X-Git-Url: http://git.megacz.com/?a=blobdiff_plain;f=ghc%2Fcompiler%2Ftypecheck%2FTcMatches.lhs;h=91d5aefff85b9dfb4cf9f85095cf13faa4c597a1;hb=8133c305d14d748d7720272b1eaa67847d00e241;hp=69af3b29d0dc6bcbaadef3dc503ebcf5a5d96448;hpb=9dd6e1c216993624a2cd74b62ca0f0569c02c26b;p=ghc-hetmet.git diff --git a/ghc/compiler/typecheck/TcMatches.lhs b/ghc/compiler/typecheck/TcMatches.lhs index 69af3b2..91d5aef 100644 --- a/ghc/compiler/typecheck/TcMatches.lhs +++ b/ghc/compiler/typecheck/TcMatches.lhs @@ -1,191 +1,556 @@ % -% (c) The GRASP/AQUA Project, Glasgow University, 1992-1994 +% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 % \section[TcMatches]{Typecheck some @Matches@} \begin{code} -module TcMatches ( tcMatchesFun, tcMatchesCase, tcMatchExpected ) where +module TcMatches ( tcMatchesFun, tcMatchesCase, tcMatchLambda, + tcDoStmts, tcStmtsAndThen, tcGRHSs + ) where #include "HsVersions.h" -import {-# SOURCE #-} TcGRHSs ( tcGRHSsAndBinds ) +import {-# SOURCE #-} TcExpr( tcMonoExpr ) -import HsSyn ( HsBinds(..), Match(..), GRHSsAndBinds(..), GRHS(..), - HsExpr(..), MonoBinds(..), - collectPatBinders, pprMatch, getMatchLoc +import HsSyn ( HsExpr(..), HsBinds(..), Match(..), GRHSs(..), GRHS(..), + MonoBinds(..), Stmt(..), HsMatchContext(..), HsStmtContext(..), + pprMatch, getMatchLoc, isDoExpr, + pprMatchContext, pprStmtContext, pprStmtResultContext, + mkMonoBind, nullMonoBinds, collectSigTysFromPats, andMonoBindList ) -import RnHsSyn ( RenamedMatch ) -import TcHsSyn ( TcIdBndr, TcMatch ) - -import TcMonad -import Inst ( Inst, LIE, plusLIE ) -import TcEnv ( TcIdOcc(..), newMonoIds ) -import TcPat ( tcPat ) -import TcType ( TcType, TcMaybe, zonkTcType ) -import TcSimplify ( bindInstsOfLocalFuns ) -import Unify ( unifyTauTy, unifyTauTyList, unifyFunTy ) -import Name ( Name {- instance Outputable -} ) - -import Kind ( Kind, mkTypeKind ) +import RnHsSyn ( RenamedMatch, RenamedGRHSs, RenamedStmt, + RenamedPat, RenamedMatchContext ) +import TcHsSyn ( TcMatch, TcGRHSs, TcStmt, TcDictBinds, + TcMonoBinds, TcPat, TcStmt ) + +import TcRnMonad +import TcMonoType ( tcAddScopedTyVars, tcHsSigType, UserTypeCtxt(..) ) +import Inst ( tcSyntaxName ) +import TcEnv ( TcId, tcLookupLocalIds, tcExtendLocalValEnv, tcExtendLocalValEnv2 ) +import TcPat ( tcPat, tcMonoPatBndr ) +import TcMType ( newTyVarTy, newTyVarTys, zonkTcType, zapToType ) +import TcType ( TcType, TcTyVar, tyVarsOfType, tidyOpenTypes, tidyOpenType, + mkFunTy, isOverloadedTy, liftedTypeKind, openTypeKind, + mkArrowKind, mkAppTy ) +import TcBinds ( tcBindsAndThen ) +import TcUnify ( unifyPArrTy,subFunTy, unifyListTy, unifyTauTy, + checkSigTyVarsWrt, tcSubExp, isIdCoercion, (<$>), unifyTauTyLists ) +import TcSimplify ( tcSimplifyCheck, bindInstsOfLocalFuns ) +import Name ( Name ) +import PrelNames ( monadNames, mfixName ) +import TysWiredIn ( boolTy, mkListTy, mkPArrTy ) +import Id ( idType, mkSysLocal, mkLocalId ) +import CoreFVs ( idFreeTyVars ) import BasicTypes ( RecFlag(..) ) -import Type ( isTyVarTy, isTauTy, mkFunTy, splitFunTy_maybe ) -import Util +import VarSet +import Var ( Id ) +import Bag +import Util ( isSingleton, lengthExceeds, notNull, zipEqual ) import Outputable -import SrcLoc (SrcLoc) + +import List ( nub ) \end{code} +%************************************************************************ +%* * +\subsection{tcMatchesFun, tcMatchesCase} +%* * +%************************************************************************ + @tcMatchesFun@ typechecks a @[Match]@ list which occurs in a @FunMonoBind@. The second argument is the name of the function, which is used in error messages. It checks that all the equations have the same number of arguments before using @tcMatches@ to do the work. \begin{code} -tcMatchesFun :: Name - -> TcType s -- Expected type +tcMatchesFun :: [(Name,Id)] -- Bindings for the variables bound in this group + -> Name + -> TcType -- Expected type -> [RenamedMatch] - -> TcM s ([TcMatch s], LIE s) + -> TcM [TcMatch] -tcMatchesFun fun_name expected_ty matches@(first_match:_) - = -- Set the location to that of the first equation, so that +tcMatchesFun xve fun_name expected_ty matches@(first_match:_) + = -- Check that they all have the same no of arguments + -- Set the location to that of the first equation, so that -- any inter-equation error messages get some vaguely -- sensible location. Note: we have to do this odd -- ann-grabbing, because we don't always have annotations in -- hand when we call tcMatchesFun... - - tcAddSrcLoc (getMatchLoc first_match) ( - - -- Check that they all have the same no of arguments - checkTc (all_same (noOfArgs matches)) - (varyingArgsErr fun_name matches) `thenTc_` + addSrcLoc (getMatchLoc first_match) ( + checkTc (sameNoOfArgs matches) + (varyingArgsErr fun_name matches) + ) `thenM_` -- ToDo: Don't use "expected" stuff if there ain't a type signature -- because inconsistency between branches -- may show up as something wrong with the (non-existent) type signature - -- We need to substitute so that we can see as much about the type as possible - zonkTcType expected_ty `thenNF_Tc` \ expected_ty' -> - tcMatchesExpected expected_ty' (MFun fun_name) matches - - ) - where - all_same :: [Int] -> Bool - all_same [] = True -- Should never happen (ToDo: panic?) - all_same [x] = True - all_same (x:xs) = all ((==) x) xs + -- No need to zonk expected_ty, because subFunTy does that on the fly + tcMatches xve (FunRhs fun_name) matches expected_ty \end{code} @tcMatchesCase@ doesn't do the argument-count check because the parser guarantees that each equation has exactly one argument. \begin{code} -tcMatchesCase :: TcType s -> [RenamedMatch] -> TcM s ([TcMatch s], LIE s) -tcMatchesCase expected_ty matches = tcMatchesExpected expected_ty MCase matches +tcMatchesCase :: [RenamedMatch] -- The case alternatives + -> TcType -- Type of whole case expressions + -> TcM (TcType, -- Inferred type of the scrutinee + [TcMatch]) -- Translated alternatives + +tcMatchesCase matches expr_ty + = newTyVarTy openTypeKind `thenM` \ scrut_ty -> + tcMatches [] CaseAlt matches (mkFunTy scrut_ty expr_ty) `thenM` \ matches' -> + returnM (scrut_ty, matches') + +tcMatchLambda :: RenamedMatch -> TcType -> TcM TcMatch +tcMatchLambda match res_ty = tcMatch [] LambdaExpr match res_ty \end{code} \begin{code} -data FunOrCase = MCase | MFun Name -- Records whether doing fun or case rhss; - -- used to produced better error messages - -tcMatchesExpected :: TcType s - -> FunOrCase - -> [RenamedMatch] - -> TcM s ([TcMatch s], LIE s) - -tcMatchesExpected expected_ty fun_or_case [match] - = tcAddSrcLoc (getMatchLoc match) $ - tcAddErrCtxt (matchCtxt fun_or_case match) $ - tcMatchExpected [] expected_ty match `thenTc` \ (match', lie) -> - returnTc ([match'], lie) - -tcMatchesExpected expected_ty fun_or_case (match1 : matches) - = tcAddSrcLoc (getMatchLoc match1) ( - tcAddErrCtxt (matchCtxt fun_or_case match1) $ - tcMatchExpected [] expected_ty match1 - ) `thenTc` \ (match1', lie1) -> - tcMatchesExpected expected_ty fun_or_case matches `thenTc` \ (matches', lie2) -> - returnTc (match1' : matches', plusLIE lie1 lie2) +tcMatches :: [(Name,Id)] + -> RenamedMatchContext + -> [RenamedMatch] + -> TcType + -> TcM [TcMatch] + +tcMatches xve ctxt matches expected_ty + = -- If there is more than one branch, and expected_ty is a 'hole', + -- all branches must be types, not type schemes, otherwise the + -- in which we check them would affect the result. + (if lengthExceeds matches 1 then + zapToType expected_ty + else + returnM expected_ty) `thenM` \ expected_ty' -> + + mappM (tc_match expected_ty') matches + where + tc_match expected_ty match = tcMatch xve ctxt match expected_ty \end{code} + +%************************************************************************ +%* * +\subsection{tcMatch} +%* * +%************************************************************************ + \begin{code} -tcMatchExpected - :: [TcIdBndr s] -- Ids bound by enclosing matches - -> TcType s -- This gives the expected - -- result-type of the Match. Early unification - -- with this guy gives better error messages +tcMatch :: [(Name,Id)] + -> RenamedMatchContext -> RenamedMatch - -> TcM s (TcMatch s,LIE s) -- NB No type returned, because it was passed - -- in instead! + -> TcType -- Expected result-type of the Match. + -- Early unification with this guy gives better error messages + -- We regard the Match as having type + -- (ty1 -> ... -> tyn -> result_ty) + -- where there are n patterns. + -> TcM TcMatch + +tcMatch xve1 ctxt match@(Match pats maybe_rhs_sig grhss) expected_ty + = addSrcLoc (getMatchLoc match) $ -- At one stage I removed this; + addErrCtxt (matchCtxt ctxt match) $ -- I'm not sure why, so I put it back + tcMatchPats pats expected_ty tc_grhss `thenM` \ (pats', grhss', ex_binds) -> + returnM (Match pats' Nothing (glue_on Recursive ex_binds grhss')) + + where + tc_grhss rhs_ty + = tcExtendLocalValEnv2 xve1 $ + + -- Deal with the result signature + case maybe_rhs_sig of + Nothing -> tcGRHSs ctxt grhss rhs_ty + + Just sig -> tcAddScopedTyVars [sig] $ + -- Bring into scope the type variables in the signature + tcHsSigType ResSigCtxt sig `thenM` \ sig_ty -> + tcGRHSs ctxt grhss sig_ty `thenM` \ grhss' -> + tcSubExp rhs_ty sig_ty `thenM` \ co_fn -> + returnM (lift_grhss co_fn rhs_ty grhss') + +-- lift_grhss pushes the coercion down to the right hand sides, +-- because there is no convenient place to hang it otherwise. +lift_grhss co_fn rhs_ty grhss + | isIdCoercion co_fn = grhss +lift_grhss co_fn rhs_ty (GRHSs grhss binds ty) + = GRHSs (map lift_grhs grhss) binds rhs_ty -- Change the type, since we + where + lift_grhs (GRHS stmts loc) = GRHS (map lift_stmt stmts) loc + + lift_stmt (ResultStmt e l) = ResultStmt (co_fn <$> e) l + lift_stmt stmt = stmt + +-- glue_on just avoids stupid dross +glue_on _ EmptyMonoBinds grhss = grhss -- The common case +glue_on is_rec mbinds (GRHSs grhss binds ty) + = GRHSs grhss (mkMonoBind mbinds [] is_rec `ThenBinds` binds) ty + + +tcGRHSs :: RenamedMatchContext -> RenamedGRHSs + -> TcType + -> TcM TcGRHSs + +tcGRHSs ctxt (GRHSs grhss binds _) expected_ty + = tcBindsAndThen glue_on binds (tc_grhss grhss) + where + m_ty = (\ty -> ty, expected_ty) -tcMatchExpected matched_ids expected_ty the_match@(PatMatch pat match) - = unifyFunTy expected_ty `thenTc` \ (arg_ty, rest_ty) -> + tc_grhss grhss + = mappM tc_grhs grhss `thenM` \ grhss' -> + returnM (GRHSs grhss' EmptyBinds expected_ty) - let binders = collectPatBinders pat - in - newMonoIds binders mkTypeKind (\ mono_ids -> - tcPat pat `thenTc` \ (pat', lie_pat, pat_ty) -> - unifyTauTy pat_ty arg_ty `thenTc_` + tc_grhs (GRHS guarded locn) + = addSrcLoc locn $ + tcStmts (PatGuard ctxt) m_ty guarded `thenM` \ guarded' -> + returnM (GRHS guarded' locn) +\end{code} - tcMatchExpected (mono_ids ++ matched_ids) - rest_ty match `thenTc` \ (match', lie_match) -> - returnTc (PatMatch pat' match', - plusLIE lie_pat lie_match) +%************************************************************************ +%* * +\subsection{tcMatchPats} +%* * +%************************************************************************ + +\begin{code} +tcMatchPats + :: [RenamedPat] -> TcType + -> (TcType -> TcM a) + -> TcM ([TcPat], a, TcDictBinds) +-- Typecheck the patterns, extend the environment to bind the variables, +-- do the thing inside, use any existentially-bound dictionaries to +-- discharge parts of the returning LIE, and deal with pattern type +-- signatures + +tcMatchPats pats expected_ty thing_inside + = -- STEP 1: Bring pattern-signature type variables into scope + tcAddScopedTyVars (collectSigTysFromPats pats) ( + + -- STEP 2: Typecheck the patterns themselves, gathering all the stuff + -- then do the thing inside + getLIE (tc_match_pats pats expected_ty thing_inside) + + ) `thenM` \ ((pats', ex_tvs, ex_ids, ex_lie, result), lie_req) -> + + -- STEP 4: Check for existentially bound type variables + -- Do this *outside* the scope of the tcAddScopedTyVars, else checkSigTyVars + -- complains that 'a' is captured by the inscope 'a'! (Test (d) in checkSigTyVars.) + -- + -- I'm a bit concerned that lie_req1 from an 'inner' pattern in the list + -- might need (via lie_req2) something made available from an 'outer' + -- pattern. But it's inconvenient to deal with, and I can't find an example + tcCheckExistentialPat ex_tvs ex_ids ex_lie lie_req expected_ty `thenM` \ ex_binds -> + -- NB: we *must* pass "expected_ty" not "result_ty" to tcCheckExistentialPat + -- For example, we must reject this program: + -- data C = forall a. C (a -> Int) + -- f (C g) x = g x + -- Here, result_ty will be simply Int, but expected_ty is (a -> Int). + + returnM (pats', result, ex_binds) + +tc_match_pats [] expected_ty thing_inside + = thing_inside expected_ty `thenM` \ answer -> + returnM ([], emptyBag, [], [], answer) + +tc_match_pats (pat:pats) expected_ty thing_inside + = subFunTy expected_ty $ \ arg_ty rest_ty -> + -- This is the unique place we call subFunTy + -- The point is that if expected_y is a "hole", we want + -- to make arg_ty and rest_ty as "holes" too. + tcPat tcMonoPatBndr pat arg_ty `thenM` \ (pat', ex_tvs, pat_bndrs, ex_lie) -> + let + xve = bagToList pat_bndrs + ex_ids = [id | (_, id) <- xve] + -- ex_ids is all the pattern-bound Ids, a superset + -- of the existential Ids used in checkExistentialPat + in + tcExtendLocalValEnv2 xve $ + tc_match_pats pats rest_ty thing_inside `thenM` \ (pats', exs_tvs, exs_ids, exs_lie, answer) -> + returnM ( pat':pats', + ex_tvs `unionBags` exs_tvs, + ex_ids ++ exs_ids, + ex_lie ++ exs_lie, + answer ) -tcMatchExpected matched_ids expected_ty (GRHSMatch grhss_and_binds) - = -- Check that the remaining "expected type" is not a rank-2 type - -- If it is it'll mess up the unifier when checking the RHS - checkTc (isTauTy expected_ty) - lurkingRank2SigErr `thenTc_` - tcGRHSsAndBinds expected_ty grhss_and_binds `thenTc` \ (GRHSsAndBindsOut grhss binds ty, lie) -> +tcCheckExistentialPat :: Bag TcTyVar -- Existentially quantified tyvars bound by pattern + -> [TcId] -- Ids bound by this pattern; used + -- (a) by bindsInstsOfLocalFuns + -- (b) to generate helpful error messages + -> [Inst] -- and context + -> [Inst] -- Required context + -> TcType -- and type of the Match; vars in here must not escape + -> TcM TcDictBinds -- LIE to float out and dict bindings +tcCheckExistentialPat ex_tvs ex_ids ex_lie lie_req match_ty + | isEmptyBag ex_tvs && all not_overloaded ex_ids + -- Short cut for case when there are no existentials + -- and no polymorphic overloaded variables + -- e.g. f :: (forall a. Ord a => a -> a) -> Int -> Int + -- f op x = .... + -- Here we must discharge op Methods + = ASSERT( null ex_lie ) + extendLIEs lie_req `thenM_` + returnM EmptyMonoBinds + + | otherwise + = addErrCtxtM (sigPatCtxt tv_list ex_ids match_ty) $ -- In case there are any polymorpic, overloaded binders in the pattern -- (which can happen in the case of rank-2 type signatures, or data constructors -- with polymorphic arguments), we must do a bindInstsOfLocalFns here - bindInstsOfLocalFuns lie matched_ids `thenTc` \ (lie', inst_mbinds) -> - let - binds' = case inst_mbinds of - EmptyMonoBinds -> binds -- The common case - other -> MonoBind inst_mbinds [] Recursive `ThenBinds` binds - in - returnTc (GRHSMatch (GRHSsAndBindsOut grhss binds' ty), lie') + getLIE (bindInstsOfLocalFuns lie_req ex_ids) `thenM` \ (inst_binds, lie) -> + + -- Deal with overloaded functions bound by the pattern + tcSimplifyCheck doc tv_list ex_lie lie `thenM` \ dict_binds -> + checkSigTyVarsWrt (tyVarsOfType match_ty) tv_list `thenM_` + + returnM (dict_binds `AndMonoBinds` inst_binds) + where + doc = text ("existential context of a data constructor") + tv_list = bagToList ex_tvs + not_overloaded id = not (isOverloadedTy (idType id)) \end{code} -@noOfArgs@ takes a @[RenamedMatch]@ and returns a list telling how -many arguments were used in each of the equations. This is used to -report a sensible error message when different equations have -different numbers of arguments. +%************************************************************************ +%* * +\subsection{@tcDoStmts@ typechecks a {\em list} of do statements} +%* * +%************************************************************************ \begin{code} -noOfArgs :: [RenamedMatch] -> [Int] - -noOfArgs ms = map args_in_match ms +tcDoStmts :: HsStmtContext Name -> [RenamedStmt] -> [Name] -> TcType + -> TcM (TcMonoBinds, [TcStmt], [Id]) +tcDoStmts PArrComp stmts method_names res_ty + = unifyPArrTy res_ty `thenM` \elt_ty -> + tcStmts PArrComp (mkPArrTy, elt_ty) stmts `thenM` \ stmts' -> + returnM (EmptyMonoBinds, stmts', [{- unused -}]) + +tcDoStmts ListComp stmts method_names res_ty + = unifyListTy res_ty `thenM` \ elt_ty -> + tcStmts ListComp (mkListTy, elt_ty) stmts `thenM` \ stmts' -> + returnM (EmptyMonoBinds, stmts', [{- unused -}]) + +tcDoStmts do_or_mdo_expr stmts method_names res_ty + = newTyVarTy (mkArrowKind liftedTypeKind liftedTypeKind) `thenM` \ m_ty -> + newTyVarTy liftedTypeKind `thenM` \ elt_ty -> + unifyTauTy res_ty (mkAppTy m_ty elt_ty) `thenM_` + + tcStmts do_or_mdo_expr (mkAppTy m_ty, elt_ty) stmts `thenM` \ stmts' -> + + -- Build the then and zero methods in case we need them + -- It's important that "then" and "return" appear just once in the final LIE, + -- not only for typechecker efficiency, but also because otherwise during + -- simplification we end up with silly stuff like + -- then = case d of (t,r) -> t + -- then = then + -- where the second "then" sees that it already exists in the "available" stuff. + -- + mapAndUnzipM (tc_syn_name m_ty) + (zipEqual "tcDoStmts" currentMonadNames method_names) `thenM` \ (binds, ids) -> + returnM (andMonoBindList binds, stmts', ids) where - args_in_match :: RenamedMatch -> Int - args_in_match (GRHSMatch _) = 0 - args_in_match (PatMatch _ match) = 1 + args_in_match match + currentMonadNames = case do_or_mdo_expr of + DoExpr -> monadNames + MDoExpr -> monadNames ++ [mfixName] + tc_syn_name :: TcType -> (Name,Name) -> TcM (TcMonoBinds, Id) + tc_syn_name m_ty (std_nm, usr_nm) + = tcSyntaxName DoOrigin m_ty std_nm usr_nm `thenM` \ (expr, expr_ty) -> + case expr of + HsVar v -> returnM (EmptyMonoBinds, v) + other -> newUnique `thenM` \ uniq -> + let + id = mkSysLocal FSLIT("syn") uniq expr_ty + in + returnM (VarMonoBind id expr, id) \end{code} -Errors and contexts -~~~~~~~~~~~~~~~~~~~ -\begin{code} -matchCtxt MCase match - = hang (ptext SLIT("In a \"case\" branch:")) - 4 (pprMatch True{-is_case-} match) -matchCtxt (MFun fun) match - = hang (hcat [ptext SLIT("In an equation for function "), quotes (ppr fun), char ':']) - 4 (hcat [ppr fun, space, pprMatch False{-not case-} match]) +%************************************************************************ +%* * +\subsection{tcStmts} +%* * +%************************************************************************ + +Typechecking statements is rendered a bit tricky by parallel list comprehensions: + + [ (g x, h x) | ... ; let g v = ... + | ... ; let h v = ... ] + +It's possible that g,h are overloaded, so we need to feed the LIE from the +(g x, h x) up through both lots of bindings (so we get the bindInstsOfLocalFuns). +Similarly if we had an existential pattern match: + + data T = forall a. Show a => C a + + [ (show x, show y) | ... ; C x <- ... + | ... ; C y <- ... ] + +Then we need the LIE from (show x, show y) to be simplified against +the bindings for x and y. + +It's difficult to do this in parallel, so we rely on the renamer to +ensure that g,h and x,y don't duplicate, and simply grow the environment. +So the binders of the first parallel group will be in scope in the second +group. But that's fine; there's no shadowing to worry about. + +\begin{code} +tcStmts do_or_lc m_ty stmts + = ASSERT( notNull stmts ) + tcStmtsAndThen (:) do_or_lc m_ty stmts (returnM []) + +tcStmtsAndThen + :: (TcStmt -> thing -> thing) -- Combiner + -> HsStmtContext Name + -> (TcType -> TcType, TcType) -- m, the relationship type of pat and rhs in pat <- rhs + -- elt_ty, where type of the comprehension is (m elt_ty) + -> [RenamedStmt] + -> TcM thing + -> TcM thing + + -- Base case +tcStmtsAndThen combine do_or_lc m_ty [] do_next + = do_next + +tcStmtsAndThen combine do_or_lc m_ty (stmt:stmts) do_next + = tcStmtAndThen combine do_or_lc m_ty stmt + (tcStmtsAndThen combine do_or_lc m_ty stmts do_next) + + -- LetStmt +tcStmtAndThen combine do_or_lc m_ty (LetStmt binds) thing_inside + = tcBindsAndThen -- No error context, but a binding group is + (glue_binds combine) -- rather a large thing for an error context anyway + binds + thing_inside + +tcStmtAndThen combine do_or_lc m_ty@(m,elt_ty) stmt@(BindStmt pat exp src_loc) thing_inside + = addSrcLoc src_loc $ + addErrCtxt (stmtCtxt do_or_lc stmt) $ + newTyVarTy liftedTypeKind `thenM` \ pat_ty -> + tcMonoExpr exp (m pat_ty) `thenM` \ exp' -> + tcMatchPats [pat] (mkFunTy pat_ty (m elt_ty)) (\ _ -> + popErrCtxt thing_inside + ) `thenM` \ ([pat'], thing, dict_binds) -> + returnM (combine (BindStmt pat' exp' src_loc) + (glue_binds combine Recursive dict_binds thing)) + + -- ParStmt +tcStmtAndThen combine do_or_lc m_ty (ParStmtOut bndr_stmts_s) thing_inside + = loop bndr_stmts_s `thenM` \ (pairs', thing) -> + returnM (combine (ParStmtOut pairs') thing) + where + loop [] + = thing_inside `thenM` \ thing -> + returnM ([], thing) + + loop ((bndrs,stmts) : pairs) + = tcStmtsAndThen + combine_par ListComp m_ty stmts + -- Notice we pass on m_ty; the result type is used only + -- to get escaping type variables for checkExistentialPat + (tcLookupLocalIds bndrs `thenM` \ bndrs' -> + loop pairs `thenM` \ (pairs', thing) -> + returnM ([], (bndrs', pairs', thing))) `thenM` \ (stmts', (bndrs', pairs', thing)) -> + + returnM ((bndrs',stmts') : pairs', thing) + + combine_par stmt (stmts, thing) = (stmt:stmts, thing) + + -- RecStmt +tcStmtAndThen combine do_or_lc m_ty (RecStmt recNames stmts) thing_inside + = newTyVarTys (length recNames) liftedTypeKind `thenM` \ recTys -> + tcExtendLocalValEnv (zipWith mkLocalId recNames recTys) $ + tcStmtsAndThen combine_rec do_or_lc m_ty stmts ( + tcLookupLocalIds recNames `thenM` \ rn -> + returnM ([], rn) + ) `thenM` \ (stmts', recNames') -> + + -- Unify the types of the "final" Ids with those of "knot-tied" Ids + unifyTauTyLists recTys (map idType recNames') `thenM_` + + thing_inside `thenM` \ thing -> + + returnM (combine (RecStmt recNames' stmts') thing) + where + combine_rec stmt (stmts, thing) = (stmt:stmts, thing) + + -- ExprStmt +tcStmtAndThen combine do_or_lc m_ty@(m, res_elt_ty) stmt@(ExprStmt exp _ locn) thing_inside + = addErrCtxt (stmtCtxt do_or_lc stmt) ( + if isDoExpr do_or_lc then + newTyVarTy openTypeKind `thenM` \ any_ty -> + tcMonoExpr exp (m any_ty) `thenM` \ exp' -> + returnM (ExprStmt exp' any_ty locn) + else + tcMonoExpr exp boolTy `thenM` \ exp' -> + returnM (ExprStmt exp' boolTy locn) + ) `thenM` \ stmt' -> + + thing_inside `thenM` \ thing -> + returnM (combine stmt' thing) + + + -- Result statements +tcStmtAndThen combine do_or_lc m_ty@(m, res_elt_ty) stmt@(ResultStmt exp locn) thing_inside + = addErrCtxt (resCtxt do_or_lc stmt) ( + if isDoExpr do_or_lc then + tcMonoExpr exp (m res_elt_ty) + else + tcMonoExpr exp res_elt_ty + ) `thenM` \ exp' -> + + thing_inside `thenM` \ thing -> + + returnM (combine (ResultStmt exp' locn) thing) + + +------------------------------ +glue_binds combine is_rec binds thing + | nullMonoBinds binds = thing + | otherwise = combine (LetStmt (mkMonoBind binds [] is_rec)) thing \end{code} +%************************************************************************ +%* * +\subsection{Errors and contexts} +%* * +%************************************************************************ + +@sameNoOfArgs@ takes a @[RenamedMatch]@ and decides whether the same +number of args are used in each equation. + +\begin{code} +sameNoOfArgs :: [RenamedMatch] -> Bool +sameNoOfArgs matches = isSingleton (nub (map args_in_match matches)) + where + args_in_match :: RenamedMatch -> Int + args_in_match (Match pats _ _) = length pats +\end{code} + \begin{code} varyingArgsErr name matches = sep [ptext SLIT("Varying number of arguments for function"), quotes (ppr name)] -lurkingRank2SigErr - = ptext SLIT("Too few explicit arguments when defining a function with a rank-2 type") +matchCtxt ctxt match = hang (ptext SLIT("In") <+> pprMatchContext ctxt <> colon) 4 (pprMatch ctxt match) +stmtCtxt do_or_lc stmt = hang (ptext SLIT("In") <+> pprStmtContext do_or_lc <> colon) 4 (ppr stmt) +resCtxt do_or_lc stmt = hang (ptext SLIT("In") <+> pprStmtResultContext do_or_lc <> colon) 4 (ppr stmt) + +sigPatCtxt bound_tvs bound_ids match_ty tidy_env + = zonkTcType match_ty `thenM` \ match_ty' -> + let + (env1, tidy_tys) = tidyOpenTypes tidy_env (map idType show_ids) + (env2, tidy_mty) = tidyOpenType env1 match_ty' + in + returnM (env1, + sep [ptext SLIT("When checking an existential match that binds"), + nest 4 (vcat (zipWith ppr_id show_ids tidy_tys)), + ptext SLIT("and whose type is") <+> ppr tidy_mty]) + where + show_ids = filter is_interesting bound_ids + is_interesting id = any (`elemVarSet` idFreeTyVars id) bound_tvs + + ppr_id id ty = ppr id <+> dcolon <+> ppr ty + -- Don't zonk the types so we get the separate, un-unified versions \end{code}