamedHsExpr -> TcType s -> TcM s (TcExpr s, LIE s)) -- This is tcExpr - -- The sole, disgusting, reason for this parameter - -- is to get the effect of polymorphic recursion - -- ToDo: rm when booting with Haskell 1.3 - -> DoOrListComp - -> (TcType s -> TcType s) -- Relationship type of pat and rhs in pat <- rhs - -> (TcStmt s -> Maybe (TcType s) -> thing -> thing) - -> RenamedStmt - -> TcM s (thing, LIE s) - -> TcM s (thing, LIE s) - -tcStmt tc_expr do_or_lc m combine stmt@(ReturnStmt exp) do_next - = ASSERT( case do_or_lc of { DoStmt -> False; ListComp -> True } ) - tcSetErrCtxt (stmtCtxt do_or_lc stmt) ( - newTyVarTy mkTypeKind `thenNF_Tc` \ exp_ty -> - tc_expr exp exp_ty `thenTc` \ (exp', exp_lie) -> - returnTc (ReturnStmt exp', exp_lie, m exp_ty) - ) `thenTc` \ (stmt', stmt_lie, stmt_ty) -> - do_next `thenTc` \ (thing', thing_lie) -> - returnTc (combine stmt' (Just stmt_ty) thing', - stmt_lie `plusLIE` thing_lie) - -tcStmt tc_expr do_or_lc m combine stmt@(GuardStmt exp src_loc) do_next - = ASSERT( case do_or_lc of { DoStmt -> False; ListComp -> True } ) - newTyVarTy mkTypeKind `thenNF_Tc` \ exp_ty -> - tcAddSrcLoc src_loc ( - tcSetErrCtxt (stmtCtxt do_or_lc stmt) ( - tc_expr exp boolTy `thenTc` \ (exp', exp_lie) -> - returnTc (GuardStmt exp' src_loc, exp_lie) - )) `thenTc` \ (stmt', stmt_lie) -> - do_next `thenTc` \ (thing', thing_lie) -> - returnTc (combine stmt' Nothing thing', - stmt_lie `plusLIE` thing_lie) - -tcStmt tc_expr do_or_lc m combine stmt@(ExprStmt exp src_loc) do_next - = ASSERT( case do_or_lc of { DoStmt -> True; ListComp -> False } ) - newTyVarTy mkTypeKind `thenNF_Tc` \ exp_ty -> - tcAddSrcLoc src_loc ( - tcSetErrCtxt (stmtCtxt do_or_lc stmt) ( - newTyVarTy mkTypeKind `thenNF_Tc` \ tau -> - let - -- exp has type (m tau) for some tau (doesn't matter what) - exp_ty = m tau - in - tc_expr exp exp_ty `thenTc` \ (exp', exp_lie) -> - returnTc (ExprStmt exp' src_loc, exp_lie, exp_ty) - )) `thenTc` \ (stmt', stmt_lie, stmt_ty) -> - do_next `thenTc` \ (thing', thing_lie) -> - returnTc (combine stmt' (Just stmt_ty) thing', - stmt_lie `plusLIE` thing_lie) - -tcStmt tc_expr do_or_lc m combine stmt@(BindStmt pat exp src_loc) do_next - = newMonoIds (collectPatBinders pat) mkBoxedTypeKind $ \ _ -> - tcAddSrcLoc src_loc ( - tcSetErrCtxt (stmtCtxt do_or_lc stmt) ( - tcPat pat `thenTc` \ (pat', pat_lie, pat_ty) -> - tc_expr exp (m pat_ty) `thenTc` \ (exp', exp_lie) -> - - -- NB: the environment has been extended with the new binders - -- which the rhs can't "see", but the renamer should have made - -- sure that everything is distinct by now, so there's no problem. - -- Putting the tcExpr before the newMonoIds messes up the nesting - -- of error contexts, so I didn't bother - - returnTc (BindStmt pat' exp' src_loc, pat_lie `plusLIE` exp_lie) - )) `thenTc` \ (stmt', stmt_lie) -> - do_next `thenTc` \ (thing', thing_lie) -> - returnTc (combine stmt' Nothing thing', - stmt_lie `plusLIE` thing_lie) - -tcStmt tc_expr do_or_lc m combine (LetStmt binds) do_next - = tcBindsAndThen -- No error context, but a binding group is - combine' -- rather a large thing for an error context anyway - binds - do_next - where - combine' is_rec binds' thing' = combine (LetStmt (MonoBind binds' [] is_rec)) Nothing thing' -\end{code} %************************************************************************ %* * @@ -933,16 +1006,16 @@ we \begin{code} tcRecordBinds - :: TcType s -- Expected type of whole record + :: TcType -- Expected type of whole record -> RenamedRecordBinds - -> TcM s (TcRecordBinds s, LIE s) + -> TcM s (TcRecordBinds, LIE) tcRecordBinds expected_record_ty rbinds = mapAndUnzipTc do_bind rbinds `thenTc` \ (rbinds', lies) -> returnTc (rbinds', plusLIEs lies) where do_bind (field_label, rhs, pun_flag) - = tcLookupGlobalValue field_label `thenNF_Tc` \ sel_id -> + = tcLookupValue field_label `thenNF_Tc` \ sel_id -> ASSERT( isRecordSelector sel_id ) -- This lookup and assertion will surely succeed, because -- we check that the fields are indeed record selectors @@ -952,14 +1025,14 @@ tcRecordBinds expected_record_ty rbinds -- Record selectors all have type -- forall a1..an. T a1 .. an -> tau - ASSERT( maybeToBool (getFunTy_maybe tau) ) + ASSERT( maybeToBool (splitFunTy_maybe tau) ) let -- Selector must have type RecordType -> FieldType - Just (record_ty, field_ty) = getFunTy_maybe tau + Just (record_ty, field_ty) = splitFunTy_maybe tau in unifyTauTy expected_record_ty record_ty `thenTc_` - tcArg (rhs, field_ty) `thenTc` \ (rhs', lie) -> - returnTc ((RealId sel_id, rhs', pun_flag), lie) + tcPolyExpr rhs field_ty `thenTc` \ (rhs', lie, _, _, _) -> + returnTc ((sel_id, rhs', pun_flag), lie) badFields rbinds data_con = [field_name | (field_name, _, _) <- rbinds, @@ -967,21 +1040,51 @@ badFields rbinds data_con ] where field_names = map fieldLabelName (dataConFieldLabels data_con) + +missingStrictFields rbinds data_con + = [ fn | fn <- strict_field_names, + not (fn `elem` field_names_used) + ] + where + field_names_used = [ field_name | (field_name, _, _) <- rbinds ] + strict_field_names = mapMaybe isStrict field_info + + isStrict (fl, MarkedStrict) = Just (fieldLabelName fl) + isStrict _ = Nothing + + field_info = zip (dataConFieldLabels data_con) + (dataConStrictMarks data_con) + +missingFields rbinds data_con + = [ fn | fn <- non_strict_field_names, not (fn `elem` field_names_used) ] + where + field_names_used = [ field_name | (field_name, _, _) <- rbinds ] + + -- missing strict fields have already been flagged as + -- being so, so leave them out here. + non_strict_field_names = mapMaybe isn'tStrict field_info + + isn'tStrict (fl, MarkedStrict) = Nothing + isn'tStrict (fl, _) = Just (fieldLabelName fl) + + field_info = zip (dataConFieldLabels data_con) + (dataConStrictMarks data_con) + \end{code} %************************************************************************ %* * -\subsection{@tcExprs@ typechecks a {\em list} of expressions} +\subsection{@tcMonoExprs@ typechecks a {\em list} of expressions} %* * %************************************************************************ \begin{code} -tcExprs :: [RenamedHsExpr] -> [TcType s] -> TcM s ([TcExpr s], LIE s) +tcMonoExprs :: [RenamedHsExpr] -> [TcType] -> TcM s ([TcExpr], LIE) -tcExprs [] [] = returnTc ([], emptyLIE) -tcExprs (expr:exprs) (ty:tys) - = tcExpr expr ty `thenTc` \ (expr', lie1) -> - tcExprs exprs tys `thenTc` \ (exprs', lie2) -> +tcMonoExprs [] [] = returnTc ([], emptyLIE) +tcMonoExprs (expr:exprs) (ty:tys) + = tcMonoExpr expr ty `thenTc` \ (expr', lie1) -> + tcMonoExprs exprs tys `thenTc` \ (exprs', lie2) -> returnTc (expr':exprs', lie1 `plusLIE` lie2) \end{code} @@ -993,78 +1096,91 @@ Errors and contexts Mini-utils: \begin{code} -pp_nest_hang :: String -> Doc -> Doc -pp_nest_hang label stuff = nest 2 (hang (text label) 4 stuff) +pp_nest_hang :: String -> SDoc -> SDoc +pp_nest_hang lbl stuff = nest 2 (hang (text lbl) 4 stuff) \end{code} Boring and alphabetical: \begin{code} -arithSeqCtxt expr sty - = hang (ptext SLIT("In an arithmetic sequence:")) 4 (ppr sty expr) +arithSeqCtxt expr + = hang (ptext SLIT("In an arithmetic sequence:")) 4 (ppr expr) -branchCtxt b1 b2 sty - = sep [ptext SLIT("In the branches of a conditional:"), - pp_nest_hang "`then' branch:" (ppr sty b1), - pp_nest_hang "`else' branch:" (ppr sty b2)] +caseCtxt expr + = hang (ptext SLIT("In the case expression:")) 4 (ppr expr) -caseCtxt expr sty - = hang (ptext SLIT("In the case expression")) 4 (ppr sty expr) +caseScrutCtxt expr + = hang (ptext SLIT("In the scrutinee of a case expression:")) 4 (ppr expr) -exprSigCtxt expr sty +exprSigCtxt expr = hang (ptext SLIT("In an expression with a type signature:")) - 4 (ppr sty expr) + 4 (ppr expr) -listCtxt expr sty - = hang (ptext SLIT("In the list element")) 4 (ppr sty expr) +listCtxt expr + = hang (ptext SLIT("In the list element:")) 4 (ppr expr) -predCtxt expr sty - = hang (ptext SLIT("In the predicate expression")) 4 (ppr sty expr) +predCtxt expr + = hang (ptext SLIT("In the predicate expression:")) 4 (ppr expr) -sectionRAppCtxt expr sty - = hang (ptext SLIT("In the right section")) 4 (ppr sty expr) +sectionRAppCtxt expr + = hang (ptext SLIT("In the right section:")) 4 (ppr expr) -sectionLAppCtxt expr sty - = hang (ptext SLIT("In the left section")) 4 (ppr sty expr) +sectionLAppCtxt expr + = hang (ptext SLIT("In the left section:")) 4 (ppr expr) -funAppCtxt fun arg_no arg sty +funAppCtxt fun arg arg_no = hang (hsep [ ptext SLIT("In the"), speakNth arg_no, ptext SLIT("argument of"), - ppr sty fun <> text ", namely"]) - 4 (ppr sty arg) - -stmtCtxt ListComp stmt sty - = hang (ptext SLIT("In a pattern guard/list-comprehension qualifier:")) - 4 (ppr sty stmt) - -stmtCtxt DoStmt stmt sty - = hang (ptext SLIT("In a do statement:")) - 4 (ppr sty stmt) + quotes (ppr fun) <> text ", namely"]) + 4 (quotes (ppr arg)) + +wrongArgsCtxt too_many_or_few fun args + = hang (ptext SLIT("Probable cause:") <+> quotes (ppr fun) + <+> ptext SLIT("is applied to") <+> text too_many_or_few + <+> ptext SLIT("arguments in the call")) + 4 (parens (ppr the_app)) + where + the_app = foldl HsApp fun args -- Used in error messages -tooManyArgsCtxt f sty - = hang (ptext SLIT("Too many arguments in an application of the function")) - 4 (ppr sty f) +appCtxt fun args + = ptext SLIT("In the application") <+> quotes (ppr the_app) + where + the_app = foldl HsApp fun args -- Used in error messages -lurkingRank2Err fun fun_ty sty - = hang (hsep [ptext SLIT("Illegal use of"), ppr sty fun]) - 4 (vcat [text "It is applied to too few arguments,", - ptext SLIT("so that the result type has for-alls in it")]) +lurkingRank2Err fun fun_ty + = hang (hsep [ptext SLIT("Illegal use of"), quotes (ppr fun)]) + 4 (vcat [ptext SLIT("It is applied to too few arguments"), + ptext SLIT("so that the result type has for-alls in it")]) -rank2ArgCtxt arg expected_arg_ty sty - = hang (ptext SLIT("In a polymorphic function argument:")) - 4 (sep [(<>) (ppr sty arg) (ptext SLIT(" ::")), - ppr sty expected_arg_ty]) +rank2ArgCtxt arg expected_arg_ty + = ptext SLIT("In a polymorphic function argument:") <+> ppr arg -badFieldsUpd rbinds sty +badFieldsUpd rbinds = hang (ptext SLIT("No constructor has all these fields:")) - 4 (interpp'SP sty fields) + 4 (pprQuotedList fields) where fields = [field | (field, _, _) <- rbinds] -recordUpdCtxt sty = ptext SLIT("In a record update construct") +recordUpdCtxt expr = ptext SLIT("In the record update:") <+> ppr expr +recordConCtxt expr = ptext SLIT("In the record construction:") <+> ppr expr + +notSelector field + = hsep [quotes (ppr field), ptext SLIT("is not a record selector")] + +illegalCcallTyErr isArg ty + = hang (hsep [ptext SLIT("Unacceptable"), arg_or_res, ptext SLIT("type in _ccall_ or _casm_:")]) + 4 (hsep [ppr ty]) + where + arg_or_res + | isArg = ptext SLIT("argument") + | otherwise = ptext SLIT("result") + -badFieldsCon con fields sty - = hsep [ptext SLIT("Constructor"), ppr sty con, - ptext SLIT("does not have field(s)"), interpp'SP sty fields] +missingStrictFieldCon :: Name -> Name -> SDoc +missingStrictFieldCon con field + = hsep [ptext SLIT("Constructor") <+> quotes (ppr con), + ptext SLIT("does not have the required strict field"), quotes (ppr field)] -notSelector field sty - = hsep [ppr sty field, ptext SLIT("is not a record selector")] +missingFieldCon :: Name -> Name -> SDoc +missingFieldCon con field + = hsep [ptext SLIT("Field") <+> quotes (ppr field), + ptext SLIT("is not initialised")] \end{code}