X-Git-Url: http://git.megacz.com/?a=blobdiff_plain;f=ghc%2Fcompiler%2Ftypecheck%2FTcSimplify.lhs;h=d4617b2e778b405cda08e911ffd4c028e0103abb;hb=9c848a68f7b05aa352cd97d9a75488d20a774736;hp=1bf752ce79f9b29a035060e797d72ecabc4a5336;hpb=438596897ebbe25a07e1c82085cfbc5bdb00f09e;p=ghc-hetmet.git diff --git a/ghc/compiler/typecheck/TcSimplify.lhs b/ghc/compiler/typecheck/TcSimplify.lhs index 1bf752c..d4617b2 100644 --- a/ghc/compiler/typecheck/TcSimplify.lhs +++ b/ghc/compiler/typecheck/TcSimplify.lhs @@ -3,291 +3,689 @@ % \section[TcSimplify]{TcSimplify} -Notes: -Inference (local definitions) -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -If the inst constrains a local type variable, then - [ReduceMe] if it's a literal or method inst, reduce it - [DontReduce] otherwise see whether the inst is just a constant - if succeed, use it - if not, add original to context - This check gets rid of constant dictionaries without - losing sharing. +\begin{code} +module TcSimplify ( + tcSimplifyInfer, tcSimplifyInferCheck, tcSimplifyCheck, + tcSimplifyToDicts, tcSimplifyIPs, tcSimplifyTop, + tcSimplifyThetas, tcSimplifyCheckThetas, + bindInstsOfLocalFuns + ) where -If the inst does not constrain a local type variable then - [Free] then throw it out as free. +#include "HsVersions.h" -Inference (top level definitions) -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -If the inst does not constrain a local type variable, then - [FreeIfTautological] try for tautology; - if so, throw it out as free - (discarding result of tautology check) - if not, make original inst part of the context - (eliminating superclasses as usual) +import HsSyn ( MonoBinds(..), HsExpr(..), andMonoBinds, andMonoBindList ) +import TcHsSyn ( TcExpr, TcId, + TcMonoBinds, TcDictBinds + ) -If the inst constrains a local type variable, then - as for inference (local defns) +import TcMonad +import Inst ( lookupInst, lookupSimpleInst, LookupInstResult(..), + tyVarsOfInst, predsOfInsts, + isDict, isClassDict, + isStdClassTyVarDict, isMethodFor, + instToId, tyVarsOfInsts, + instBindingRequired, instCanBeGeneralised, + newDictsFromOld, instMentionsIPs, + getDictClassTys, getIPs, isTyVarDict, + instLoc, pprInst, zonkInst, tidyInst, tidyInsts, + Inst, LIE, pprInsts, pprInstsInFull, + mkLIE, + lieToList + ) +import TcEnv ( tcGetGlobalTyVars, tcGetInstEnv ) +import InstEnv ( lookupInstEnv, classInstEnv, InstLookupResult(..) ) +import TcType ( zonkTcTyVarsAndFV ) +import TcUnify ( unifyTauTy ) +import Id ( idType ) +import Name ( Name ) +import NameSet ( mkNameSet ) +import Class ( Class, classBigSig ) +import FunDeps ( oclose, grow, improve ) +import PrelInfo ( isNumericClass, isCreturnableClass, isCcallishClass ) + +import Type ( Type, ClassContext, + mkTyVarTy, getTyVar, + isTyVarTy, splitSigmaTy, tyVarsOfTypes + ) +import Subst ( mkTopTyVarSubst, substClasses ) +import PprType ( pprClassPred ) +import TysWiredIn ( unitTy ) +import VarSet +import FiniteMap +import Outputable +import ListSetOps ( equivClasses ) +import Util ( zipEqual, mapAccumL ) +import List ( partition ) +import CmdLineOpts +\end{code} -Checking (local defns) -~~~~~~~~ -If the inst constrains a local type variable then - [ReduceMe] reduce (signal error on failure) -If the inst does not constrain a local type variable then - [Free] throw it out as free. +%************************************************************************ +%* * +\subsection{NOTES} +%* * +%************************************************************************ -Checking (top level) -~~~~~~~~~~~~~~~~~~~~ -If the inst constrains a local type variable then - as for checking (local defns) + -------------------------------------- + Notes on quantification + -------------------------------------- -If the inst does not constrain a local type variable then - as for checking (local defns) +Suppose we are about to do a generalisation step. +We have in our hand + G the environment + T the type of the RHS + C the constraints from that RHS +The game is to figure out -Checking once per module -~~~~~~~~~~~~~~~~~~~~~~~~~ -For dicts of the form (C a), where C is a std class - and "a" is a type variable, - [DontReduce] add to context + Q the set of type variables over which to quantify + Ct the constraints we will *not* quantify over + Cq the constraints we will quantify over -otherwise [ReduceMe] always reduce +So we're going to infer the type -[NB: we may generate one Tree [Int] dict per module, so - sharing is not complete.] + forall Q. Cq => T -Sort out ambiguity at the end. +and float the constraints Ct further outwards. -Principal types -~~~~~~~~~~~~~~~ -class C a where - op :: a -> a +Here are the things that *must* be true: -f x = let g y = op (y::Int) in True + (A) Q intersect fv(G) = EMPTY limits how big Q can be + (B) Q superset fv(Cq union T) \ oclose(fv(G),C) limits how small Q can be -Here the principal type of f is (forall a. a->a) -but we'll produce the non-principal type - f :: forall a. C Int => a -> a +(A) says we can't quantify over a variable that's free in the +environment. (B) says we must quantify over all the truly free +variables in T, else we won't get a sufficiently general type. We do +not *need* to quantify over any variable that is fixed by the free +vars of the environment G. + BETWEEN THESE TWO BOUNDS, ANY Q WILL DO! -Ambiguity -~~~~~~~~~ -Consider this: +Example: class H x y | x->y where ... - instance C (T a) Int where ... - instance C (T a) Bool where ... + fv(G) = {a} C = {H a b, H c d} + T = c -> b -and suppose we infer a context + (A) Q intersect {a} is empty + (B) Q superset {a,b,c,d} \ oclose({a}, C) = {a,b,c,d} \ {a,b} = {c,d} - C (T x) y + So Q can be {c,d}, {b,c,d} -from some expression, where x and y are type varibles, -and x is ambiguous, and y is being quantified over. -Should we complain, or should we generate the type +Other things being equal, however, we'd like to quantify over as few +variables as possible: smaller types, fewer type applications, more +constraints can get into Ct instead of Cq. - forall x y. C (T x) y => -The idea is that at the call of the function we might -know that y is Int (say), so the "x" isn't really ambiguous. -Notice that we have to add "x" to the type variables over -which we generalise. +----------------------------------------- +We will make use of -Something similar can happen even if C constrains only ambiguous -variables. Suppose we infer the context + fv(T) the free type vars of T - C [x] + oclose(vs,C) The result of extending the set of tyvars vs + using the functional dependencies from C -where x is ambiguous. Then we could infer the type + grow(vs,C) The result of extend the set of tyvars vs + using all conceivable links from C. - forall x. C [x] => + E.g. vs = {a}, C = {H [a] b, K (b,Int) c, Eq e} + Then grow(vs,C) = {a,b,c} -in the hope that at the call site there was an instance -decl such as + Note that grow(vs,C) `superset` grow(vs,simplify(C)) + That is, simplfication can only shrink the result of grow. - instance Num a => C [a] where ... +Notice that + oclose is conservative one way: v `elem` oclose(vs,C) => v is definitely fixed by vs + grow is conservative the other way: if v might be fixed by vs => v `elem` grow(vs,C) -and hence the default mechanism would resolve the "a". +----------------------------------------- -\begin{code} -module TcSimplify ( - tcSimplify, tcSimplifyAndCheck, - tcSimplifyTop, tcSimplifyThetas, tcSimplifyCheckThetas, - bindInstsOfLocalFuns - ) where +Choosing Q +~~~~~~~~~~ +Here's a good way to choose Q: -#include "HsVersions.h" + Q = grow( fv(T), C ) \ oclose( fv(G), C ) -import CmdLineOpts ( opt_MaxContextReductionDepth ) -import HsSyn ( MonoBinds(..), HsExpr(..), andMonoBinds, andMonoBindList ) -import TcHsSyn ( TcExpr, TcIdOcc(..), TcIdBndr, - TcMonoBinds, TcDictBinds - ) +That is, quantify over all variable that that MIGHT be fixed by the +call site (which influences T), but which aren't DEFINITELY fixed by +G. This choice definitely quantifies over enough type variables, +albeit perhaps too many. -import TcMonad -import Inst ( lookupInst, lookupSimpleInst, LookupInstResult(..), - tyVarsOfInst, - isDict, isStdClassTyVarDict, isMethodFor, - instToId, instBindingRequired, instCanBeGeneralised, - newDictFromOld, - instLoc, getDictClassTys, - pprInst, zonkInst, tidyInst, tidyInsts, - Inst, LIE, pprInsts, pprInstsInFull, mkLIE, emptyLIE, - plusLIE, pprOrigin - ) -import TcEnv ( TcIdOcc(..), tcGetGlobalTyVars ) -import TcType ( TcType, TcTyVarSet, typeToTcType ) -import TcUnify ( unifyTauTy ) -import Id ( idType ) -import VarSet ( mkVarSet ) +Why grow( fv(T), C ) rather than fv(T)? Consider -import Bag ( bagToList ) -import Class ( Class, ClassInstEnv, classBigSig, classInstEnv ) -import PrelInfo ( isNumericClass, isCreturnableClass ) + class H x y | x->y where ... + + T = c->c + C = (H c d) -import Type ( Type, ThetaType, TauType, mkTyVarTy, getTyVar, - isTyVarTy, substFlexiTheta, splitSigmaTy, - tyVarsOfTypes - ) -import PprType ( pprConstraint ) -import TysWiredIn ( unitTy ) -import VarSet -import VarEnv ( zipVarEnv ) -import FiniteMap -import BasicTypes ( TopLevelFlag(..) ) -import CmdLineOpts ( opt_GlasgowExts ) -import Outputable -import Util -import List ( partition ) -\end{code} + If we used fv(T) = {c} we'd get the type + + forall c. H c d => c -> b + + And then if the fn was called at several different c's, each of + which fixed d differently, we'd get a unification error, because + d isn't quantified. Solution: quantify d. So we must quantify + everything that might be influenced by c. + +Why not oclose( fv(T), C )? Because we might not be able to see +all the functional dependencies yet: + + class H x y | x->y where ... + instance H x y => Eq (T x y) where ... + + T = c->c + C = (Eq (T c d)) + + Now oclose(fv(T),C) = {c}, because the functional dependency isn't + apparent yet, and that's wrong. We must really quantify over d too. + + +There really isn't any point in quantifying over any more than +grow( fv(T), C ), because the call sites can't possibly influence +any other type variables. + + + + -------------------------------------- + Notes on ambiguity + -------------------------------------- + +It's very hard to be certain when a type is ambiguous. Consider + + class K x + class H x y | x -> y + instance H x y => K (x,y) + +Is this type ambiguous? + forall a b. (K (a,b), Eq b) => a -> a + +Looks like it! But if we simplify (K (a,b)) we get (H a b) and +now we see that a fixes b. So we can't tell about ambiguity for sure +without doing a full simplification. And even that isn't possible if +the context has some free vars that may get unified. Urgle! + +Here's another example: is this ambiguous? + forall a b. Eq (T b) => a -> a +Not if there's an insance decl (with no context) + instance Eq (T b) where ... + +You may say of this example that we should use the instance decl right +away, but you can't always do that: + + class J a b where ... + instance J Int b where ... + + f :: forall a b. J a b => a -> a + +(Notice: no functional dependency in J's class decl.) +Here f's type is perfectly fine, provided f is only called at Int. +It's premature to complain when meeting f's signature, or even +when inferring a type for f. + +However, we don't *need* to report ambiguity right away. It'll always +show up at the call site.... and eventually at main, which needs special +treatment. Nevertheless, reporting ambiguity promptly is an excellent thing. + +So heres the plan. We WARN about probable ambiguity if + + fv(Cq) is not a subset of oclose(fv(T) union fv(G), C) + +(all tested before quantification). +That is, all the type variables in Cq must be fixed by the the variables +in the environment, or by the variables in the type. + +Notice that we union before calling oclose. Here's an example: + + class J a b c | a b -> c + fv(G) = {a} + +Is this ambiguous? + forall b c. (J a b c) => b -> b + +Only if we union {a} from G with {b} from T before using oclose, +do we see that c is fixed. + +It's a bit vague exactly which C we should use for this oclose call. If we +don't fix enough variables we might complain when we shouldn't (see +the above nasty example). Nothing will be perfect. That's why we can +only issue a warning. + + +Can we ever be *certain* about ambiguity? Yes: if there's a constraint + + c in C such that fv(c) intersect (fv(G) union fv(T)) = EMPTY + +then c is a "bubble"; there's no way it can ever improve, and it's +certainly ambiguous. UNLESS it is a constant (sigh). And what about +the nasty example? + + class K x + class H x y | x -> y + instance H x y => K (x,y) + +Is this type ambiguous? + forall a b. (K (a,b), Eq b) => a -> a + +Urk. The (Eq b) looks "definitely ambiguous" but it isn't. What we are after +is a "bubble" that's a set of constraints + + Cq = Ca union Cq' st fv(Ca) intersect (fv(Cq') union fv(T) union fv(G)) = EMPTY + +Hence another idea. To decide Q start with fv(T) and grow it +by transitive closure in Cq (no functional dependencies involved). +Now partition Cq using Q, leaving the definitely-ambiguous and probably-ok. +The definitely-ambigous can then float out, and get smashed at top level +(which squashes out the constants, like Eq (T a) above) + + + -------------------------------------- + Notes on implicit parameters + -------------------------------------- + +Consider + + f x = ...?y... + +Then we get an LIE like (?y::Int). Doesn't constrain a type variable, +but we must nevertheless infer a type like + + f :: (?y::Int) => Int -> Int + +so that f is passed the value of y at the call site. Is this legal? + + f :: Int -> Int + f x = x + ?y + +Should f be overloaded on "?y" ? Or does the type signature say that it +shouldn't be? Our position is that it should be illegal. Otherwise +you can change the *dynamic* semantics by adding a type signature: + + (let f x = x + ?y -- f :: (?y::Int) => Int -> Int + in (f 3, f 3 with ?y=5)) with ?y = 6 + + returns (3+6, 3+5) +vs + (let f :: Int -> Int + f x = x + ?y + in (f 3, f 3 with ?y=5)) with ?y = 6 + + returns (3+6, 3+6) + +URK! Let's not do this. So this is illegal: + + f :: Int -> Int + f x = x + ?y + +BOTTOM LINE: you *must* quantify over implicit parameters. + + + -------------------------------------- + Notes on principal types + -------------------------------------- + + class C a where + op :: a -> a + + f x = let g y = op (y::Int) in True + +Here the principal type of f is (forall a. a->a) +but we'll produce the non-principal type + f :: forall a. C Int => a -> a + + %************************************************************************ %* * -\subsection[tcSimplify-main]{Main entry function} +\subsection{tcSimplifyInfer} %* * %************************************************************************ -The main wrapper is @tcSimplify@. It just calls @tcSimpl@, but with -the ``don't-squash-consts'' flag set depending on top-level ness. For -top level defns we *do* squash constants, so that they stay local to a -single defn. This makes things which are inlined more likely to be -exportable, because their constants are "inside". Later passes will -float them out if poss, after inlinings are sorted out. +tcSimplify is called when we *inferring* a type. Here's the overall game plan: + + 1. Compute Q = grow( fvs(T), C ) + + 2. Partition C based on Q into Ct and Cq. Notice that ambiguous + predicates will end up in Ct; we deal with them at the top level + + 3. Try improvement, using functional dependencies + + 4. If Step 3 did any unification, repeat from step 1 + (Unification can change the result of 'grow'.) + +Note: we don't reduce dictionaries in step 2. For example, if we have +Eq (a,b), we don't simplify to (Eq a, Eq b). So Q won't be different +after step 2. However note that we may therefore quantify over more +type variables than we absolutely have to. + +For the guts, we need a loop, that alternates context reduction and +improvement with unification. E.g. Suppose we have + + class C x y | x->y where ... + +and tcSimplify is called with: + (C Int a, C Int b) +Then improvement unifies a with b, giving + (C Int a, C Int a) + +If we need to unify anything, we rattle round the whole thing all over +again. + \begin{code} -tcSimplify +tcSimplifyInfer :: SDoc - -> TopLevelFlag - -> TcTyVarSet s -- ``Local'' type variables - -- ASSERT: this tyvar set is already zonked - -> LIE s -- Wanted - -> TcM s (LIE s, -- Free - TcDictBinds s, -- Bindings - LIE s) -- Remaining wanteds; no dups - -tcSimplify str top_lvl local_tvs wanted_lie - | isEmptyVarSet local_tvs - = returnTc (wanted_lie, EmptyMonoBinds, emptyLIE) + -> [TcTyVar] -- fv(T); type vars + -> LIE -- Wanted + -> TcM ([TcTyVar], -- Tyvars to quantify (zonked) + LIE, -- Free + TcDictBinds, -- Bindings + [TcId]) -- Dict Ids that must be bound here (zonked) +\end{code} - | otherwise - = reduceContext str try_me [] wanteds `thenTc` \ (binds, frees, irreds) -> + +\begin{code} +tcSimplifyInfer doc tau_tvs wanted_lie + = inferLoop doc tau_tvs (lieToList wanted_lie) `thenTc` \ (qtvs, frees, binds, irreds) -> -- Check for non-generalisable insts + mapTc_ addCantGenErr (filter (not . instCanBeGeneralised) irreds) `thenTc_` + + returnTc (qtvs, mkLIE frees, binds, map instToId irreds) + +inferLoop doc tau_tvs wanteds + = -- Step 1 + zonkTcTyVarsAndFV tau_tvs `thenNF_Tc` \ tau_tvs' -> + mapNF_Tc zonkInst wanteds `thenNF_Tc` \ wanteds' -> + tcGetGlobalTyVars `thenNF_Tc` \ gbl_tvs -> let - cant_generalise = filter (not . instCanBeGeneralised) irreds + preds = predsOfInsts wanteds' + qtvs = grow preds tau_tvs' `minusVarSet` oclose preds gbl_tvs + + try_me inst + | isFree qtvs inst = Free + | isClassDict inst = DontReduceUnlessConstant -- Dicts + | otherwise = ReduceMe AddToIrreds -- Lits and Methods in - checkTc (null cant_generalise) - (genCantGenErr cant_generalise) `thenTc_` - - -- Check for ambiguous insts. - -- You might think these can't happen (I did) because an ambiguous - -- inst like (Eq a) will get tossed out with "frees", and eventually - -- dealt with by tcSimplifyTop. - -- But we can get stuck with - -- C a b - -- where "a" is one of the local_tvs, but "b" is unconstrained. - -- Then we must yell about the ambiguous b - -- But we must only do so if "b" really is unconstrained; so - -- we must grab the global tyvars to answer that question - tcGetGlobalTyVars `thenNF_Tc` \ global_tvs -> + -- Step 2 + reduceContext doc try_me [] wanteds' `thenTc` \ (no_improvement, frees, binds, irreds) -> + + -- Step 3 + if no_improvement then + returnTc (varSetElems qtvs, frees, binds, irreds) + else + inferLoop doc tau_tvs wanteds +\end{code} + +\begin{code} +isFree qtvs inst + = not (tyVarsOfInst inst `intersectsVarSet` qtvs) -- Constrains no quantified vars + && null (getIPs inst) -- And no implicit parameter involved + -- (see "Notes on implicit parameters") +\end{code} + + +%************************************************************************ +%* * +\subsection{tcSimplifyCheck} +%* * +%************************************************************************ + +@tcSimplifyCheck@ is used when we know exactly the set of variables +we are going to quantify over. + +\begin{code} +tcSimplifyCheck + :: SDoc + -> [TcTyVar] -- Quantify over these + -> [Inst] -- Given + -> LIE -- Wanted + -> TcM (LIE, -- Free + TcDictBinds) -- Bindings + +tcSimplifyCheck doc qtvs givens wanted_lie + = checkLoop doc qtvs givens (lieToList wanted_lie) `thenTc` \ (frees, binds, irreds) -> + + -- Complain about any irreducible ones + complainCheck doc givens irreds `thenNF_Tc_` + + -- Done + returnTc (mkLIE frees, binds) + +checkLoop doc qtvs givens wanteds + = -- Step 1 + zonkTcTyVarsAndFV qtvs `thenNF_Tc` \ qtvs' -> + mapNF_Tc zonkInst givens `thenNF_Tc` \ givens' -> + mapNF_Tc zonkInst wanteds `thenNF_Tc` \ wanteds' -> let - avail_tvs = local_tvs `unionVarSet` global_tvs - (irreds', bad_guys) = partition (isEmptyVarSet . ambig_tv_fn) irreds - ambig_tv_fn dict = tyVarsOfInst dict `minusVarSet` avail_tvs + -- When checking against a given signature we always reduce + -- until we find a match against something given, or can't reduce + try_me inst | isFree qtvs' inst = Free + | otherwise = ReduceMe AddToIrreds in - addAmbigErrs ambig_tv_fn bad_guys `thenNF_Tc_` - + -- Step 2 + reduceContext doc try_me givens' wanteds' `thenTc` \ (no_improvement, frees, binds, irreds) -> + + -- Step 3 + if no_improvement then + returnTc (frees, binds, irreds) + else + checkLoop doc qtvs givens wanteds - -- Finished - returnTc (mkLIE frees, binds, mkLIE irreds') +complainCheck doc givens irreds + = mapNF_Tc zonkInst given_dicts `thenNF_Tc` \ givens' -> + mapNF_Tc (addNoInstanceErr doc given_dicts) irreds `thenNF_Tc_` + returnTc () where - wanteds = bagToList wanted_lie - - try_me inst - -- Does not constrain a local tyvar - | isEmptyVarSet (tyVarsOfInst inst `intersectVarSet` local_tvs) - = -- if is_top_level then - -- FreeIfTautological -- Special case for inference on - -- -- top-level defns - -- else - Free - - -- We're infering (not checking) the type, and - -- the inst constrains a local type variable - | isDict inst = DontReduce -- Dicts - | otherwise = ReduceMe AddToIrreds -- Lits and Methods + given_dicts = filter isDict givens + -- Filter out methods, which are only added to + -- the given set as an optimisation \end{code} -@tcSimplifyAndCheck@ is similar to the above, except that it checks -that there is an empty wanted-set at the end. It may still return -some of constant insts, which have to be resolved finally at the end. + + +%************************************************************************ +%* * +\subsection{tcSimplifyAndCheck} +%* * +%************************************************************************ + +@tcSimplifyInferCheck@ is used when we know the consraints we are to simplify +against, but we don't know the type variables over which we are going to quantify. \begin{code} -tcSimplifyAndCheck +tcSimplifyInferCheck :: SDoc - -> TcTyVarSet s -- ``Local'' type variables - -- ASSERT: this tyvar set is already zonked - -> LIE s -- Given; constrain only local tyvars - -> LIE s -- Wanted - -> TcM s (LIE s, -- Free - TcDictBinds s) -- Bindings - -tcSimplifyAndCheck str local_tvs given_lie wanted_lie - | isEmptyVarSet local_tvs - -- This can happen quite legitimately; for example in - -- instance Num Int where ... - = returnTc (wanted_lie, EmptyMonoBinds) + -> [TcTyVar] -- fv(T) + -> [Inst] -- Given + -> LIE -- Wanted + -> TcM ([TcTyVar], -- Variables over which to quantify + LIE, -- Free + TcDictBinds) -- Bindings - | otherwise - = reduceContext str try_me givens wanteds `thenTc` \ (binds, frees, irreds) -> +tcSimplifyInferCheck doc tau_tvs givens wanted + = inferCheckLoop doc tau_tvs givens (lieToList wanted) `thenTc` \ (qtvs, frees, binds, irreds) -> -- Complain about any irreducible ones - mapNF_Tc complain irreds `thenNF_Tc_` + complainCheck doc givens irreds `thenNF_Tc_` -- Done + returnTc (qtvs, mkLIE frees, binds) + +inferCheckLoop doc tau_tvs givens wanteds + = -- Step 1 + zonkTcTyVarsAndFV tau_tvs `thenNF_Tc` \ tau_tvs' -> + mapNF_Tc zonkInst givens `thenNF_Tc` \ givens' -> + mapNF_Tc zonkInst wanteds `thenNF_Tc` \ wanteds' -> + tcGetGlobalTyVars `thenNF_Tc` \ gbl_tvs -> + + let + -- Figure out what we are going to generalise over + -- You might think it should just be the signature tyvars, + -- but in bizarre cases you can get extra ones + -- f :: forall a. Num a => a -> a + -- f x = fst (g (x, head [])) + 1 + -- g a b = (b,a) + -- Here we infer g :: forall a b. a -> b -> (b,a) + -- We don't want g to be monomorphic in b just because + -- f isn't quantified over b. + qtvs = (tau_tvs' `unionVarSet` tyVarsOfInsts givens') `minusVarSet` gbl_tvs + -- We could close gbl_tvs, but its not necessary for + -- soundness, and it'll only affect which tyvars, not which + -- dictionaries, we quantify over + + -- When checking against a given signature we always reduce + -- until we find a match against something given, or can't reduce + try_me inst | isFree qtvs inst = Free + | otherwise = ReduceMe AddToIrreds + in + -- Step 2 + reduceContext doc try_me givens' wanteds' `thenTc` \ (no_improvement, frees, binds, irreds) -> + + -- Step 3 + if no_improvement then + returnTc (varSetElems qtvs, frees, binds, irreds) + else + inferCheckLoop doc tau_tvs givens wanteds +\end{code} + + + +%************************************************************************ +%* * +\subsection{tcSimplifyToDicts} +%* * +%************************************************************************ + +On the LHS of transformation rules we only simplify methods and constants, +getting dictionaries. We want to keep all of them unsimplified, to serve +as the available stuff for the RHS of the rule. + +The same thing is used for specialise pragmas. Consider + + f :: Num a => a -> a + {-# SPECIALISE f :: Int -> Int #-} + f = ... + +The type checker generates a binding like: + + f_spec = (f :: Int -> Int) + +and we want to end up with + + f_spec = _inline_me_ (f Int dNumInt) + +But that means that we must simplify the Method for f to (f Int dNumInt)! +So tcSimplifyToDicts squeezes out all Methods. + +\begin{code} +tcSimplifyToDicts :: LIE -> TcM ([Inst], TcDictBinds) +tcSimplifyToDicts wanted_lie + = simpleReduceLoop doc try_me wanteds `thenTc` \ (frees, binds, irreds) -> + -- Since try_me doesn't look at types, we don't need to + -- do any zonking, so it's safe to call reduceContext directly + ASSERT( null frees ) + returnTc (irreds, binds) + + where + doc = text "tcSimplifyToDicts" + wanteds = lieToList wanted_lie + + -- Reduce methods and lits only; stop as soon as we get a dictionary + try_me inst | isDict inst = DontReduce + | otherwise = ReduceMe AddToIrreds +\end{code} + + +%************************************************************************ +%* * +\subsection{Filtering at a dynamic binding} +%* * +%************************************************************************ + +When we have + let ?x = R in B + +we must discharge all the ?x constraints from B. We also do an improvement +step; if we have ?x::t1 and ?x::t2 we must unify t1, t2. No need to iterate, though. + +\begin{code} +tcSimplifyIPs :: [Name] -- The implicit parameters bound here + -> LIE + -> TcM (LIE, TcDictBinds) +tcSimplifyIPs ip_names wanted_lie + = simpleReduceLoop doc try_me wanteds `thenTc` \ (frees, binds, irreds) -> + -- The irreducible ones should be a subset of the implicit + -- parameters we provided + ASSERT( all here_ip irreds ) returnTc (mkLIE frees, binds) + where - givens = bagToList given_lie - wanteds = bagToList wanted_lie + doc = text "tcSimplifyIPs" <+> ppr ip_names + wanteds = lieToList wanted_lie + ip_set = mkNameSet ip_names + here_ip ip = isDict ip && ip `instMentionsIPs` ip_set + + -- Simplify any methods that mention the implicit parameter + try_me inst | inst `instMentionsIPs` ip_set = ReduceMe AddToIrreds + | otherwise = Free +\end{code} - try_me inst - -- Does not constrain a local tyvar - | isEmptyVarSet (tyVarsOfInst inst `intersectVarSet` local_tvs) - = Free - -- When checking against a given signature we always reduce - -- until we find a match against something given, or can't reduce - | otherwise - = ReduceMe AddToIrreds +%************************************************************************ +%* * +\subsection[binds-for-local-funs]{@bindInstsOfLocalFuns@} +%* * +%************************************************************************ + +When doing a binding group, we may have @Insts@ of local functions. +For example, we might have... +\begin{verbatim} +let f x = x + 1 -- orig local function (overloaded) + f.1 = f Int -- two instances of f + f.2 = f Float + in + (f.1 5, f.2 6.7) +\end{verbatim} +The point is: we must drop the bindings for @f.1@ and @f.2@ here, +where @f@ is in scope; those @Insts@ must certainly not be passed +upwards towards the top-level. If the @Insts@ were binding-ified up +there, they would have unresolvable references to @f@. + +We pass in an @init_lie@ of @Insts@ and a list of locally-bound @Ids@. +For each method @Inst@ in the @init_lie@ that mentions one of the +@Ids@, we create a binding. We return the remaining @Insts@ (in an +@LIE@), as well as the @HsBinds@ generated. + +\begin{code} +bindInstsOfLocalFuns :: LIE -> [TcId] -> TcM (LIE, TcMonoBinds) - complain dict = mapNF_Tc zonkInst givens `thenNF_Tc` \ givens -> - addNoInstanceErr str givens dict +bindInstsOfLocalFuns init_lie local_ids + | null overloaded_ids + -- Common case + = returnTc (init_lie, EmptyMonoBinds) + + | otherwise + = simpleReduceLoop doc try_me wanteds `thenTc` \ (frees, binds, irreds) -> + ASSERT( null irreds ) + returnTc (mkLIE frees, binds) + where + doc = text "bindInsts" <+> ppr local_ids + wanteds = lieToList init_lie + overloaded_ids = filter is_overloaded local_ids + is_overloaded id = case splitSigmaTy (idType id) of + (_, theta, _) -> not (null theta) + + overloaded_set = mkVarSet overloaded_ids -- There can occasionally be a lot of them + -- so it's worth building a set, so that + -- lookup (in isMethodFor) is faster + + try_me inst | isMethodFor overloaded_set inst = ReduceMe AddToIrreds + | otherwise = Free \end{code} @@ -304,12 +702,12 @@ data WhatToDo = ReduceMe -- Try to reduce this NoInstanceAction -- What to do if there's no such instance - | DontReduce -- Return as irreducible + | DontReduce -- Return as irreducible - | Free -- Return as free + | DontReduceUnlessConstant -- Return as irreducible unless it can + -- be reduced to a constant in one step - | FreeIfTautological -- Return as free iff it's tautological; - -- if not, return as irreducible + | Free -- Return as free data NoInstanceAction = Stop -- Fail; no error message @@ -323,65 +721,78 @@ data NoInstanceAction \begin{code} -type RedState s - = (Avails s, -- What's available - [Inst s], -- Insts for which try_me returned Free - [Inst s] -- Insts for which try_me returned DontReduce - ) - -type Avails s = FiniteMap (Inst s) (Avail s) - -data Avail s - = Avail - (TcIdOcc s) -- The "main Id"; that is, the Id for the Inst that - -- caused this avail to be put into the finite map in the first place - -- It is this Id that is bound to the RHS. - - (RHS s) -- The RHS: an expression whose value is that Inst. - -- The main Id should be bound to this RHS - - [TcIdOcc s] -- Extra Ids that must all be bound to the main Id. - -- At the end we generate a list of bindings - -- { i1 = main_id; i2 = main_id; i3 = main_id; ... } - -data RHS s - = NoRhs -- Used for irreducible dictionaries, - -- which are going to be lambda bound, or for those that are - -- suppplied as "given" when checking againgst a signature. - -- - -- NoRhs is also used for Insts like (CCallable f) +type RedState = (Avails, -- What's available + [Inst]) -- Insts for which try_me returned Free + +type Avails = FiniteMap Inst Avail + +data Avail + = Irred -- Used for irreducible dictionaries, + -- which are going to be lambda bound + + | BoundTo TcId -- Used for dictionaries for which we have a binding + -- e.g. those "given" in a signature + + | NoRhs -- Used for Insts like (CCallable f) -- where no witness is required. | Rhs -- Used when there is a RHS - (TcExpr s) - Bool -- True => the RHS simply selects a superclass dictionary - -- from a subclass dictionary. - -- False => not so. - -- This is useful info, because superclass selection - -- is cheaper than building the dictionary using its dfun, - -- and we can sometimes replace the latter with the former - - | PassiveScSel -- Used for as-yet-unactivated RHSs. For example suppose we have - -- an (Ord t) dictionary; then we put an (Eq t) entry in - -- the finite map, with an PassiveScSel. Then if the - -- the (Eq t) binding is ever *needed* we make it an Rhs - (TcExpr s) - [Inst s] -- List of Insts that are free in the RHS. - -- If the main Id is subsequently needed, we toss this list into - -- the needed-inst pool so that we make sure their bindings - -- will actually be produced. - -- - -- Invariant: these Insts are already in the finite mapping - - -pprAvails avails = vcat (map pp (eltsFM avails)) - where - pp (Avail main_id rhs ids) - = ppr main_id <> colon <+> brackets (ppr ids) <+> pprRhs rhs + TcExpr -- The RHS + [Inst] -- Insts free in the RHS; we need these too + +pprAvails avails = vcat (map pprAvail (eltsFM avails)) -pprRhs NoRhs = text "" -pprRhs (Rhs rhs b) = ppr rhs -pprRhs (PassiveScSel rhs is) = text "passive" <+> ppr rhs +instance Outputable Avail where + ppr = pprAvail + +pprAvail NoRhs = text "" +pprAvail Irred = text "Irred" +pprAvail (BoundTo x) = text "Bound to" <+> ppr x +pprAvail (Rhs rhs bs) = ppr rhs <+> braces (ppr bs) +\end{code} + +Extracting the bindings from a bunch of Avails. +The bindings do *not* come back sorted in dependency order. +We assume that they'll be wrapped in a big Rec, so that the +dependency analyser can sort them out later + +The loop startes +\begin{code} +bindsAndIrreds :: Avails + -> [Inst] -- Wanted + -> (TcDictBinds, -- Bindings + [Inst]) -- Irreducible ones + +bindsAndIrreds avails wanteds + = go avails EmptyMonoBinds [] wanteds + where + go avails binds irreds [] = (binds, irreds) + + go avails binds irreds (w:ws) + = case lookupFM avails w of + Nothing -> -- Free guys come out here + -- (If we didn't do addFree we could use this as the + -- criterion for free-ness, and pick up the free ones here too) + go avails binds irreds ws + + Just NoRhs -> go avails binds irreds ws + + Just Irred -> go (addToFM avails w (BoundTo (instToId w))) binds (w:irreds) ws + + Just (BoundTo id) -> go avails new_binds irreds ws + where + -- For implicit parameters, all occurrences share the same + -- Id, so there is no need for synonym bindings + new_binds | new_id == id = binds + | otherwise = binds `AndMonoBinds` new_bind + new_bind = VarMonoBind new_id (HsVar id) + new_id = instToId w + + Just (Rhs rhs ws') -> go avails' (binds `AndMonoBinds` new_bind) irreds (ws' ++ ws) + where + id = instToId w + avails' = addToFM avails w (BoundTo id) + new_bind = VarMonoBind id rhs \end{code} @@ -391,76 +802,107 @@ pprRhs (PassiveScSel rhs is) = text "passive" <+> ppr rhs %* * %************************************************************************ -The main entry point for context reduction is @reduceContext@: +When the "what to do" predicate doesn't depend on the quantified type variables, +matters are easier. We don't need to do any zonking, unless the improvement step +does something, in which case we zonk before iterating. + +The "given" set is always empty. \begin{code} -reduceContext :: SDoc -> (Inst s -> WhatToDo) - -> [Inst s] -- Given - -> [Inst s] -- Wanted - -> TcM s (TcDictBinds s, - [Inst s], -- Free - [Inst s]) -- Irreducible - -reduceContext str try_me givens wanteds - = -- Zonking first - mapNF_Tc zonkInst givens `thenNF_Tc` \ givens -> - mapNF_Tc zonkInst wanteds `thenNF_Tc` \ wanteds -> +simpleReduceLoop :: SDoc + -> (Inst -> WhatToDo) -- What to do, *not* based on the quantified type variables + -> [Inst] -- Wanted + -> TcM ([Inst], -- Free + TcDictBinds, + [Inst]) -- Irreducible + +simpleReduceLoop doc try_me wanteds + = mapNF_Tc zonkInst wanteds `thenNF_Tc` \ wanteds' -> + reduceContext doc try_me [] wanteds' `thenTc` \ (no_improvement, frees, binds, irreds) -> + if no_improvement then + returnTc (frees, binds, irreds) + else + simpleReduceLoop doc try_me wanteds +\end{code} -{- - pprTrace "reduceContext" (vcat [ + + +\begin{code} +reduceContext :: SDoc + -> (Inst -> WhatToDo) + -> [Inst] -- Given + -> [Inst] -- Wanted + -> NF_TcM (Bool, -- True <=> improve step did no unification + [Inst], -- Free + TcDictBinds, -- Dictionary bindings + [Inst]) -- Irreducible + +reduceContext doc try_me givens wanteds + = +{- traceTc (text "reduceContext" <+> (vcat [ text "----------------------", - str, + doc, text "given" <+> ppr givens, text "wanted" <+> ppr wanteds, text "----------------------" - ]) $ + ])) `thenNF_Tc_` + -} -- Build the Avail mapping from "givens" - foldlNF_Tc addGiven emptyFM givens `thenNF_Tc` \ avails -> + foldlNF_Tc addGiven (emptyFM, []) givens `thenNF_Tc` \ init_state -> -- Do the real work - reduceList (0,[]) try_me wanteds (avails, [], []) `thenTc` \ (avails, frees, irreds) -> + reduceList (0,[]) try_me wanteds init_state `thenNF_Tc` \ state@(avails, frees) -> + + -- Do improvement, using everything in avails + -- In particular, avails includes all superclasses of everything + tcImprove avails `thenTc` \ no_improvement -> - -- Extract the bindings from avails - let - binds = foldFM add_bind EmptyMonoBinds avails - - add_bind _ (Avail main_id rhs ids) binds - = foldr add_synonym (add_rhs_bind rhs binds) ids - where - add_rhs_bind (Rhs rhs _) binds = binds `AndMonoBinds` VarMonoBind main_id rhs - add_rhs_bind other binds = binds - - -- Add the trivial {x = y} bindings - -- The main Id can end up in the list when it's first added passively - -- and then activated, so we have to filter it out. A bit of a hack. - add_synonym id binds - | id /= main_id = binds `AndMonoBinds` VarMonoBind id (HsVar main_id) - | otherwise = binds - in {- - pprTrace ("reduceContext end") (vcat [ + traceTc (text "reduceContext end" <+> (vcat [ text "----------------------", - str, + doc, text "given" <+> ppr givens, text "wanted" <+> ppr wanteds, text "----", text "avails" <+> pprAvails avails, - text "irreds" <+> ppr irreds, + text "frees" <+> ppr frees, + text "no_improvement =" <+> ppr no_improvement, text "----------------------" - ]) $ + ])) `thenNF_Tc_` -} - returnTc (binds, frees, irreds) + let + (binds, irreds) = bindsAndIrreds avails wanteds + in + returnTc (no_improvement, frees, binds, irreds) + +tcImprove avails + = tcGetInstEnv `thenTc` \ inst_env -> + let + preds = predsOfInsts (keysFM avails) + -- Avails has all the superclasses etc (good) + -- It also has all the intermediates of the deduction (good) + -- It does not have duplicates (good) + -- NB that (?x::t1) and (?x::t2) will be held separately in avails + -- so that improve will see them separate + eqns = improve (classInstEnv inst_env) preds + in + if null eqns then + returnTc True + else + mapTc_ (\ (t1,t2) -> unifyTauTy t1 t2) eqns `thenTc_` + returnTc False \end{code} The main context-reduction function is @reduce@. Here's its game plan. \begin{code} -reduceList :: (Int,[Inst s]) - -> (Inst s -> WhatToDo) - -> [Inst s] - -> RedState s - -> TcM s (RedState s) +reduceList :: (Int,[Inst]) -- Stack (for err msgs) + -- along with its depth + -> (Inst -> WhatToDo) + -> [Inst] + -> RedState + -> TcM RedState \end{code} @reduce@ is passed @@ -475,6 +917,10 @@ reduceList :: (Int,[Inst s]) It returns a RedState. +The (n,stack) pair is just used for error reporting. +n is always the depth of the stack. +The stack is the stack of Insts being reduced: to produce X +I had to produce Y, to produce Y I had to produce Z, and so on. \begin{code} reduceList (n,stack) try_me wanteds state @@ -484,7 +930,7 @@ reduceList (n,stack) try_me wanteds state | otherwise = #ifdef DEBUG - (if n > 4 then + (if n > 8 then pprTrace "Jeepers! ReduceContext:" (reduceDepthMsg n stack) else (\x->x)) #endif @@ -495,401 +941,173 @@ reduceList (n,stack) try_me wanteds state go ws state' -- Base case: we're done! -reduce stack try_me wanted state@(avails, frees, irreds) - +reduce stack try_me wanted state -- It's the same as an existing inst, or a superclass thereof - | wanted `elemFM` avails - = returnTc (activate avails wanted, frees, irreds) - - -- It should be reduced - | case try_me_result of { ReduceMe _ -> True; _ -> False } - = lookupInst wanted `thenNF_Tc` \ lookup_result -> - - case lookup_result of - GenInst wanteds' rhs -> use_instance wanteds' rhs - SimpleInst rhs -> use_instance [] rhs - - NoInstance -> -- No such instance! - -- Decide what to do based on the no_instance_action requested - case no_instance_action of - Stop -> failTc -- Fail - AddToIrreds -> add_to_irreds -- Add the offending insts to the irreds - - -- It's free and this isn't a top-level binding, so just chuck it upstairs - | case try_me_result of { Free -> True; _ -> False } - = -- First, see if the inst can be reduced to a constant in one step - lookupInst wanted `thenNF_Tc` \ lookup_result -> - case lookup_result of - SimpleInst rhs -> use_instance [] rhs - other -> add_to_frees - - -- It's free and this is a top level binding, so - -- check whether it's a tautology or not - | case try_me_result of { FreeIfTautological -> True; _ -> False } - = -- Try for tautology - tryTc - -- If tautology trial fails, add to irreds - (addGiven avails wanted `thenNF_Tc` \ avails' -> - returnTc (avails', frees, wanted:irreds)) - - -- If tautology succeeds, just add to frees - (reduce stack try_me_taut wanted (avails, [], []) `thenTc_` - returnTc (avails, wanted:frees, irreds)) - - - -- It's irreducible (or at least should not be reduced) - | otherwise - = ASSERT( case try_me_result of { DontReduce -> True; other -> False } ) - -- See if the inst can be reduced to a constant in one step - lookupInst wanted `thenNF_Tc` \ lookup_result -> - case lookup_result of - SimpleInst rhs -> use_instance [] rhs - other -> add_to_irreds - - where - -- The three main actions - add_to_frees = let - avails' = addFree avails wanted - -- Add the thing to the avails set so any identical Insts - -- will be commoned up with it right here - in - returnTc (avails', wanted:frees, irreds) - - add_to_irreds = addGiven avails wanted `thenNF_Tc` \ avails' -> - returnTc (avails', frees, wanted:irreds) - - use_instance wanteds' rhs = addWanted avails wanted rhs `thenNF_Tc` \ avails' -> - reduceList stack try_me wanteds' (avails', frees, irreds) - - try_me_result = try_me wanted - ReduceMe no_instance_action = try_me_result - - -- The try-me to use when trying to identify tautologies - -- It blunders on reducing as much as possible - try_me_taut inst = ReduceMe Stop -- No error recovery -\end{code} + | isAvailable state wanted + = returnTc state + | otherwise + = case try_me wanted of { -\begin{code} -activate :: Avails s -> Inst s -> Avails s - -- Activate the binding for Inst, ensuring that a binding for the - -- wanted Inst will be generated. - -- (Activate its parent if necessary, recursively). - -- Precondition: the Inst is in Avails already + DontReduce -> addIrred state wanted -activate avails wanted - | not (instBindingRequired wanted) - = avails + ; DontReduceUnlessConstant -> -- It's irreducible (or at least should not be reduced) + -- First, see if the inst can be reduced to a constant in one step + try_simple addIrred - | otherwise - = case lookupFM avails wanted of + ; Free -> -- It's free so just chuck it upstairs + -- First, see if the inst can be reduced to a constant in one step + try_simple addFree - Just (Avail main_id (PassiveScSel rhs insts) ids) -> - foldl activate avails' insts -- Activate anything it needs - where - avails' = addToFM avails wanted avail' - avail' = Avail main_id (Rhs rhs True) (wanted_id : ids) -- Activate it + ; ReduceMe no_instance_action -> -- It should be reduced + lookupInst wanted `thenNF_Tc` \ lookup_result -> + case lookup_result of + GenInst wanteds' rhs -> reduceList stack try_me wanteds' state `thenTc` \ state' -> + addWanted state' wanted rhs wanteds' + SimpleInst rhs -> addWanted state wanted rhs [] - Just (Avail main_id other_rhs ids) -> -- Just add to the synonyms list - addToFM avails wanted (Avail main_id other_rhs (wanted_id : ids)) + NoInstance -> -- No such instance! + case no_instance_action of + Stop -> failTc + AddToIrreds -> addIrred state wanted - Nothing -> panic "activate" + } where - wanted_id = instToId wanted - -addWanted avails wanted rhs_expr - = ASSERT( not (wanted `elemFM` avails) ) - returnNF_Tc (addToFM avails wanted avail) - -- NB: we don't add the thing's superclasses too! - -- Why not? Because addWanted is used when we've successfully used an - -- instance decl to reduce something; e.g. - -- d:Ord [a] = dfunOrd (d1:Eq [a]) (d2:Ord a) - -- Note that we pass the superclasses to the dfun, so they will be "wanted". - -- If we put the superclasses of "d" in avails, then we might end up - -- expressing "d1" in terms of "d", which would be a disaster. - where - avail = Avail (instToId wanted) rhs [] + try_simple do_this_otherwise + = lookupInst wanted `thenNF_Tc` \ lookup_result -> + case lookup_result of + SimpleInst rhs -> addWanted state wanted rhs [] + other -> do_this_otherwise state wanted +\end{code} - rhs | instBindingRequired wanted = Rhs rhs_expr False -- Not superclass selection - | otherwise = NoRhs -addFree :: Avails s -> Inst s -> (Avails s) +\begin{code} +isAvailable :: RedState -> Inst -> Bool +isAvailable (avails, _) wanted = wanted `elemFM` avails + -- NB: the Ord instance of Inst compares by the class/type info + -- *not* by unique. So + -- d1::C Int == d2::C Int + +------------------------- +addFree :: RedState -> Inst -> NF_TcM RedState -- When an Inst is tossed upstairs as 'free' we nevertheless add it -- to avails, so that any other equal Insts will be commoned up right - -- here rather than also being tossed upstairs. -addFree avails free - | isDict free = addToFM avails free (Avail (instToId free) NoRhs []) - | otherwise = avails - -addGiven :: Avails s -> Inst s -> NF_TcM s (Avails s) -addGiven avails given - = -- ASSERT( not (given `elemFM` avails) ) - -- This assertion isn't necessarily true. It's permitted - -- to given a redundant context in a type signature (eg (Ord a, Eq a) => ...) - -- and when typechecking instance decls we generate redundant "givens" too. - addAvail avails given avail + -- here rather than also being tossed upstairs. This is really just + -- an optimisation, and perhaps it is more trouble that it is worth, + -- as the following comments show! + -- + -- NB1: do *not* add superclasses. If we have + -- df::Floating a + -- dn::Num a + -- but a is not bound here, then we *don't* want to derive + -- dn from df here lest we lose sharing. + -- + -- NB2: do *not* add the Inst to avails at all if it's a method. + -- The following situation shows why this is bad: + -- truncate :: forall a. RealFrac a => forall b. Integral b => a -> b + -- From an application (truncate f i) we get + -- t1 = truncate at f + -- t2 = t1 at i + -- If we have also have a second occurrence of truncate, we get + -- t3 = truncate at f + -- t4 = t3 at i + -- When simplifying with i,f free, we might still notice that + -- t1=t3; but alas, the binding for t2 (which mentions t1) + -- will continue to float out! + -- Solution: never put methods in avail till they are captured + -- in which case addFree isn't used + -- + -- NB3: make sure that CCallable/CReturnable use NoRhs rather + -- than BoundTo, else we end up with bogus bindings. + -- c.f. instBindingRequired in addWanted +addFree (avails, frees) free + | isDict free = returnNF_Tc (addToFM avails free avail, free:frees) + | otherwise = returnNF_Tc (avails, free:frees) where - avail = Avail (instToId given) NoRhs [] - + avail | instBindingRequired free = BoundTo (instToId free) + | otherwise = NoRhs + +addGiven :: RedState -> Inst -> NF_TcM RedState +addGiven state given = add_avail state given (BoundTo (instToId given)) + +addIrred :: RedState -> Inst -> NF_TcM RedState +addIrred state irred = add_avail state irred Irred + +addWanted :: RedState -> Inst -> TcExpr -> [Inst] -> NF_TcM RedState +addWanted state wanted rhs_expr wanteds + = ASSERT( not (isAvailable state wanted) ) + add_avail state wanted avail + where + avail | instBindingRequired wanted = Rhs rhs_expr wanteds + | otherwise = ASSERT( null wanteds ) NoRhs + +add_avail :: RedState -> Inst -> Avail -> NF_TcM RedState +add_avail (avails, frees) wanted avail + = addAvail avails wanted avail `thenNF_Tc` \ avails' -> + returnNF_Tc (avails', frees) + +--------------------- +addAvail :: Avails -> Inst -> Avail -> NF_TcM Avails addAvail avails wanted avail = addSuperClasses (addToFM avails wanted avail) wanted -addSuperClasses :: Avails s -> Inst s -> NF_TcM s (Avails s) - -- Add all the superclasses of the Inst to Avails - -- Invariant: the Inst is already in Avails. +addSuperClasses :: Avails -> Inst -> NF_TcM Avails + -- Add all the superclasses of the Inst to Avails + -- Invariant: the Inst is already in Avails. addSuperClasses avails dict - | not (isDict dict) + | not (isClassDict dict) = returnNF_Tc avails | otherwise -- It is a dictionary - = foldlNF_Tc add_sc avails (zipEqual "addSuperClasses" sc_theta' sc_sels) + = newDictsFromOld dict sc_theta' `thenNF_Tc` \ sc_dicts -> + foldlNF_Tc add_sc avails (zipEqual "addSuperClasses" sc_dicts sc_sels) where (clas, tys) = getDictClassTys dict - - (tyvars, sc_theta, sc_sels, _, _) = classBigSig clas - sc_theta' = substFlexiTheta (zipVarEnv tyvars tys) sc_theta - - add_sc avails ((super_clas, super_tys), sc_sel) - = newDictFromOld dict super_clas super_tys `thenNF_Tc` \ super_dict -> - let - sc_sel_rhs = DictApp (TyApp (HsVar (RealId sc_sel)) - tys) - [instToId dict] - in - case lookupFM avails super_dict of - - Just (Avail main_id (Rhs rhs False {- not sc selection -}) ids) -> - -- Already there, but not as a superclass selector - -- No need to look at its superclasses; since it's there - -- already they must be already in avails - -- However, we must remember to activate the dictionary - -- from which it is (now) generated - returnNF_Tc (activate avails' dict) - where - avails' = addToFM avails super_dict avail - avail = Avail main_id (Rhs sc_sel_rhs True) ids -- Superclass selection - - Just (Avail _ _ _) -> returnNF_Tc avails - -- Already there; no need to do anything - - Nothing -> - -- Not there at all, so add it, and its superclasses - addAvail avails super_dict avail - where - avail = Avail (instToId super_dict) - (PassiveScSel sc_sel_rhs [dict]) - [] -\end{code} - -%************************************************************************ -%* * -\subsection[simple]{@Simple@ versions} -%* * -%************************************************************************ - -Much simpler versions when there are no bindings to make! - -@tcSimplifyThetas@ simplifies class-type constraints formed by -@deriving@ declarations and when specialising instances. We are -only interested in the simplified bunch of class/type constraints. - -It simplifies to constraints of the form (C a b c) where -a,b,c are type variables. This is required for the context of -instance declarations. - -\begin{code} -tcSimplifyThetas :: (Class -> ClassInstEnv) -- How to find the ClassInstEnv - -> ThetaType -- Wanted - -> TcM s ThetaType -- Needed; of the form C a b c - -- where a,b,c are type variables - -tcSimplifyThetas inst_mapper wanteds - = reduceSimple inst_mapper [] wanteds `thenNF_Tc` \ irreds -> - let - -- Check that the returned dictionaries are of the form (C a b c) - bad_guys | opt_GlasgowExts = [ct | ct@(clas,tys) <- irreds, - isEmptyVarSet (tyVarsOfTypes tys)] - | otherwise = [ct | ct@(clas,tys) <- irreds, - not (all isTyVarTy tys)] - - in - if null bad_guys then - returnTc irreds - else - mapNF_Tc addNoInstErr bad_guys `thenNF_Tc_` - failTc -\end{code} - -@tcSimplifyCheckThetas@ just checks class-type constraints, essentially; -used with \tr{default} declarations. We are only interested in -whether it worked or not. - -\begin{code} -tcSimplifyCheckThetas :: ThetaType -- Given - -> ThetaType -- Wanted - -> TcM s () - -tcSimplifyCheckThetas givens wanteds - = reduceSimple classInstEnv givens wanteds `thenNF_Tc` \ irreds -> - if null irreds then - returnTc () - else - mapNF_Tc addNoInstErr irreds `thenNF_Tc_` - failTc -\end{code} - - -\begin{code} -type AvailsSimple = FiniteMap (Class, [TauType]) Bool - -- True => irreducible - -- False => given, or can be derived from a given or from an irreducible - -reduceSimple :: (Class -> ClassInstEnv) - -> ThetaType -- Given - -> ThetaType -- Wanted - -> NF_TcM s ThetaType -- Irreducible - -reduceSimple inst_mapper givens wanteds - = reduce_simple (0,[]) inst_mapper givens_fm wanteds `thenNF_Tc` \ givens_fm' -> - returnNF_Tc [ct | (ct,True) <- fmToList givens_fm'] - where - givens_fm = foldl addNonIrred emptyFM givens - -reduce_simple :: (Int,ThetaType) -- Stack - -> (Class -> ClassInstEnv) - -> AvailsSimple - -> ThetaType - -> NF_TcM s AvailsSimple - -reduce_simple (n,stack) inst_mapper avails wanteds - = go avails wanteds - where - go avails [] = returnNF_Tc avails - go avails (w:ws) = reduce_simple_help (n+1,w:stack) inst_mapper avails w `thenNF_Tc` \ avails' -> - go avails' ws - -reduce_simple_help stack inst_mapper givens wanted@(clas,tys) - | wanted `elemFM` givens - = returnNF_Tc givens - - | otherwise - = lookupSimpleInst (inst_mapper clas) clas tys `thenNF_Tc` \ maybe_theta -> - - case maybe_theta of - Nothing -> returnNF_Tc (addIrred givens wanted) - Just theta -> reduce_simple stack inst_mapper (addNonIrred givens wanted) theta - -addIrred :: AvailsSimple -> (Class, [TauType]) -> AvailsSimple -addIrred givens ct - = addSCs (addToFM givens ct True) ct - -addNonIrred :: AvailsSimple -> (Class, [TauType]) -> AvailsSimple -addNonIrred givens ct - = addSCs (addToFM givens ct False) ct - -addSCs givens ct@(clas,tys) - = foldl add givens sc_theta - where - (tyvars, sc_theta_tmpl, _, _, _) = classBigSig clas - sc_theta = substFlexiTheta (zipVarEnv tyvars tys) sc_theta_tmpl - - add givens ct = case lookupFM givens ct of - Nothing -> -- Add it and its superclasses - addSCs (addToFM givens ct False) ct - - Just True -> -- Set its flag to False; superclasses already done - addToFM givens ct False - - Just False -> -- Already done - givens - + (tyvars, sc_theta, sc_sels, _) = classBigSig clas + sc_theta' = substClasses (mkTopTyVarSubst tyvars tys) sc_theta + + add_sc avails (sc_dict, sc_sel) -- Add it, and its superclasses + = case lookupFM avails sc_dict of + Just (BoundTo _) -> returnNF_Tc avails -- See Note [SUPER] below + other -> addAvail avails sc_dict avail + where + sc_sel_rhs = DictApp (TyApp (HsVar sc_sel) tys) [instToId dict] + avail = Rhs sc_sel_rhs [dict] \end{code} -%************************************************************************ -%* * -\subsection[binds-for-local-funs]{@bindInstsOfLocalFuns@} -%* * -%************************************************************************ - -When doing a binding group, we may have @Insts@ of local functions. -For example, we might have... -\begin{verbatim} -let f x = x + 1 -- orig local function (overloaded) - f.1 = f Int -- two instances of f - f.2 = f Float - in - (f.1 5, f.2 6.7) -\end{verbatim} -The point is: we must drop the bindings for @f.1@ and @f.2@ here, -where @f@ is in scope; those @Insts@ must certainly not be passed -upwards towards the top-level. If the @Insts@ were binding-ified up -there, they would have unresolvable references to @f@. - -We pass in an @init_lie@ of @Insts@ and a list of locally-bound @Ids@. -For each method @Inst@ in the @init_lie@ that mentions one of the -@Ids@, we create a binding. We return the remaining @Insts@ (in an -@LIE@), as well as the @HsBinds@ generated. - -\begin{code} -bindInstsOfLocalFuns :: LIE s -> [TcIdBndr s] -> TcM s (LIE s, TcMonoBinds s) - -bindInstsOfLocalFuns init_lie local_ids - | null overloaded_ids || null lie_for_here - -- Common case - = returnTc (init_lie, EmptyMonoBinds) - - | otherwise - = reduceContext (text "bindInsts" <+> ppr local_ids) - try_me [] lie_for_here `thenTc` \ (binds, frees, irreds) -> - ASSERT( null irreds ) - returnTc (mkLIE frees `plusLIE` mkLIE lie_not_for_here, binds) - where - overloaded_ids = filter is_overloaded local_ids - is_overloaded id = case splitSigmaTy (idType id) of - (_, theta, _) -> not (null theta) +Note [SUPER]. We have to be careful here. If we are *given* d1:Ord a, +and want to deduce (d2:C [a]) where - overloaded_set = mkVarSet overloaded_ids -- There can occasionally be a lot of them - -- so it's worth building a set, so that - -- lookup (in isMethodFor) is faster + class Ord a => C a where + instance Ord a => C [a] where ... - -- No sense in repeatedly zonking lots of - -- constant constraints so filter them out here - (lie_for_here, lie_not_for_here) = partition (isMethodFor overloaded_set) - (bagToList init_lie) - try_me inst | isMethodFor overloaded_set inst = ReduceMe AddToIrreds - | otherwise = Free -\end{code} +Then we'll use the instance decl to deduce C [a] and then add the +superclasses of C [a] to avails. But we must not overwrite the binding +for d1:Ord a (which is given) with a superclass selection or we'll just +build a loop! Hence looking for BoundTo. Crudely, BoundTo is cheaper +than a selection. %************************************************************************ %* * -\section[Disambig]{Disambiguation of overloading} +\section{tcSimplifyTop: defaulting} %* * %************************************************************************ If a dictionary constrains a type variable which is -\begin{itemize} -\item -not mentioned in the environment -\item -and not mentioned in the type of the expression -\end{itemize} + * not mentioned in the environment + * and not mentioned in the type of the expression then it is ambiguous. No further information will arise to instantiate the type variable; nor will it be generalised and turned into an extra parameter to a function. It is an error for this to occur, except that Haskell provided for certain rules to be applied in the special case of numeric types. - Specifically, if -\begin{itemize} -\item -at least one of its classes is a numeric class, and -\item -all of its classes are numeric or standard -\end{itemize} + * at least one of its classes is a numeric class, and + * all of its classes are numeric or standard then the type variable can be defaulted to the first type in the default-type list which is an instance of all the offending classes. @@ -898,52 +1116,57 @@ dictionaries and either resolves them (producing bindings) or complains. It works by splitting the dictionary list by type variable, and using @disambigOne@ to do the real business. +@tcSimplifyTop@ is called once per module to simplify all the constant +and ambiguous Insts. + +We need to be careful of one case. Suppose we have + + instance Num a => Num (Foo a b) where ... + +and @tcSimplifyTop@ is given a constraint (Num (Foo x y)). Then it'll simplify +to (Num x), and default x to Int. But what about y?? + +It's OK: the final zonking stage should zap y to (), which is fine. -@tcSimplifyTop@ is called once per module to simplify -all the constant and ambiguous Insts. \begin{code} -tcSimplifyTop :: LIE s -> TcM s (TcDictBinds s) +tcSimplifyTop :: LIE -> TcM TcDictBinds tcSimplifyTop wanted_lie - = reduceContext (text "tcSimplTop") try_me [] wanteds `thenTc` \ (binds1, frees, irreds) -> + = simpleReduceLoop (text "tcSimplTop") try_me wanteds `thenTc` \ (frees, binds, irreds) -> ASSERT( null frees ) let -- All the non-std ones are definite errors (stds, non_stds) = partition isStdClassTyVarDict irreds - -- Group by type variable std_groups = equivClasses cmp_by_tyvar stds -- Pick the ones which its worth trying to disambiguate (std_oks, std_bads) = partition worth_a_try std_groups + -- Have a try at disambiguation -- if the type variable isn't bound -- up with one of the non-standard classes - worth_a_try group@(d:_) = isEmptyVarSet (tyVarsOfInst d `intersectVarSet` non_std_tyvars) + worth_a_try group@(d:_) = not (non_std_tyvars `intersectsVarSet` tyVarsOfInst d) non_std_tyvars = unionVarSets (map tyVarsOfInst non_stds) -- Collect together all the bad guys bad_guys = non_stds ++ concat std_bads in - -- Disambiguate the ones that look feasible mapTc disambigGroup std_oks `thenTc` \ binds_ambig -> -- And complain about the ones that don't - mapNF_Tc complain bad_guys `thenNF_Tc_` + addTopAmbigErrs bad_guys `thenNF_Tc_` - returnTc (binds1 `andMonoBinds` andMonoBindList binds_ambig) + returnTc (binds `andMonoBinds` andMonoBindList binds_ambig) where - wanteds = bagToList wanted_lie + wanteds = lieToList wanted_lie try_me inst = ReduceMe AddToIrreds d1 `cmp_by_tyvar` d2 = get_tv d1 `compare` get_tv d2 - complain d | isEmptyVarSet (tyVarsOfInst d) = addTopInstanceErr d - | otherwise = addAmbigErr tyVarsOfInst d - get_tv d = case getDictClassTys d of (clas, [ty]) -> getTyVar "tcSimplifyTop" ty get_clas d = case getDictClassTys d of @@ -963,11 +1186,15 @@ Since we're not using the result of @foo@, the result if (presumably) @void@. \begin{code} -disambigGroup :: [Inst s] -- All standard classes of form (C a) - -> TcM s (TcDictBinds s) +disambigGroup :: [Inst] -- All standard classes of form (C a) + -> TcM TcDictBinds disambigGroup dicts - | any isNumericClass classes -- Guaranteed all standard classes + | any isNumericClass classes -- Guaranteed all standard classes + -- see comment at the end of function for reasons as to + -- why the defaulting mechanism doesn't apply to groups that + -- include CCallable or CReturnable dicts. + && not (any isCcallishClass classes) = -- THE DICTS OBEY THE DEFAULTABLE CONSTRAINT -- SO, TRY DEFAULT TYPES IN ORDER @@ -981,7 +1208,7 @@ disambigGroup dicts = failTc try_default (default_ty : default_tys) - = tryTc (try_default default_tys) $ -- If default_ty fails, we try + = tryTc_ (try_default default_tys) $ -- If default_ty fails, we try -- default_tys instead tcSimplifyCheckThetas [] thetas `thenTc` \ _ -> returnTc default_ty @@ -990,18 +1217,16 @@ disambigGroup dicts in -- See if any default works, and if so bind the type variable to it -- If not, add an AmbigErr - recoverTc (complain dicts `thenNF_Tc_` returnTc EmptyMonoBinds) $ + recoverTc (addAmbigErrs dicts `thenNF_Tc_` returnTc EmptyMonoBinds) $ try_default default_tys `thenTc` \ chosen_default_ty -> -- Bind the type variable and reduce the context, for real this time - let - chosen_default_tc_ty = typeToTcType chosen_default_ty -- Tiresome! - in - unifyTauTy chosen_default_tc_ty (mkTyVarTy tyvar) `thenTc_` - reduceContext (text "disambig" <+> ppr dicts) - try_me [] dicts `thenTc` \ (binds, frees, ambigs) -> - ASSERT( null frees && null ambigs ) + unifyTauTy chosen_default_ty (mkTyVarTy tyvar) `thenTc_` + simpleReduceLoop (text "disambig" <+> ppr dicts) + try_me dicts `thenTc` \ (frees, binds, ambigs) -> + WARN( not (null frees && null ambigs), ppr frees $$ ppr ambigs ) + warnDefault dicts chosen_default_ty `thenTc_` returnTc binds | all isCreturnableClass classes @@ -1011,72 +1236,291 @@ disambigGroup dicts returnTc EmptyMonoBinds | otherwise -- No defaults - = complain dicts `thenNF_Tc_` + = addAmbigErrs dicts `thenNF_Tc_` returnTc EmptyMonoBinds where - complain = addAmbigErrs tyVarsOfInst try_me inst = ReduceMe AddToIrreds -- This reduce should not fail tyvar = get_tv (head dicts) -- Should be non-empty classes = map get_clas dicts \end{code} +[Aside - why the defaulting mechanism is turned off when + dealing with arguments and results to ccalls. + +When typechecking _ccall_s, TcExpr ensures that the external +function is only passed arguments (and in the other direction, +results) of a restricted set of 'native' types. This is +implemented via the help of the pseudo-type classes, +@CReturnable@ (CR) and @CCallable@ (CC.) + +The interaction between the defaulting mechanism for numeric +values and CC & CR can be a bit puzzling to the user at times. +For example, + + x <- _ccall_ f + if (x /= 0) then + _ccall_ g x + else + return () + +What type has 'x' got here? That depends on the default list +in operation, if it is equal to Haskell 98's default-default +of (Integer, Double), 'x' has type Double, since Integer +is not an instance of CR. If the default list is equal to +Haskell 1.4's default-default of (Int, Double), 'x' has type +Int. + +To try to minimise the potential for surprises here, the +defaulting mechanism is turned off in the presence of +CCallable and CReturnable. + +] + + +%************************************************************************ +%* * +\subsection[simple]{@Simple@ versions} +%* * +%************************************************************************ + +Much simpler versions when there are no bindings to make! + +@tcSimplifyThetas@ simplifies class-type constraints formed by +@deriving@ declarations and when specialising instances. We are +only interested in the simplified bunch of class/type constraints. + +It simplifies to constraints of the form (C a b c) where +a,b,c are type variables. This is required for the context of +instance declarations. + +\begin{code} +tcSimplifyThetas :: ClassContext -- Wanted + -> TcM ClassContext -- Needed + +tcSimplifyThetas wanteds + = doptsTc Opt_GlasgowExts `thenNF_Tc` \ glaExts -> + reduceSimple [] wanteds `thenNF_Tc` \ irreds -> + let + -- For multi-param Haskell, check that the returned dictionaries + -- don't have any of the form (C Int Bool) for which + -- we expect an instance here + -- For Haskell 98, check that all the constraints are of the form C a, + -- where a is a type variable + bad_guys | glaExts = [ct | ct@(clas,tys) <- irreds, + isEmptyVarSet (tyVarsOfTypes tys)] + | otherwise = [ct | ct@(clas,tys) <- irreds, + not (all isTyVarTy tys)] + in + if null bad_guys then + returnTc irreds + else + mapNF_Tc addNoInstErr bad_guys `thenNF_Tc_` + failTc +\end{code} + +@tcSimplifyCheckThetas@ just checks class-type constraints, essentially; +used with \tr{default} declarations. We are only interested in +whether it worked or not. + +\begin{code} +tcSimplifyCheckThetas :: ClassContext -- Given + -> ClassContext -- Wanted + -> TcM () + +tcSimplifyCheckThetas givens wanteds + = reduceSimple givens wanteds `thenNF_Tc` \ irreds -> + if null irreds then + returnTc () + else + mapNF_Tc addNoInstErr irreds `thenNF_Tc_` + failTc +\end{code} + + +\begin{code} +type AvailsSimple = FiniteMap (Class,[Type]) Bool + -- True => irreducible + -- False => given, or can be derived from a given or from an irreducible + +reduceSimple :: ClassContext -- Given + -> ClassContext -- Wanted + -> NF_TcM ClassContext -- Irreducible + +reduceSimple givens wanteds + = reduce_simple (0,[]) givens_fm wanteds `thenNF_Tc` \ givens_fm' -> + returnNF_Tc [ct | (ct,True) <- fmToList givens_fm'] + where + givens_fm = foldl addNonIrred emptyFM givens + +reduce_simple :: (Int,ClassContext) -- Stack + -> AvailsSimple + -> ClassContext + -> NF_TcM AvailsSimple + +reduce_simple (n,stack) avails wanteds + = go avails wanteds + where + go avails [] = returnNF_Tc avails + go avails (w:ws) = reduce_simple_help (n+1,w:stack) avails w `thenNF_Tc` \ avails' -> + go avails' ws + +reduce_simple_help stack givens wanted@(clas,tys) + | wanted `elemFM` givens + = returnNF_Tc givens + + | otherwise + = lookupSimpleInst clas tys `thenNF_Tc` \ maybe_theta -> + + case maybe_theta of + Nothing -> returnNF_Tc (addSimpleIrred givens wanted) + Just theta -> reduce_simple stack (addNonIrred givens wanted) theta + +addSimpleIrred :: AvailsSimple -> (Class,[Type]) -> AvailsSimple +addSimpleIrred givens ct@(clas,tys) + = addSCs (addToFM givens ct True) ct + +addNonIrred :: AvailsSimple -> (Class,[Type]) -> AvailsSimple +addNonIrred givens ct@(clas,tys) + = addSCs (addToFM givens ct False) ct + +addSCs givens ct@(clas,tys) + = foldl add givens sc_theta + where + (tyvars, sc_theta_tmpl, _, _) = classBigSig clas + sc_theta = substClasses (mkTopTyVarSubst tyvars tys) sc_theta_tmpl + + add givens ct@(clas, tys) + = case lookupFM givens ct of + Nothing -> -- Add it and its superclasses + addSCs (addToFM givens ct False) ct + + Just True -> -- Set its flag to False; superclasses already done + addToFM givens ct False + + Just False -> -- Already done + givens + +\end{code} + +%************************************************************************ +%* * +\section{Errors and contexts} +%* * +%************************************************************************ -Errors and contexts -~~~~~~~~~~~~~~~~~~~ ToDo: for these error messages, should we note the location as coming from the insts, or just whatever seems to be around in the monad just now? \begin{code} -genCantGenErr insts -- Can't generalise these Insts - = sep [ptext SLIT("Cannot generalise these overloadings (in a _ccall_):"), - nest 4 (pprInstsInFull insts) - ] - -addAmbigErrs ambig_tv_fn dicts = mapNF_Tc (addAmbigErr ambig_tv_fn) dicts - -addAmbigErr ambig_tv_fn dict - = tcAddSrcLoc (instLoc dict) $ - addErrTcM (tidy_env, - sep [text "Ambiguous type variable(s)" <+> - hsep (punctuate comma (map (quotes . ppr) ambig_tvs)), - nest 4 (text "in the constraint" <+> quotes (pprInst tidy_dict)), - nest 4 (pprOrigin dict)]) +addTopAmbigErrs dicts + = mapNF_Tc complain tidy_dicts where - ambig_tvs = varSetElems (ambig_tv_fn tidy_dict) - (tidy_env, tidy_dict) = tidyInst emptyTidyEnv dict + fixed_tvs = oclose (predsOfInsts tidy_dicts) emptyVarSet + (tidy_env, tidy_dicts) = tidyInsts emptyTidyEnv dicts + complain d | not (null (getIPs d)) = addTopIPErr tidy_env d + | tyVarsOfInst d `subVarSet` fixed_tvs = addTopInstanceErr tidy_env d + | otherwise = addAmbigErr tidy_env d + +addTopIPErr tidy_env tidy_dict + = addInstErrTcM (instLoc tidy_dict) + (tidy_env, + ptext SLIT("Unbound implicit parameter") <+> quotes (pprInst tidy_dict)) -- Used for top-level irreducibles -addTopInstanceErr dict - = tcAddSrcLoc (instLoc dict) $ - addErrTcM (tidy_env, - sep [ptext SLIT("No instance for") <+> quotes (pprInst tidy_dict), - nest 4 $ pprOrigin dict]) +addTopInstanceErr tidy_env tidy_dict + = addInstErrTcM (instLoc tidy_dict) + (tidy_env, + ptext SLIT("No instance for") <+> quotes (pprInst tidy_dict)) + +addAmbigErrs dicts + = mapNF_Tc (addAmbigErr tidy_env) tidy_dicts + where + (tidy_env, tidy_dicts) = tidyInsts emptyTidyEnv dicts + +addAmbigErr tidy_env tidy_dict + = addInstErrTcM (instLoc tidy_dict) + (tidy_env, + sep [text "Ambiguous type variable(s)" <+> pprQuotedList ambig_tvs, + nest 4 (text "in the constraint" <+> quotes (pprInst tidy_dict))]) where - (tidy_env, tidy_dict) = tidyInst emptyTidyEnv dict - -addNoInstanceErr str givens dict - = tcAddSrcLoc (instLoc dict) $ - addErrTcM (tidy_env, - sep [sep [ptext SLIT("Could not deduce") <+> quotes (pprInst tidy_dict), - nest 4 $ parens $ pprOrigin dict], - nest 4 $ ptext SLIT("from the context") <+> pprInsts tidy_givens] - $$ - ptext SLIT("Probable cause:") <+> - vcat [ptext SLIT("missing") <+> quotes (pprInst tidy_dict) <+> ptext SLIT("in") <+> str, - if all_tyvars then empty else - ptext SLIT("or missing instance declaration for") <+> quotes (pprInst tidy_dict)] - ) + ambig_tvs = varSetElems (tyVarsOfInst tidy_dict) + +warnDefault dicts default_ty + = doptsTc Opt_WarnTypeDefaults `thenTc` \ warn_flag -> + if warn_flag + then mapNF_Tc warn groups `thenNF_Tc_` returnNF_Tc () + else returnNF_Tc () + where - all_tyvars = all isTyVarTy tys - (_, tys) = getDictClassTys dict - (tidy_env, tidy_dict:tidy_givens) = tidyInsts emptyTidyEnv (dict:givens) + -- Tidy them first + (_, tidy_dicts) = mapAccumL tidyInst emptyTidyEnv dicts + + -- Group the dictionaries by source location + groups = equivClasses cmp tidy_dicts + i1 `cmp` i2 = get_loc i1 `compare` get_loc i2 + get_loc i = case instLoc i of { (_,loc,_) -> loc } + + warn [dict] = tcAddSrcLoc (get_loc dict) $ + warnTc True (ptext SLIT("Defaulting") <+> quotes (pprInst dict) <+> + ptext SLIT("to type") <+> quotes (ppr default_ty)) + + warn dicts = tcAddSrcLoc (get_loc (head dicts)) $ + warnTc True (vcat [ptext SLIT("Defaulting the following constraint(s) to type") <+> quotes (ppr default_ty), + pprInstsInFull dicts]) + +-- The error message when we don't find a suitable instance +-- is complicated by the fact that sometimes this is because +-- there is no instance, and sometimes it's because there are +-- too many instances (overlap). See the comments in TcEnv.lhs +-- with the InstEnv stuff. +addNoInstanceErr what_doc givens dict + = tcGetInstEnv `thenNF_Tc` \ inst_env -> + let + doc = vcat [sep [herald <+> quotes (pprInst tidy_dict), + nest 4 $ ptext SLIT("from the context") <+> pprInsts tidy_givens], + ambig_doc, + ptext SLIT("Probable fix:"), + nest 4 fix1, + nest 4 fix2] + + herald = ptext SLIT("Could not") <+> unambig_doc <+> ptext SLIT("deduce") + unambig_doc | ambig_overlap = ptext SLIT("unambiguously") + | otherwise = empty + + ambig_doc + | not ambig_overlap = empty + | otherwise + = vcat [ptext SLIT("The choice of (overlapping) instance declaration"), + nest 4 (ptext SLIT("depends on the instantiation of") <+> + quotes (pprWithCommas ppr (varSetElems (tyVarsOfInst tidy_dict))))] + + fix1 = sep [ptext SLIT("Add") <+> quotes (pprInst tidy_dict), + ptext SLIT("to the") <+> what_doc] + + fix2 | isTyVarDict dict || ambig_overlap + = empty + | otherwise + = ptext SLIT("Or add an instance declaration for") <+> quotes (pprInst tidy_dict) + + (tidy_env, tidy_dict:tidy_givens) = tidyInsts emptyTidyEnv (dict:givens) + + -- Checks for the ambiguous case when we have overlapping instances + ambig_overlap | isClassDict dict + = case lookupInstEnv inst_env clas tys of + NoMatch ambig -> ambig + other -> False + | otherwise = False + where + (clas,tys) = getDictClassTys dict + in + addInstErrTcM (instLoc dict) (tidy_env, doc) -- Used for the ...Thetas variants; all top level addNoInstErr (c,ts) - = addErrTc (ptext SLIT("No instance for") <+> quotes (pprConstraint c ts)) + = addErrTc (ptext SLIT("No instance for") <+> quotes (pprClassPred c ts)) reduceDepthErr n stack = vcat [ptext SLIT("Context reduction stack overflow; size =") <+> int n, @@ -1084,4 +1528,9 @@ reduceDepthErr n stack nest 4 (pprInstsInFull stack)] reduceDepthMsg n stack = nest 4 (pprInstsInFull stack) + +----------------------------------------------- +addCantGenErr inst + = addErrTc (sep [ptext SLIT("Cannot generalise these overloadings (in a _ccall_):"), + nest 4 (ppr inst <+> pprInstLoc (instLoc inst))]) \end{code}