X-Git-Url: http://git.megacz.com/?a=blobdiff_plain;f=ghc%2Fcompiler%2Ftypes%2FType.lhs;h=d3b87ffdcc38b6f33d5e46dc2045f03c4ffc38c0;hb=b783b8644d142d12c832e261ba60bc81c19c3a12;hp=3078d8d5299198fed974303cc12db6f58e795a34;hpb=8295d9ca0f3e72e545b35c43a4a2e1e4ec582fb6;p=ghc-hetmet.git diff --git a/ghc/compiler/types/Type.lhs b/ghc/compiler/types/Type.lhs index 3078d8d..d3b87ff 100644 --- a/ghc/compiler/types/Type.lhs +++ b/ghc/compiler/types/Type.lhs @@ -1,311 +1,170 @@ +% +% (c) The GRASP/AQUA Project, Glasgow University, 1998 +% +\section[Type]{Type - public interface} + \begin{code} module Type ( - Type(..), TyNote(..), -- Representation visible to friends - Kind, TyVarSubst, - - superKind, superBoxity, -- :: SuperKind - - boxedKind, -- :: Kind :: BX - anyBoxKind, -- :: Kind :: BX - typeCon, -- :: KindCon :: BX -> KX - anyBoxCon, -- :: KindCon :: BX - - boxedTypeKind, unboxedTypeKind, openTypeKind, -- Kind :: superKind + -- re-exports from TypeRep + TyThing(..), Type, PredType(..), ThetaType, + funTyCon, - mkArrowKind, mkArrowKinds, hasMoreBoxityInfo, + -- Re-exports from Kind + module Kind, - funTyCon, + -- Re-exports from TyCon + PrimRep(..), mkTyVarTy, mkTyVarTys, getTyVar, getTyVar_maybe, isTyVarTy, mkAppTy, mkAppTys, splitAppTy, splitAppTys, splitAppTy_maybe, - mkFunTy, mkFunTys, splitFunTy_maybe, splitFunTys, funResultTy, - zipFunTys, + mkFunTy, mkFunTys, splitFunTy, splitFunTy_maybe, + splitFunTys, splitFunTysN, + funResultTy, funArgTy, zipFunTys, isFunTy, - mkTyConApp, mkTyConTy, splitTyConApp_maybe, - splitAlgTyConApp_maybe, splitAlgTyConApp, - mkDictTy, splitDictTy_maybe, isDictTy, + mkGenTyConApp, mkTyConApp, mkTyConTy, + tyConAppTyCon, tyConAppArgs, + splitTyConApp_maybe, splitTyConApp, - mkSynTy, isSynTy, deNoteType, + mkSynTy, + + repType, typePrimRep, coreView, deepCoreView, mkForAllTy, mkForAllTys, splitForAllTy_maybe, splitForAllTys, - applyTy, applyTys, isForAllTy, - mkPiType, + applyTy, applyTys, isForAllTy, dropForAlls, + + -- Source types + predTypeRep, mkPredTy, mkPredTys, - TauType, RhoType, SigmaType, ThetaType, - isTauTy, - mkRhoTy, splitRhoTy, - mkSigmaTy, splitSigmaTy, + -- Newtypes + splitRecNewType_maybe, -- Lifting and boxity - isUnLiftedType, isUnboxedType, isUnboxedTupleType, isAlgType, isDataType, - typePrimRep, + isUnLiftedType, isUnboxedTupleType, isAlgType, isPrimitiveType, + isStrictType, isStrictPred, -- Free variables - tyVarsOfType, tyVarsOfTypes, namesOfType, typeKind, - addFreeTyVars, - - -- Substitution - substTy, substTheta, fullSubstTy, substTyVar, - substTopTy, substTopTheta, + tyVarsOfType, tyVarsOfTypes, tyVarsOfPred, tyVarsOfTheta, + typeKind, addFreeTyVars, -- Tidying up for printing - tidyType, tidyTypes, - tidyOpenType, tidyOpenTypes, - tidyTyVar, tidyTyVars, - tidyTopType + tidyType, tidyTypes, + tidyOpenType, tidyOpenTypes, + tidyTyVarBndr, tidyFreeTyVars, + tidyOpenTyVar, tidyOpenTyVars, + tidyTopType, tidyPred, + + -- Comparison + coreEqType, tcEqType, tcEqTypes, tcCmpType, tcCmpTypes, + tcEqPred, tcCmpPred, tcEqTypeX, + + -- Seq + seqType, seqTypes, + + -- Type substitutions + TvSubst(..), -- Representation visible to a few friends + TvSubstEnv, emptyTvSubst, + mkTvSubst, zipTvSubst, zipTopTvSubst, mkTopTvSubst, + getTvSubstEnv, setTvSubstEnv, getTvInScope, extendTvInScope, + extendTvSubst, extendTvSubstList, isInScope, + + -- Performing substitution on types + substTy, substTys, substTyWith, substTheta, substTyVar, + deShadowTy, + + -- Pretty-printing + pprType, pprParendType, pprTyThingCategory, + pprPred, pprTheta, pprThetaArrow, pprClassPred ) where #include "HsVersions.h" -import {-# SOURCE #-} DataCon( DataCon ) -import {-# SOURCE #-} PprType( pprType ) -- Only called in debug messages +-- We import the representation and primitive functions from TypeRep. +-- Many things are reexported, but not the representation! + +import TypeRep -- friends: -import Var ( Id, TyVar, IdOrTyVar, - tyVarKind, isId, idType, setVarOcc - ) +import Kind +import Var ( Var, TyVar, tyVarKind, tyVarName, setTyVarName ) import VarEnv import VarSet -import Name ( NamedThing(..), Provenance(..), ExportFlag(..), - mkWiredInTyConName, mkGlobalName, tcOcc, - tidyOccName, TidyOccEnv - ) -import NameSet -import Class ( classTyCon, Class ) -import TyCon ( TyCon, KindCon, - mkFunTyCon, mkKindCon, mkSuperKindCon, - matchesTyCon, isUnboxedTupleTyCon, isUnLiftedTyCon, - isFunTyCon, isDataTyCon, - isAlgTyCon, isSynTyCon, tyConArity, - tyConKind, tyConDataCons, getSynTyConDefn, - tyConPrimRep, tyConClass_maybe +import Name ( NamedThing(..), mkInternalName, tidyOccName ) +import Class ( Class, classTyCon ) +import TyCon ( TyCon, isRecursiveTyCon, isPrimTyCon, + isUnboxedTupleTyCon, isUnLiftedTyCon, + isFunTyCon, isNewTyCon, newTyConRep, newTyConRhs, + isAlgTyCon, isSynTyCon, tyConArity, newTyConRhs_maybe, + tyConKind, getSynTyConDefn, PrimRep(..), tyConPrimRep, ) -- others -import BasicTypes ( Unused ) -import SrcLoc ( mkBuiltinSrcLoc ) -import PrelMods ( pREL_GHC ) -import Maybes ( maybeToBool ) -import PrimRep ( PrimRep(..), isFollowableRep ) -import Unique -- quite a few *Keys -import Util ( thenCmp, mapAccumL ) +import CmdLineOpts ( opt_DictsStrict ) +import SrcLoc ( noSrcLoc ) +import Unique ( Uniquable(..) ) +import Util ( mapAccumL, seqList, lengthIs, snocView, thenCmp, isEqual ) import Outputable - -\end{code} - -%************************************************************************ -%* * -\subsection{Type Classifications} -%* * -%************************************************************************ - -A type is - - *unboxed* iff its representation is other than a pointer - Unboxed types cannot instantiate a type variable - Unboxed types are always unlifted. - - *lifted* A type is lifted iff it has bottom as an element. - Closures always have lifted types: i.e. any - let-bound identifier in Core must have a lifted - type. Operationally, a lifted object is one that - can be entered. - (NOTE: previously "pointed"). - - *algebraic* A type with one or more constructors, whether declared - with "data" or "newtype". - An algebraic type is one that can be deconstructed - with a case expression. - - *NOT* the same as lifted types, because we also - include unboxed tuples in this classification. - - *data* A type declared with "data". Also boxed tuples. - - *primitive* iff it is a built-in type that can't be expressed - in Haskell. - -Currently, all primitive types are unlifted, but that's not necessarily -the case. (E.g. Int could be primitive.) - -Some primitive types are unboxed, such as Int#, whereas some are boxed -but unlifted (such as ByteArray#). The only primitive types that we -classify as algebraic are the unboxed tuples. - -examples of type classifications: - -Type primitive boxed lifted algebraic ------------------------------------------------------------------------------ -Int#, Yes No No No -ByteArray# Yes Yes No No -(# a, b #) Yes No No Yes -( a, b ) No Yes Yes Yes -[a] No Yes Yes Yes - -%************************************************************************ -%* * -\subsection{The data type} -%* * -%************************************************************************ - - -\begin{code} -type SuperKind = Type -type Kind = Type - -type TyVarSubst = TyVarEnv Type - -data Type - = TyVarTy TyVar - - | AppTy - Type -- Function is *not* a TyConApp - Type - - | TyConApp -- Application of a TyCon - TyCon -- *Invariant* saturated appliations of FunTyCon and - -- synonyms have their own constructors, below. - [Type] -- Might not be saturated. - - | FunTy -- Special case of TyConApp: TyConApp FunTyCon [t1,t2] - Type - Type - - | NoteTy -- Saturated application of a type synonym - TyNote - Type -- The expanded version - - | ForAllTy - TyVar - Type -- TypeKind - -data TyNote - = SynNote Type -- The unexpanded version of the type synonym; always a TyConApp - | FTVNote TyVarSet -- The free type variables of the noted expression -\end{code} - - -%************************************************************************ -%* * -\subsection{Kinds} -%* * -%************************************************************************ - -Kinds -~~~~~ -k::K = Type bx - | k -> k - | kv - -kv :: KX is a kind variable - -Type :: BX -> KX - -bx::BX = Boxed - | Unboxed - | AnyBox -- Used *only* for special built-in things - -- like error :: forall (a::*?). String -> a - -- Here, the 'a' can be instantiated to a boxed or - -- unboxed type. - | bv - -bxv :: BX is a boxity variable - -sk = KX -- A kind - | BX -- A boxity - | sk -> sk -- In ptic (BX -> KX) - -\begin{code} -mk_kind_name key str = mkGlobalName key pREL_GHC (tcOcc str) - (LocalDef mkBuiltinSrcLoc NotExported) - -- mk_kind_name is a bit of a hack - -- The LocalDef means that we print the name without - -- a qualifier, which is what we want for these kinds. - -- It's used for both Kinds and Boxities -\end{code} - -Define KX, BX. - -\begin{code} -superKind :: SuperKind -- KX, the type of all kinds -superKindName = mk_kind_name kindConKey SLIT("KX") -superKind = TyConApp (mkSuperKindCon superKindName) [] - -superBoxity :: SuperKind -- BX, the type of all boxities -superBoxityName = mk_kind_name boxityConKey SLIT("BX") -superBoxity = TyConApp (mkSuperKindCon superBoxityName) [] -\end{code} - -Define Boxed, Unboxed, AnyBox - -\begin{code} -boxedKind, unboxedKind, anyBoxKind :: Kind -- Of superkind superBoxity - -boxedConName = mk_kind_name boxedConKey SLIT("*") -boxedKind = TyConApp (mkKindCon boxedConName superBoxity) [] - -unboxedConName = mk_kind_name unboxedConKey SLIT("#") -unboxedKind = TyConApp (mkKindCon unboxedConName superBoxity) [] - -anyBoxConName = mk_kind_name anyBoxConKey SLIT("?") -anyBoxCon = mkKindCon anyBoxConName superBoxity -- A kind of wild card -anyBoxKind = TyConApp anyBoxCon [] -\end{code} - -Define Type - -\begin{code} -typeCon :: KindCon -typeConName = mk_kind_name typeConKey SLIT("Type") -typeCon = mkKindCon typeConName (superBoxity `FunTy` superKind) -\end{code} - -Define (Type Boxed), (Type Unboxed), (Type AnyBox) - -\begin{code} -boxedTypeKind, unboxedTypeKind, openTypeKind :: Kind -boxedTypeKind = TyConApp typeCon [boxedKind] -unboxedTypeKind = TyConApp typeCon [unboxedKind] -openTypeKind = TyConApp typeCon [anyBoxKind] - -mkArrowKind :: Kind -> Kind -> Kind -mkArrowKind k1 k2 = k1 `FunTy` k2 - -mkArrowKinds :: [Kind] -> Kind -> Kind -mkArrowKinds arg_kinds result_kind = foldr mkArrowKind result_kind arg_kinds -\end{code} - -\begin{code} -hasMoreBoxityInfo :: Kind -> Kind -> Bool -hasMoreBoxityInfo k1 k2 - | k2 == openTypeKind = ASSERT( is_type_kind k1) True - | otherwise = k1 == k2 - where - -- Returns true for things of form (Type x) - is_type_kind k = case splitTyConApp_maybe k of - Just (tc,[_]) -> tc == typeCon - Nothing -> False +import UniqSet ( sizeUniqSet ) -- Should come via VarSet +import Maybe ( isJust ) \end{code} %************************************************************************ %* * -\subsection{Wired-in type constructors + Type representation %* * %************************************************************************ -We define a few wired-in type constructors here to avoid module knots +In Core, we "look through" non-recursive newtypes and PredTypes. \begin{code} -funTyConName = mkWiredInTyConName funTyConKey pREL_GHC SLIT("->") funTyCon -funTyCon = mkFunTyCon funTyConName (mkArrowKinds [boxedTypeKind, boxedTypeKind] boxedTypeKind) +{-# INLINE coreView #-} +coreView :: Type -> Maybe Type +-- Srips off the *top layer only* of a type to give +-- its underlying representation type. +-- Returns Nothing if there is nothing to look through. +-- +-- By being non-recursive and inlined, this case analysis gets efficiently +-- joined onto the case analysis that the caller is already doing +coreView (NoteTy _ ty) = Just ty +coreView (PredTy p) = Just (predTypeRep p) +coreView (TyConApp tc tys) = expandNewTcApp tc tys +coreView ty = Nothing + +deepCoreView :: Type -> Type +-- Apply coreView recursively +deepCoreView ty + | Just ty' <- coreView ty = deepCoreView ty' +deepCoreView (TyVarTy tv) = TyVarTy tv +deepCoreView (TyConApp tc tys) = TyConApp tc (map deepCoreView tys) +deepCoreView (AppTy t1 t2) = AppTy (deepCoreView t1) (deepCoreView t2) +deepCoreView (FunTy t1 t2) = FunTy (deepCoreView t1) (deepCoreView t2) +deepCoreView (ForAllTy tv ty) = ForAllTy tv (deepCoreView ty) + -- No NoteTy, no PredTy + +expandNewTcApp :: TyCon -> [Type] -> Maybe Type +-- A local helper function (not exported) +-- Expands *the outermoset level of* a newtype application to +-- *either* a vanilla TyConApp (recursive newtype, or non-saturated) +-- *or* the newtype representation (otherwise), meaning the +-- type written in the RHS of the newtype decl, +-- which may itself be a newtype +-- +-- Example: newtype R = MkR S +-- newtype S = MkS T +-- newtype T = MkT (T -> T) +-- expandNewTcApp on R gives Just S +-- on S gives Just T +-- on T gives Nothing (no expansion) + +expandNewTcApp tc tys = case newTyConRhs_maybe tc tys of + Nothing -> Nothing + Just (tenv, rhs) -> Just (substTy (mkTopTvSubst tenv) rhs) \end{code} - %************************************************************************ %* * \subsection{Constructor-specific functions} @@ -324,19 +183,17 @@ mkTyVarTys :: [TyVar] -> [Type] mkTyVarTys = map mkTyVarTy -- a common use of mkTyVarTy getTyVar :: String -> Type -> TyVar -getTyVar msg (TyVarTy tv) = tv -getTyVar msg (NoteTy _ t) = getTyVar msg t -getTyVar msg other = panic ("getTyVar: " ++ msg) - -getTyVar_maybe :: Type -> Maybe TyVar -getTyVar_maybe (TyVarTy tv) = Just tv -getTyVar_maybe (NoteTy _ t) = getTyVar_maybe t -getTyVar_maybe other = Nothing +getTyVar msg ty = case getTyVar_maybe ty of + Just tv -> tv + Nothing -> panic ("getTyVar: " ++ msg) isTyVarTy :: Type -> Bool -isTyVarTy (TyVarTy tv) = True -isTyVarTy (NoteTy _ ty) = isTyVarTy ty -isTyVarTy other = False +isTyVarTy ty = isJust (getTyVar_maybe ty) + +getTyVar_maybe :: Type -> Maybe TyVar +getTyVar_maybe ty | Just ty' <- coreView ty = getTyVar_maybe ty' +getTyVar_maybe (TyVarTy tv) = Just tv +getTyVar_maybe other = Nothing \end{code} @@ -348,36 +205,44 @@ invariant that a TyConApp is always visibly so. mkAppTy maintains the invariant: use it. \begin{code} -mkAppTy orig_ty1 orig_ty2 = mk_app orig_ty1 +mkAppTy orig_ty1 orig_ty2 + = mk_app orig_ty1 where mk_app (NoteTy _ ty1) = mk_app ty1 - mk_app (TyConApp tc tys) = mkTyConApp tc (tys ++ [orig_ty2]) + mk_app (TyConApp tc tys) = mkGenTyConApp tc (tys ++ [orig_ty2]) mk_app ty1 = AppTy orig_ty1 orig_ty2 + -- We call mkGenTyConApp because the TyConApp could be an + -- under-saturated type synonym. GHC allows that; e.g. + -- type Foo k = k a -> k a + -- type Id x = x + -- foo :: Foo Id -> Foo Id + -- + -- Here Id is partially applied in the type sig for Foo, + -- but once the type synonyms are expanded all is well mkAppTys :: Type -> [Type] -> Type mkAppTys orig_ty1 [] = orig_ty1 -- This check for an empty list of type arguments - -- avoids the needless of a type synonym constructor. + -- avoids the needless loss of a type synonym constructor. -- For example: mkAppTys Rational [] -- returns to (Ratio Integer), which has needlessly lost -- the Rational part. -mkAppTys orig_ty1 orig_tys2 = mk_app orig_ty1 +mkAppTys orig_ty1 orig_tys2 + = mk_app orig_ty1 where mk_app (NoteTy _ ty1) = mk_app ty1 - mk_app (TyConApp tc tys) = mkTyConApp tc (tys ++ orig_tys2) + mk_app (TyConApp tc tys) = mkGenTyConApp tc (tys ++ orig_tys2) + -- mkGenTyConApp: see notes with mkAppTy mk_app ty1 = foldl AppTy orig_ty1 orig_tys2 splitAppTy_maybe :: Type -> Maybe (Type, Type) +splitAppTy_maybe ty | Just ty' <- coreView ty = splitAppTy_maybe ty' splitAppTy_maybe (FunTy ty1 ty2) = Just (TyConApp funTyCon [ty1], ty2) splitAppTy_maybe (AppTy ty1 ty2) = Just (ty1, ty2) -splitAppTy_maybe (NoteTy _ ty) = splitAppTy_maybe ty -splitAppTy_maybe (TyConApp tc []) = Nothing -splitAppTy_maybe (TyConApp tc tys) = split tys [] - where - split [ty2] acc = Just (TyConApp tc (reverse acc), ty2) - split (ty:tys) acc = split tys (ty:acc) - -splitAppTy_maybe other = Nothing +splitAppTy_maybe (TyConApp tc tys) = case snocView tys of + Nothing -> Nothing + Just (tys',ty') -> Just (TyConApp tc tys', ty') +splitAppTy_maybe other = Nothing splitAppTy :: Type -> (Type, Type) splitAppTy ty = case splitAppTy_maybe ty of @@ -387,11 +252,11 @@ splitAppTy ty = case splitAppTy_maybe ty of splitAppTys :: Type -> (Type, [Type]) splitAppTys ty = split ty ty [] where + split orig_ty ty args | Just ty' <- coreView ty = split orig_ty ty' args split orig_ty (AppTy ty arg) args = split ty ty (arg:args) - split orig_ty (NoteTy _ ty) args = split orig_ty ty args + split orig_ty (TyConApp tc tc_args) args = (TyConApp tc [], tc_args ++ args) split orig_ty (FunTy ty1 ty2) args = ASSERT( null args ) (TyConApp funTyCon [], [ty1,ty2]) - split orig_ty (TyConApp tc tc_args) args = (TyConApp tc [], tc_args ++ args) split orig_ty ty args = (orig_ty, args) \end{code} @@ -407,109 +272,99 @@ mkFunTy arg res = FunTy arg res mkFunTys :: [Type] -> Type -> Type mkFunTys tys ty = foldr FunTy ty tys -splitFunTy_maybe :: Type -> Maybe (Type, Type) -splitFunTy_maybe (FunTy arg res) = Just (arg, res) -splitFunTy_maybe (NoteTy _ ty) = splitFunTy_maybe ty -splitFunTy_maybe other = Nothing +isFunTy :: Type -> Bool +isFunTy ty = isJust (splitFunTy_maybe ty) + +splitFunTy :: Type -> (Type, Type) +splitFunTy ty | Just ty' <- coreView ty = splitFunTy ty' +splitFunTy (FunTy arg res) = (arg, res) +splitFunTy other = pprPanic "splitFunTy" (ppr other) +splitFunTy_maybe :: Type -> Maybe (Type, Type) +splitFunTy_maybe ty | Just ty' <- coreView ty = splitFunTy_maybe ty' +splitFunTy_maybe (FunTy arg res) = Just (arg, res) +splitFunTy_maybe other = Nothing splitFunTys :: Type -> ([Type], Type) splitFunTys ty = split [] ty ty where - split args orig_ty (FunTy arg res) = split (arg:args) res res - split args orig_ty (NoteTy _ ty) = split args orig_ty ty - split args orig_ty ty = (reverse args, orig_ty) + split args orig_ty ty | Just ty' <- coreView ty = split args orig_ty ty' + split args orig_ty (FunTy arg res) = split (arg:args) res res + split args orig_ty ty = (reverse args, orig_ty) + +splitFunTysN :: Int -> Type -> ([Type], Type) +-- Split off exactly n arg tys +splitFunTysN 0 ty = ([], ty) +splitFunTysN n ty = case splitFunTy ty of { (arg, res) -> + case splitFunTysN (n-1) res of { (args, res) -> + (arg:args, res) }} zipFunTys :: Outputable a => [a] -> Type -> ([(a,Type)], Type) zipFunTys orig_xs orig_ty = split [] orig_xs orig_ty orig_ty where - split acc [] nty ty = (reverse acc, nty) - split acc (x:xs) nty (FunTy arg res) = split ((x,arg):acc) xs res res - split acc xs nty (NoteTy _ ty) = split acc xs nty ty - split acc (x:xs) nty ty = pprPanic "zipFunTys" (ppr orig_xs <+> pprType orig_ty) + split acc [] nty ty = (reverse acc, nty) + split acc xs nty ty + | Just ty' <- coreView ty = split acc xs nty ty' + split acc (x:xs) nty (FunTy arg res) = split ((x,arg):acc) xs res res + split acc (x:xs) nty ty = pprPanic "zipFunTys" (ppr orig_xs <+> ppr orig_ty) funResultTy :: Type -> Type -funResultTy (FunTy arg res) = res -funResultTy (NoteTy _ ty) = funResultTy ty -funResultTy ty = pprPanic "funResultTy" (pprType ty) +funResultTy ty | Just ty' <- coreView ty = funResultTy ty' +funResultTy (FunTy arg res) = res +funResultTy ty = pprPanic "funResultTy" (ppr ty) + +funArgTy :: Type -> Type +funArgTy ty | Just ty' <- coreView ty = funArgTy ty' +funArgTy (FunTy arg res) = arg +funArgTy ty = pprPanic "funArgTy" (ppr ty) \end{code} - --------------------------------------------------------------------- TyConApp ~~~~~~~~ +@mkTyConApp@ is a key function, because it builds a TyConApp, FunTy or PredTy, +as apppropriate. \begin{code} +mkGenTyConApp :: TyCon -> [Type] -> Type +mkGenTyConApp tc tys + | isSynTyCon tc = mkSynTy tc tys + | otherwise = mkTyConApp tc tys + mkTyConApp :: TyCon -> [Type] -> Type +-- Assumes TyCon is not a SynTyCon; use mkSynTy instead for those mkTyConApp tycon tys - | isFunTyCon tycon && length tys == 2 - = case tys of - (ty1:ty2:_) -> FunTy ty1 ty2 + | isFunTyCon tycon, [ty1,ty2] <- tys + = FunTy ty1 ty2 | otherwise = ASSERT(not (isSynTyCon tycon)) TyConApp tycon tys mkTyConTy :: TyCon -> Type -mkTyConTy tycon = ASSERT( not (isSynTyCon tycon) ) - TyConApp tycon [] +mkTyConTy tycon = mkTyConApp tycon [] -- splitTyConApp "looks through" synonyms, because they don't -- mean a distinct type, but all other type-constructor applications -- including functions are returned as Just .. +tyConAppTyCon :: Type -> TyCon +tyConAppTyCon ty = fst (splitTyConApp ty) + +tyConAppArgs :: Type -> [Type] +tyConAppArgs ty = snd (splitTyConApp ty) + +splitTyConApp :: Type -> (TyCon, [Type]) +splitTyConApp ty = case splitTyConApp_maybe ty of + Just stuff -> stuff + Nothing -> pprPanic "splitTyConApp" (ppr ty) + splitTyConApp_maybe :: Type -> Maybe (TyCon, [Type]) +splitTyConApp_maybe ty | Just ty' <- coreView ty = splitTyConApp_maybe ty' splitTyConApp_maybe (TyConApp tc tys) = Just (tc, tys) splitTyConApp_maybe (FunTy arg res) = Just (funTyCon, [arg,res]) -splitTyConApp_maybe (NoteTy _ ty) = splitTyConApp_maybe ty splitTyConApp_maybe other = Nothing - --- splitAlgTyConApp_maybe looks for --- *saturated* applications of *algebraic* data types --- "Algebraic" => newtype, data type, or dictionary (not function types) --- We return the constructors too. - -splitAlgTyConApp_maybe :: Type -> Maybe (TyCon, [Type], [DataCon]) -splitAlgTyConApp_maybe (TyConApp tc tys) - | isAlgTyCon tc && - tyConArity tc == length tys = Just (tc, tys, tyConDataCons tc) -splitAlgTyConApp_maybe (NoteTy _ ty) = splitAlgTyConApp_maybe ty -splitAlgTyConApp_maybe other = Nothing - -splitAlgTyConApp :: Type -> (TyCon, [Type], [DataCon]) - -- Here the "algebraic" property is an *assertion* -splitAlgTyConApp (TyConApp tc tys) = ASSERT( isAlgTyCon tc && tyConArity tc == length tys ) - (tc, tys, tyConDataCons tc) -splitAlgTyConApp (NoteTy _ ty) = splitAlgTyConApp ty -\end{code} - -"Dictionary" types are just ordinary data types, but you can -tell from the type constructor whether it's a dictionary or not. - -\begin{code} -mkDictTy :: Class -> [Type] -> Type -mkDictTy clas tys = TyConApp (classTyCon clas) tys - -splitDictTy_maybe :: Type -> Maybe (Class, [Type]) -splitDictTy_maybe (TyConApp tc tys) - | maybeToBool maybe_class - && tyConArity tc == length tys = Just (clas, tys) - where - maybe_class = tyConClass_maybe tc - Just clas = maybe_class - -splitDictTy_maybe (NoteTy _ ty) = splitDictTy_maybe ty -splitDictTy_maybe other = Nothing - -isDictTy :: Type -> Bool - -- This version is slightly more efficient than (maybeToBool . splitDictTy) -isDictTy (TyConApp tc tys) - | maybeToBool (tyConClass_maybe tc) - && tyConArity tc == length tys - = True -isDictTy (NoteTy _ ty) = isDictTy ty -isDictTy other = False \end{code} @@ -518,24 +373,29 @@ isDictTy other = False ~~~~~ \begin{code} -mkSynTy syn_tycon tys - = ASSERT(isSynTyCon syn_tycon) - NoteTy (SynNote (TyConApp syn_tycon tys)) - (substTopTy (zipVarEnv tyvars tys) body) +mkSynTy tycon tys + | n_args == arity -- Exactly saturated + = mk_syn tys + | n_args > arity -- Over-saturated + = case splitAt arity tys of { (as,bs) -> mkAppTys (mk_syn as) bs } + -- Its important to use mkAppTys, rather than (foldl AppTy), + -- because (mk_syn as) might well return a partially-applied + -- type constructor; indeed, usually will! + | otherwise -- Un-saturated + = TyConApp tycon tys + -- For the un-saturated case we build TyConApp directly + -- (mkTyConApp ASSERTs that the tc isn't a SynTyCon). + -- Here we are relying on checkValidType to find + -- the error. What we can't do is use mkSynTy with + -- too few arg tys, because that is utterly bogus. + where - (tyvars, body) = getSynTyConDefn syn_tycon - -isSynTy (NoteTy (SynNote _) _) = True -isSynTy other = False - -deNoteType :: Type -> Type - -- Sorry for the cute name -deNoteType ty@(TyVarTy tyvar) = ty -deNoteType (TyConApp tycon tys) = TyConApp tycon (map deNoteType tys) -deNoteType (NoteTy _ ty) = deNoteType ty -deNoteType (AppTy fun arg) = AppTy (deNoteType fun) (deNoteType arg) -deNoteType (FunTy fun arg) = FunTy (deNoteType fun) (deNoteType arg) -deNoteType (ForAllTy tv ty) = ForAllTy tv (deNoteType ty) + mk_syn tys = NoteTy (SynNote (TyConApp tycon tys)) + (substTyWith tyvars tys body) + + (tyvars, body) = ASSERT( isSynTyCon tycon ) getSynTyConDefn tycon + arity = tyConArity tycon + n_args = length tys \end{code} Notes on type synonyms @@ -553,6 +413,48 @@ The reason is that we then get better (shorter) type signatures in interfaces. Notably this plays a role in tcTySigs in TcBinds.lhs. + Representation types + ~~~~~~~~~~~~~~~~~~~~ +repType looks through + (a) for-alls, and + (b) synonyms + (c) predicates + (d) usage annotations + (e) all newtypes, including recursive ones +It's useful in the back end. + +\begin{code} +repType :: Type -> Type +-- Only applied to types of kind *; hence tycons are saturated +repType (ForAllTy _ ty) = repType ty +repType (NoteTy _ ty) = repType ty +repType (PredTy p) = repType (predTypeRep p) +repType (TyConApp tc tys) + | isNewTyCon tc = ASSERT( tys `lengthIs` tyConArity tc ) + repType (new_type_rep tc tys) +repType ty = ty + +-- ToDo: this could be moved to the code generator, using splitTyConApp instead +-- of inspecting the type directly. +typePrimRep :: Type -> PrimRep +typePrimRep ty = case repType ty of + TyConApp tc _ -> tyConPrimRep tc + FunTy _ _ -> PtrRep + AppTy _ _ -> PtrRep -- See note below + TyVarTy _ -> PtrRep + other -> pprPanic "typePrimRep" (ppr ty) + -- Types of the form 'f a' must be of kind *, not *#, so + -- we are guaranteed that they are represented by pointers. + -- The reason is that f must have kind *->*, not *->*#, because + -- (we claim) there is no way to constrain f's kind any other + -- way. + +-- new_type_rep doesn't ask any questions: +-- it just expands newtype, whether recursive or not +new_type_rep new_tycon tys = ASSERT( tys `lengthIs` tyConArity new_tycon ) + case newTyConRep new_tycon of + (tvs, rep_ty) -> substTyWith tvs tys rep_ty +\end{code} --------------------------------------------------------------------- @@ -560,105 +462,135 @@ interfaces. Notably this plays a role in tcTySigs in TcBinds.lhs. ~~~~~~~~ \begin{code} -mkForAllTy = ForAllTy +mkForAllTy :: TyVar -> Type -> Type +mkForAllTy tyvar ty + = mkForAllTys [tyvar] ty mkForAllTys :: [TyVar] -> Type -> Type mkForAllTys tyvars ty = foldr ForAllTy ty tyvars -splitForAllTy_maybe :: Type -> Maybe (TyVar, Type) -splitForAllTy_maybe (NoteTy _ ty) = splitForAllTy_maybe ty -splitForAllTy_maybe (ForAllTy tyvar ty) = Just(tyvar, ty) -splitForAllTy_maybe _ = Nothing - isForAllTy :: Type -> Bool -isForAllTy (NoteTy _ ty) = isForAllTy ty -isForAllTy (ForAllTy tyvar ty) = True -isForAllTy _ = False +isForAllTy (NoteTy _ ty) = isForAllTy ty +isForAllTy (ForAllTy _ _) = True +isForAllTy other_ty = False + +splitForAllTy_maybe :: Type -> Maybe (TyVar, Type) +splitForAllTy_maybe ty = splitFAT_m ty + where + splitFAT_m ty | Just ty' <- coreView ty = splitFAT_m ty' + splitFAT_m (ForAllTy tyvar ty) = Just(tyvar, ty) + splitFAT_m _ = Nothing splitForAllTys :: Type -> ([TyVar], Type) splitForAllTys ty = split ty ty [] where - split orig_ty (ForAllTy tv ty) tvs = split ty ty (tv:tvs) - split orig_ty (NoteTy _ ty) tvs = split orig_ty ty tvs - split orig_ty t tvs = (reverse tvs, orig_ty) + split orig_ty ty tvs | Just ty' <- coreView ty = split orig_ty ty' tvs + split orig_ty (ForAllTy tv ty) tvs = split ty ty (tv:tvs) + split orig_ty t tvs = (reverse tvs, orig_ty) + +dropForAlls :: Type -> Type +dropForAlls ty = snd (splitForAllTys ty) \end{code} -@mkPiType@ makes a (->) type or a forall type, depending on whether -it is given a type variable or a term variable. +-- (mkPiType now in CoreUtils) -\begin{code} -mkPiType :: IdOrTyVar -> Type -> Type -- The more polymorphic version doesn't work... -mkPiType v ty | isId v = mkFunTy (idType v) ty - | otherwise = ForAllTy v ty -\end{code} +applyTy, applyTys +~~~~~~~~~~~~~~~~~ +Instantiate a for-all type with one or more type arguments. +Used when we have a polymorphic function applied to type args: + f t1 t2 +Then we use (applyTys type-of-f [t1,t2]) to compute the type of +the expression. \begin{code} applyTy :: Type -> Type -> Type -applyTy (NoteTy _ fun) arg = applyTy fun arg -applyTy (ForAllTy tv ty) arg = substTy (mkVarEnv [(tv,arg)]) ty +applyTy ty arg | Just ty' <- coreView ty = applyTy ty' arg +applyTy (ForAllTy tv ty) arg = substTyWith [tv] [arg] ty applyTy other arg = panic "applyTy" applyTys :: Type -> [Type] -> Type -applyTys fun_ty arg_tys - = go [] fun_ty arg_tys - where - go env ty [] = substTy (mkVarEnv env) ty - go env (NoteTy _ fun) args = go env fun args - go env (ForAllTy tv ty) (arg:args) = go ((tv,arg):env) ty args - go env other args = panic "applyTys" +-- This function is interesting because +-- a) the function may have more for-alls than there are args +-- b) less obviously, it may have fewer for-alls +-- For case (b) think of +-- applyTys (forall a.a) [forall b.b, Int] +-- This really can happen, via dressing up polymorphic types with newtype +-- clothing. Here's an example: +-- newtype R = R (forall a. a->a) +-- foo = case undefined :: R of +-- R f -> f () + +applyTys orig_fun_ty [] = orig_fun_ty +applyTys orig_fun_ty arg_tys + | n_tvs == n_args -- The vastly common case + = substTyWith tvs arg_tys rho_ty + | n_tvs > n_args -- Too many for-alls + = substTyWith (take n_args tvs) arg_tys + (mkForAllTys (drop n_args tvs) rho_ty) + | otherwise -- Too many type args + = ASSERT2( n_tvs > 0, ppr orig_fun_ty ) -- Zero case gives infnite loop! + applyTys (substTyWith tvs (take n_tvs arg_tys) rho_ty) + (drop n_tvs arg_tys) + where + (tvs, rho_ty) = splitForAllTys orig_fun_ty + n_tvs = length tvs + n_args = length arg_tys \end{code} %************************************************************************ %* * -\subsection{Stuff to do with the source-language types} +\subsection{Source types} %* * %************************************************************************ -\begin{code} -type RhoType = Type -type TauType = Type -type ThetaType = [(Class, [Type])] -type SigmaType = Type -\end{code} +A "source type" is a type that is a separate type as far as the type checker is +concerned, but which has low-level representation as far as the back end is concerned. -@isTauTy@ tests for nested for-alls. +Source types are always lifted. -\begin{code} -isTauTy :: Type -> Bool -isTauTy (TyVarTy v) = True -isTauTy (TyConApp _ tys) = all isTauTy tys -isTauTy (AppTy a b) = isTauTy a && isTauTy b -isTauTy (FunTy a b) = isTauTy a && isTauTy b -isTauTy (NoteTy _ ty) = isTauTy ty -isTauTy other = False -\end{code} +The key function is predTypeRep which gives the representation of a source type: \begin{code} -mkRhoTy :: [(Class, [Type])] -> Type -> Type -mkRhoTy theta ty = foldr (\(c,t) r -> FunTy (mkDictTy c t) r) ty theta - -splitRhoTy :: Type -> ([(Class, [Type])], Type) -splitRhoTy ty = split ty ty [] - where - split orig_ty (FunTy arg res) ts = case splitDictTy_maybe arg of - Just pair -> split res res (pair:ts) - Nothing -> (reverse ts, orig_ty) - split orig_ty (NoteTy _ ty) ts = split orig_ty ty ts - split orig_ty ty ts = (reverse ts, orig_ty) +mkPredTy :: PredType -> Type +mkPredTy pred = PredTy pred + +mkPredTys :: ThetaType -> [Type] +mkPredTys preds = map PredTy preds + +predTypeRep :: PredType -> Type +-- Convert a PredType to its "representation type"; +-- the post-type-checking type used by all the Core passes of GHC. +-- Unwraps only the outermost level; for example, the result might +-- be a newtype application +predTypeRep (IParam _ ty) = ty +predTypeRep (ClassP clas tys) = mkTyConApp (classTyCon clas) tys + -- Result might be a newtype application, but the consumer will + -- look through that too if necessary \end{code} +%************************************************************************ +%* * + NewTypes +%* * +%************************************************************************ \begin{code} -mkSigmaTy tyvars theta tau = mkForAllTys tyvars (mkRhoTy theta tau) - -splitSigmaTy :: Type -> ([TyVar], [(Class, [Type])], Type) -splitSigmaTy ty = - (tyvars, theta, tau) - where - (tyvars,rho) = splitForAllTys ty - (theta,tau) = splitRhoTy rho +splitRecNewType_maybe :: Type -> Maybe Type +-- Sometimes we want to look through a recursive newtype, and that's what happens here +-- It only strips *one layer* off, so the caller will usually call itself recursively +-- Only applied to types of kind *, hence the newtype is always saturated +splitRecNewType_maybe ty | Just ty' <- coreView ty = splitRecNewType_maybe ty' +splitRecNewType_maybe (TyConApp tc tys) + | isNewTyCon tc + = ASSERT( tys `lengthIs` tyConArity tc ) -- splitRecNewType_maybe only be applied + -- to *types* (of kind *) + ASSERT( isRecursiveTyCon tc ) -- Guaranteed by coreView + case newTyConRhs tc of + (tvs, rep_ty) -> Just (substTyWith tvs tys rep_ty) + +splitRecNewType_maybe other = Nothing \end{code} @@ -675,28 +607,13 @@ splitSigmaTy ty = typeKind :: Type -> Kind typeKind (TyVarTy tyvar) = tyVarKind tyvar -typeKind (TyConApp tycon tys) = foldr (\_ k -> funResultTy k) (tyConKind tycon) tys +typeKind (TyConApp tycon tys) = foldr (\_ k -> kindFunResult k) (tyConKind tycon) tys typeKind (NoteTy _ ty) = typeKind ty -typeKind (AppTy fun arg) = funResultTy (typeKind fun) -typeKind (FunTy fun arg) = typeKindF arg -typeKind (ForAllTy _ ty) = typeKindF ty -- We could make this a new kind polyTypeKind - -- to prevent a forall type unifying with a - -- boxed type variable, but I didn't think it - -- was worth it yet. - --- The complication is that a *function* is boxed even if --- its *result* type is unboxed. Seems wierd. - -typeKindF :: Type -> Kind -typeKindF (NoteTy _ ty) = typeKindF ty -typeKindF (FunTy _ ty) = typeKindF ty -typeKindF (ForAllTy _ ty) = typeKindF ty -typeKindF other = fix_up (typeKind other) - where - fix_up (TyConApp kc _) | kc == typeCon = boxedTypeKind - -- Functions at the type level are always boxed - fix_up (NoteTy _ kind) = fix_up kind - fix_up kind = kind +typeKind (PredTy _) = liftedTypeKind -- Predicates are always + -- represented by lifted types +typeKind (AppTy fun arg) = kindFunResult (typeKind fun) +typeKind (FunTy arg res) = liftedTypeKind +typeKind (ForAllTy tv ty) = typeKind ty \end{code} @@ -705,122 +622,46 @@ typeKindF other = fix_up (typeKind other) ~~~~~~~~~~~~~~~~~~~~~~~~ \begin{code} tyVarsOfType :: Type -> TyVarSet - tyVarsOfType (TyVarTy tv) = unitVarSet tv tyVarsOfType (TyConApp tycon tys) = tyVarsOfTypes tys tyVarsOfType (NoteTy (FTVNote tvs) ty2) = tvs -tyVarsOfType (NoteTy (SynNote ty1) ty2) = tyVarsOfType ty1 +tyVarsOfType (NoteTy (SynNote ty1) ty2) = tyVarsOfType ty2 -- See note [Syn] below +tyVarsOfType (PredTy sty) = tyVarsOfPred sty tyVarsOfType (FunTy arg res) = tyVarsOfType arg `unionVarSet` tyVarsOfType res tyVarsOfType (AppTy fun arg) = tyVarsOfType fun `unionVarSet` tyVarsOfType arg tyVarsOfType (ForAllTy tyvar ty) = tyVarsOfType ty `minusVarSet` unitVarSet tyvar -tyVarsOfTypes :: [Type] -> TyVarSet -tyVarsOfTypes tys = foldr (unionVarSet.tyVarsOfType) emptyVarSet tys - --- Add a Note with the free tyvars to the top of the type -addFreeTyVars :: Type -> Type -addFreeTyVars ty@(NoteTy (FTVNote _) _) = ty -addFreeTyVars ty = NoteTy (FTVNote (tyVarsOfType ty)) ty - --- Find the free names of a type, including the type constructors and classes it mentions -namesOfType :: Type -> NameSet -namesOfType (TyVarTy tv) = unitNameSet (getName tv) -namesOfType (TyConApp tycon tys) = unitNameSet (getName tycon) `unionNameSets` - namesOfTypes tys -namesOfType (NoteTy (SynNote ty1) ty2) = namesOfType ty1 -namesOfType (NoteTy other_note ty2) = namesOfType ty2 -namesOfType (FunTy arg res) = namesOfType arg `unionNameSets` namesOfType res -namesOfType (AppTy fun arg) = namesOfType fun `unionNameSets` namesOfType arg -namesOfType (ForAllTy tyvar ty) = namesOfType ty `minusNameSet` unitNameSet (getName tyvar) - -namesOfTypes tys = foldr (unionNameSets . namesOfType) emptyNameSet tys -\end{code} - +-- Note [Syn] +-- Consider +-- type T a = Int +-- What are the free tyvars of (T x)? Empty, of course! +-- Here's the example that Ralf Laemmel showed me: +-- foo :: (forall a. C u a -> C u a) -> u +-- mappend :: Monoid u => u -> u -> u +-- +-- bar :: Monoid u => u +-- bar = foo (\t -> t `mappend` t) +-- We have to generalise at the arg to f, and we don't +-- want to capture the constraint (Monad (C u a)) because +-- it appears to mention a. Pretty silly, but it was useful to him. -%************************************************************************ -%* * -\subsection{Instantiating a type} -%* * -%************************************************************************ -@substTy@ applies a substitution to a type. It deals correctly with name capture. +tyVarsOfTypes :: [Type] -> TyVarSet +tyVarsOfTypes tys = foldr (unionVarSet.tyVarsOfType) emptyVarSet tys -\begin{code} -substTy :: TyVarSubst -> Type -> Type -substTy tenv ty - | isEmptyVarEnv tenv = ty - | otherwise = subst_ty tenv tset ty - where - tset = foldVarEnv (unionVarSet . tyVarsOfType) emptyVarSet tenv - -- If ty doesn't have any for-alls, then this thunk - -- will never be evaluated - -substTheta :: TyVarSubst -> ThetaType -> ThetaType -substTheta tenv theta - | isEmptyVarEnv tenv = theta - | otherwise = [(clas, map (subst_ty tenv tset) tys) | (clas, tys) <- theta] - where - tset = foldVarEnv (unionVarSet . tyVarsOfType) emptyVarSet tenv - -- If ty doesn't have any for-alls, then this thunk - -- will never be evaluated - -substTopTy :: TyVarSubst -> Type -> Type -substTopTy = substTy -- Called when doing top-level substitutions. - -- Here we expect that the free vars of the range of the - -- substitution will be empty; but during typechecking I'm - -- a bit dubious about that (mutable tyvars bouund to Int, say) - -- So I've left it as substTy for the moment. SLPJ Nov 98 -substTopTheta = substTheta -\end{code} +tyVarsOfPred :: PredType -> TyVarSet +tyVarsOfPred (IParam _ ty) = tyVarsOfType ty +tyVarsOfPred (ClassP _ tys) = tyVarsOfTypes tys -@fullSubstTy@ is like @substTy@ except that it needs to be given a set -of in-scope type variables. In exchange it's a bit more efficient, at least -if you happen to have that set lying around. +tyVarsOfTheta :: ThetaType -> TyVarSet +tyVarsOfTheta = foldr (unionVarSet . tyVarsOfPred) emptyVarSet -\begin{code} -fullSubstTy :: TyVarSubst -- Substitution to apply - -> TyVarSet -- Superset of the free tyvars of - -- the range of the tyvar env - -> Type -> Type --- ASSUMPTION: The substitution is idempotent. --- Equivalently: No tyvar is both in scope, and in the domain of the substitution. -fullSubstTy tenv tset ty | isEmptyVarEnv tenv = ty - | otherwise = subst_ty tenv tset ty - --- subst_ty does the business -subst_ty tenv tset ty - = go ty - where - go (TyConApp tc tys) = TyConApp tc (map go tys) - go (NoteTy (SynNote ty1) ty2) = NoteTy (SynNote (go ty1)) (go ty2) - go (NoteTy (FTVNote _) ty2) = go ty2 -- Discard the free tyvar note - go (FunTy arg res) = FunTy (go arg) (go res) - go (AppTy fun arg) = mkAppTy (go fun) (go arg) - go ty@(TyVarTy tv) = case (lookupVarEnv tenv tv) of - Nothing -> ty - Just ty' -> ty' - go (ForAllTy tv ty) = case substTyVar tenv tset tv of - (tenv', tset', tv') -> ForAllTy tv' (subst_ty tenv' tset' ty) - -substTyVar :: TyVarSubst -> TyVarSet -> TyVar - -> (TyVarSubst, TyVarSet, TyVar) - -substTyVar tenv tset tv - | not (tv `elemVarSet` tset) -- No need to clone - -- But must delete from substitution - = (tenv `delVarEnv` tv, tset `extendVarSet` tv, tv) - - | otherwise -- The forall's variable is in scope so - -- we'd better rename it away from the in-scope variables - -- Extending the substitution to do this renaming also - -- has the (correct) effect of discarding any existing - -- substitution for that variable - = (extendVarEnv tenv tv (TyVarTy tv'), tset `extendVarSet` tv', tv') - where - tv' = uniqAway tset tv +-- Add a Note with the free tyvars to the top of the type +addFreeTyVars :: Type -> Type +addFreeTyVars ty@(NoteTy (FTVNote _) _) = ty +addFreeTyVars ty = NoteTy (FTVNote (tyVarsOfType ty)) ty \end{code} - %************************************************************************ %* * \subsection{TidyType} @@ -833,23 +674,33 @@ an interface file. It doesn't change the uniques at all, just the print names. \begin{code} -tidyTyVar :: TidyEnv -> TyVar -> (TidyEnv, TyVar) -tidyTyVar env@(tidy_env, subst) tyvar - = case lookupVarEnv subst tyvar of - - Just tyvar' -> -- Already substituted - (env, tyvar') +tidyTyVarBndr :: TidyEnv -> TyVar -> (TidyEnv, TyVar) +tidyTyVarBndr (tidy_env, subst) tyvar + = case tidyOccName tidy_env (getOccName name) of + (tidy', occ') -> ((tidy', subst'), tyvar') + where + subst' = extendVarEnv subst tyvar tyvar' + tyvar' = setTyVarName tyvar name' + name' = mkInternalName (getUnique name) occ' noSrcLoc + -- Note: make a *user* tyvar, so it printes nicely + -- Could extract src loc, but no need. + where + name = tyVarName tyvar - Nothing -> -- Make a new nice name for it +tidyFreeTyVars :: TidyEnv -> TyVarSet -> TidyEnv +-- Add the free tyvars to the env in tidy form, +-- so that we can tidy the type they are free in +tidyFreeTyVars env tyvars = fst (tidyOpenTyVars env (varSetElems tyvars)) - case tidyOccName tidy_env (getOccName tyvar) of - (tidy', occ') -> -- New occname reqd - ((tidy', subst'), tyvar') - where - subst' = extendVarEnv subst tyvar tyvar' - tyvar' = setVarOcc tyvar occ' +tidyOpenTyVars :: TidyEnv -> [TyVar] -> (TidyEnv, [TyVar]) +tidyOpenTyVars env tyvars = mapAccumL tidyOpenTyVar env tyvars -tidyTyVars env tyvars = mapAccumL tidyTyVar env tyvars +tidyOpenTyVar :: TidyEnv -> TyVar -> (TidyEnv, TyVar) +-- Treat a new tyvar as a binder, and give it a fresh tidy name +tidyOpenTyVar env@(tidy_env, subst) tyvar + = case lookupVarEnv subst tyvar of + Just tyvar' -> (env, tyvar') -- Already substituted + Nothing -> tidyTyVarBndr env tyvar -- Treat it as a binder tidyType :: TidyEnv -> Type -> Type tidyType env@(tidy_env, subst) ty @@ -858,22 +709,28 @@ tidyType env@(tidy_env, subst) ty go (TyVarTy tv) = case lookupVarEnv subst tv of Nothing -> TyVarTy tv Just tv' -> TyVarTy tv' - go (TyConApp tycon tys) = TyConApp tycon (map go tys) - go (NoteTy note ty) = NoteTy (go_note note) (go ty) - go (AppTy fun arg) = AppTy (go fun) (go arg) - go (FunTy fun arg) = FunTy (go fun) (go arg) - go (ForAllTy tv ty) = ForAllTy tv' (tidyType env' ty) - where - (env', tv') = tidyTyVar env tv - - go_note (SynNote ty) = SynNote (go ty) + go (TyConApp tycon tys) = let args = map go tys + in args `seqList` TyConApp tycon args + go (NoteTy note ty) = (NoteTy $! (go_note note)) $! (go ty) + go (PredTy sty) = PredTy (tidyPred env sty) + go (AppTy fun arg) = (AppTy $! (go fun)) $! (go arg) + go (FunTy fun arg) = (FunTy $! (go fun)) $! (go arg) + go (ForAllTy tv ty) = ForAllTy tvp $! (tidyType envp ty) + where + (envp, tvp) = tidyTyVarBndr env tv + + go_note (SynNote ty) = SynNote $! (go ty) go_note note@(FTVNote ftvs) = note -- No need to tidy the free tyvars -tidyTypes env tys = map (tidyType env) tys +tidyTypes env tys = map (tidyType env) tys + +tidyPred :: TidyEnv -> PredType -> PredType +tidyPred env (IParam n ty) = IParam n (tidyType env ty) +tidyPred env (ClassP clas tys) = ClassP clas (tidyTypes env tys) \end{code} -@tidyOpenType@ grabs the free type varibles, tidies them +@tidyOpenType@ grabs the free type variables, tidies them and then uses @tidyType@ to work over the type itself \begin{code} @@ -881,8 +738,7 @@ tidyOpenType :: TidyEnv -> Type -> (TidyEnv, Type) tidyOpenType env ty = (env', tidyType env' ty) where - env' = foldl go env (varSetElems (tyVarsOfType ty)) - go env tyvar = fst (tidyTyVar env tyvar) + env' = tidyFreeTyVars env (tyVarsOfType ty) tidyOpenTypes :: TidyEnv -> [Type] -> (TidyEnv, [Type]) tidyOpenTypes env tys = mapAccumL tidyOpenType env tys @@ -892,20 +748,25 @@ tidyTopType ty = tidyType emptyTidyEnv ty \end{code} + %************************************************************************ %* * -\subsection{Boxedness and liftedness} +\subsection{Liftedness} %* * %************************************************************************ \begin{code} -isUnboxedType :: Type -> Bool -isUnboxedType ty = not (isFollowableRep (typePrimRep ty)) - isUnLiftedType :: Type -> Bool -isUnLiftedType ty = case splitTyConApp_maybe ty of - Just (tc, ty_args) -> isUnLiftedTyCon tc - other -> False + -- isUnLiftedType returns True for forall'd unlifted types: + -- x :: forall a. Int# + -- I found bindings like these were getting floated to the top level. + -- They are pretty bogus types, mind you. It would be better never to + -- construct them + +isUnLiftedType ty | Just ty' <- coreView ty = isUnLiftedType ty' +isUnLiftedType (ForAllTy tv ty) = isUnLiftedType ty +isUnLiftedType (TyConApp tc _) = isUnLiftedTyCon tc +isUnLiftedType other = False isUnboxedTupleType :: Type -> Bool isUnboxedTupleType ty = case splitTyConApp_maybe ty of @@ -915,79 +776,414 @@ isUnboxedTupleType ty = case splitTyConApp_maybe ty of -- Should only be applied to *types*; hence the assert isAlgType :: Type -> Bool isAlgType ty = case splitTyConApp_maybe ty of - Just (tc, ty_args) -> ASSERT( length ty_args == tyConArity tc ) + Just (tc, ty_args) -> ASSERT( ty_args `lengthIs` tyConArity tc ) isAlgTyCon tc other -> False +\end{code} --- Should only be applied to *types*; hence the assert -isDataType :: Type -> Bool -isDataType ty = case splitTyConApp_maybe ty of - Just (tc, ty_args) -> ASSERT( length ty_args == tyConArity tc ) - isDataTyCon tc +@isStrictType@ computes whether an argument (or let RHS) should +be computed strictly or lazily, based only on its type. +Works just like isUnLiftedType, except that it has a special case +for dictionaries. Since it takes account of ClassP, you might think +this function should be in TcType, but isStrictType is used by DataCon, +which is below TcType in the hierarchy, so it's convenient to put it here. + +\begin{code} +isStrictType (PredTy pred) = isStrictPred pred +isStrictType ty | Just ty' <- coreView ty = isStrictType ty' +isStrictType (ForAllTy tv ty) = isStrictType ty +isStrictType (TyConApp tc _) = isUnLiftedTyCon tc +isStrictType other = False + +isStrictPred (ClassP clas _) = opt_DictsStrict && not (isNewTyCon (classTyCon clas)) +isStrictPred other = False + -- We may be strict in dictionary types, but only if it + -- has more than one component. + -- [Being strict in a single-component dictionary risks + -- poking the dictionary component, which is wrong.] +\end{code} + +\begin{code} +isPrimitiveType :: Type -> Bool +-- Returns types that are opaque to Haskell. +-- Most of these are unlifted, but now that we interact with .NET, we +-- may have primtive (foreign-imported) types that are lifted +isPrimitiveType ty = case splitTyConApp_maybe ty of + Just (tc, ty_args) -> ASSERT( ty_args `lengthIs` tyConArity tc ) + isPrimTyCon tc other -> False +\end{code} -typePrimRep :: Type -> PrimRep -typePrimRep ty = case splitTyConApp_maybe ty of - Just (tc, ty_args) -> tyConPrimRep tc - other -> PtrRep + +%************************************************************************ +%* * +\subsection{Sequencing on types +%* * +%************************************************************************ + +\begin{code} +seqType :: Type -> () +seqType (TyVarTy tv) = tv `seq` () +seqType (AppTy t1 t2) = seqType t1 `seq` seqType t2 +seqType (FunTy t1 t2) = seqType t1 `seq` seqType t2 +seqType (NoteTy note t2) = seqNote note `seq` seqType t2 +seqType (PredTy p) = seqPred p +seqType (TyConApp tc tys) = tc `seq` seqTypes tys +seqType (ForAllTy tv ty) = tv `seq` seqType ty + +seqTypes :: [Type] -> () +seqTypes [] = () +seqTypes (ty:tys) = seqType ty `seq` seqTypes tys + +seqNote :: TyNote -> () +seqNote (SynNote ty) = seqType ty +seqNote (FTVNote set) = sizeUniqSet set `seq` () + +seqPred :: PredType -> () +seqPred (ClassP c tys) = c `seq` seqTypes tys +seqPred (IParam n ty) = n `seq` seqType ty \end{code} + %************************************************************************ %* * -\subsection{Equality on types} + Comparison of types + (We don't use instances so that we know where it happens) %* * %************************************************************************ -For the moment at least, type comparisons don't work if -there are embedded for-alls. +Two flavours: + +* tcEqType, tcCmpType do *not* look through newtypes, PredTypes +* coreEqType *does* look through them + +Note that eqType can respond 'False' for partial applications of newtypes. +Consider + newtype Parser m a = MkParser (Foogle m a) +Does + Monad (Parser m) `eqType` Monad (Foogle m) +Well, yes, but eqType won't see that they are the same. +I don't think this is harmful, but it's soemthing to watch out for. + +First, the external interface \begin{code} -instance Eq Type where - ty1 == ty2 = case ty1 `cmpTy` ty2 of { EQ -> True; other -> False } +coreEqType :: Type -> Type -> Bool +coreEqType t1 t2 = isEqual $ cmpType (deepCoreView t1) (deepCoreView t2) + +tcEqType :: Type -> Type -> Bool +tcEqType t1 t2 = isEqual $ cmpType t1 t2 + +tcEqTypes :: [Type] -> [Type] -> Bool +tcEqTypes tys1 tys2 = isEqual $ cmpTypes tys1 tys2 + +tcCmpType :: Type -> Type -> Ordering +tcCmpType t1 t2 = cmpType t1 t2 + +tcCmpTypes :: [Type] -> [Type] -> Ordering +tcCmpTypes tys1 tys2 = cmpTypes tys1 tys2 + +tcEqPred :: PredType -> PredType -> Bool +tcEqPred p1 p2 = isEqual $ cmpPred p1 p2 + +tcCmpPred :: PredType -> PredType -> Ordering +tcCmpPred p1 p2 = cmpPred p1 p2 + +tcEqTypeX :: RnEnv2 -> Type -> Type -> Bool +tcEqTypeX env t1 t2 = isEqual $ cmpTypeX env t1 t2 +\end{code} -instance Ord Type where - compare ty1 ty2 = cmpTy ty1 ty2 +Now here comes the real worker -cmpTy :: Type -> Type -> Ordering -cmpTy ty1 ty2 - = cmp emptyVarEnv ty1 ty2 +\begin{code} +cmpType :: Type -> Type -> Ordering +cmpType t1 t2 = cmpTypeX rn_env t1 t2 where - -- The "env" maps type variables in ty1 to type variables in ty2 - -- So when comparing for-alls.. (forall tv1 . t1) (forall tv2 . t2) - -- we in effect substitute tv2 for tv1 in t1 before continuing - lookup env tv1 = case lookupVarEnv env tv1 of - Just tv2 -> tv2 - Nothing -> tv1 - - -- Get rid of NoteTy - cmp env (NoteTy _ ty1) ty2 = cmp env ty1 ty2 - cmp env ty1 (NoteTy _ ty2) = cmp env ty1 ty2 - - -- Deal with equal constructors - cmp env (TyVarTy tv1) (TyVarTy tv2) = lookup env tv1 `compare` tv2 - cmp env (AppTy f1 a1) (AppTy f2 a2) = cmp env f1 f2 `thenCmp` cmp env a1 a2 - cmp env (FunTy f1 a1) (FunTy f2 a2) = cmp env f1 f2 `thenCmp` cmp env a1 a2 - cmp env (TyConApp tc1 tys1) (TyConApp tc2 tys2) = (tc1 `compare` tc2) `thenCmp` (cmps env tys1 tys2) - cmp env (ForAllTy tv1 t1) (ForAllTy tv2 t2) = cmp (extendVarEnv env tv1 tv2) t1 t2 - - -- Deal with the rest: TyVarTy < AppTy < FunTy < TyConApp < ForAllTy - cmp env (AppTy _ _) (TyVarTy _) = GT - - cmp env (FunTy _ _) (TyVarTy _) = GT - cmp env (FunTy _ _) (AppTy _ _) = GT + rn_env = mkRnEnv2 (mkInScopeSet (tyVarsOfType t1 `unionVarSet` tyVarsOfType t2)) + +cmpTypes :: [Type] -> [Type] -> Ordering +cmpTypes ts1 ts2 = cmpTypesX rn_env ts1 ts2 + where + rn_env = mkRnEnv2 (mkInScopeSet (tyVarsOfTypes ts1 `unionVarSet` tyVarsOfTypes ts2)) + +cmpPred :: PredType -> PredType -> Ordering +cmpPred p1 p2 = cmpPredX rn_env p1 p2 + where + rn_env = mkRnEnv2 (mkInScopeSet (tyVarsOfPred p1 `unionVarSet` tyVarsOfPred p2)) + +cmpTypeX :: RnEnv2 -> Type -> Type -> Ordering -- Main workhorse + +-- NB: we *cannot* short-cut the newtype comparison thus: +-- eqTypeX env (NewTcApp tc1 tys1) (NewTcApp tc2 tys2) +-- | (tc1 == tc2) = (eqTypeXs env tys1 tys2) +-- +-- Consider: +-- newtype T a = MkT [a] +-- newtype Foo m = MkFoo (forall a. m a -> Int) +-- w1 :: Foo [] +-- w1 = ... +-- +-- w2 :: Foo T +-- w2 = MkFoo (\(MkT x) -> case w1 of MkFoo f -> f x) +-- +-- We end up with w2 = w1; so we need that Foo T = Foo [] +-- but we can only expand saturated newtypes, so just comparing +-- T with [] won't do. + +cmpTypeX env (TyVarTy tv1) (TyVarTy tv2) = rnOccL env tv1 `compare` rnOccR env tv2 +cmpTypeX env (ForAllTy tv1 t1) (ForAllTy tv2 t2) = cmpTypeX (rnBndr2 env tv1 tv2) t1 t2 +cmpTypeX env (AppTy s1 t1) (AppTy s2 t2) = cmpTypeX env s1 s2 `thenCmp` cmpTypeX env t1 t2 +cmpTypeX env (FunTy s1 t1) (FunTy s2 t2) = cmpTypeX env s1 s2 `thenCmp` cmpTypeX env t1 t2 +cmpTypeX env (PredTy p1) (PredTy p2) = cmpPredX env p1 p2 +cmpTypeX env (TyConApp tc1 tys1) (TyConApp tc2 tys2) = (tc1 `compare` tc2) `thenCmp` cmpTypesX env tys1 tys2 +cmpTypeX env (NoteTy _ t1) t2 = cmpTypeX env t1 t2 +cmpTypeX env t1 (NoteTy _ t2) = cmpTypeX env t1 t2 + + -- Deal with the rest: TyVarTy < AppTy < FunTy < TyConApp < ForAllTy < PredTy +cmpTypeX env (AppTy _ _) (TyVarTy _) = GT - cmp env (TyConApp _ _) (TyVarTy _) = GT - cmp env (TyConApp _ _) (AppTy _ _) = GT - cmp env (TyConApp _ _) (FunTy _ _) = GT +cmpTypeX env (FunTy _ _) (TyVarTy _) = GT +cmpTypeX env (FunTy _ _) (AppTy _ _) = GT - cmp env (ForAllTy _ _) other = GT +cmpTypeX env (TyConApp _ _) (TyVarTy _) = GT +cmpTypeX env (TyConApp _ _) (AppTy _ _) = GT +cmpTypeX env (TyConApp _ _) (FunTy _ _) = GT - cmp env _ _ = LT +cmpTypeX env (ForAllTy _ _) (TyVarTy _) = GT +cmpTypeX env (ForAllTy _ _) (AppTy _ _) = GT +cmpTypeX env (ForAllTy _ _) (FunTy _ _) = GT +cmpTypeX env (ForAllTy _ _) (TyConApp _ _) = GT + +cmpTypeX env (PredTy _) t2 = GT + +cmpTypeX env _ _ = LT + +------------- +cmpTypesX :: RnEnv2 -> [Type] -> [Type] -> Ordering +cmpTypesX env [] [] = EQ +cmpTypesX env (t1:tys1) (t2:tys2) = cmpTypeX env t1 t2 `thenCmp` cmpTypesX env tys1 tys2 +cmpTypesX env [] tys = LT +cmpTypesX env ty [] = GT + +------------- +cmpPredX :: RnEnv2 -> PredType -> PredType -> Ordering +cmpPredX env (IParam n1 ty1) (IParam n2 ty2) = (n1 `compare` n2) `thenCmp` cmpTypeX env ty1 ty2 + -- Compare types as well as names for implicit parameters + -- This comparison is used exclusively (I think) for the + -- finite map built in TcSimplify +cmpPredX env (ClassP c1 tys1) (ClassP c2 tys2) = (c1 `compare` c2) `thenCmp` cmpTypesX env tys1 tys2 +cmpPredX env (IParam _ _) (ClassP _ _) = LT +cmpPredX env (ClassP _ _) (IParam _ _) = GT +\end{code} + +PredTypes are used as a FM key in TcSimplify, +so we take the easy path and make them an instance of Ord + +\begin{code} +instance Eq PredType where { (==) = tcEqPred } +instance Ord PredType where { compare = tcCmpPred } +\end{code} + + +%************************************************************************ +%* * + Type substitutions +%* * +%************************************************************************ + +\begin{code} +data TvSubst + = TvSubst InScopeSet -- The in-scope type variables + TvSubstEnv -- The substitution itself; guaranteed idempotent + -- See Note [Apply Once] + +{- ---------------------------------------------------------- + Note [Apply Once] + +We use TvSubsts to instantiate things, and we might instantiate + forall a b. ty +\with the types + [a, b], or [b, a]. +So the substition might go [a->b, b->a]. A similar situation arises in Core +when we find a beta redex like + (/\ a /\ b -> e) b a +Then we also end up with a substition that permutes type variables. Other +variations happen to; for example [a -> (a, b)]. + + *************************************************** + *** So a TvSubst must be applied precisely once *** + *************************************************** + +A TvSubst is not idempotent, but, unlike the non-idempotent substitution +we use during unifications, it must not be repeatedly applied. +-------------------------------------------------------------- -} + + +type TvSubstEnv = TyVarEnv Type + -- A TvSubstEnv is used both inside a TvSubst (with the apply-once + -- invariant discussed in Note [Apply Once]), and also independently + -- in the middle of matching, and unification (see Types.Unify) + -- So you have to look at the context to know if it's idempotent or + -- apply-once or whatever + +emptyTvSubst = TvSubst emptyInScopeSet emptyVarEnv +isEmptyTvSubst :: TvSubst -> Bool +isEmptyTvSubst (TvSubst _ env) = isEmptyVarEnv env + +getTvSubstEnv :: TvSubst -> TvSubstEnv +getTvSubstEnv (TvSubst _ env) = env + +getTvInScope :: TvSubst -> InScopeSet +getTvInScope (TvSubst in_scope _) = in_scope + +isInScope :: Var -> TvSubst -> Bool +isInScope v (TvSubst in_scope _) = v `elemInScopeSet` in_scope + +setTvSubstEnv :: TvSubst -> TvSubstEnv -> TvSubst +setTvSubstEnv (TvSubst in_scope _) env = TvSubst in_scope env + +extendTvInScope :: TvSubst -> [Var] -> TvSubst +extendTvInScope (TvSubst in_scope env) vars = TvSubst (extendInScopeSetList in_scope vars) env + +extendTvSubst :: TvSubst -> TyVar -> Type -> TvSubst +extendTvSubst (TvSubst in_scope env) tv ty = TvSubst in_scope (extendVarEnv env tv ty) + +extendTvSubstList :: TvSubst -> [TyVar] -> [Type] -> TvSubst +extendTvSubstList (TvSubst in_scope env) tvs tys + = TvSubst in_scope (extendVarEnvList env (tvs `zip` tys)) + +-- mkTvSubst and zipTvSubst generate the in-scope set from +-- the types given; but it's just a thunk so with a bit of luck +-- it'll never be evaluated + +mkTvSubst :: TvSubstEnv -> TvSubst +mkTvSubst env + = TvSubst (mkInScopeSet (tyVarsOfTypes (varEnvElts env))) env + +zipTvSubst :: [TyVar] -> [Type] -> TvSubst +zipTvSubst tyvars tys + = TvSubst (mkInScopeSet (tyVarsOfTypes tys)) (zipTyEnv tyvars tys) + +-- mkTopTvSubst is called when doing top-level substitutions. +-- Here we expect that the free vars of the range of the +-- substitution will be empty. +mkTopTvSubst :: [(TyVar, Type)] -> TvSubst +mkTopTvSubst prs = TvSubst emptyInScopeSet (mkVarEnv prs) + +zipTopTvSubst :: [TyVar] -> [Type] -> TvSubst +zipTopTvSubst tyvars tys = TvSubst emptyInScopeSet (zipTyEnv tyvars tys) + +zipTyEnv :: [TyVar] -> [Type] -> TvSubstEnv +zipTyEnv tyvars tys +#ifdef DEBUG + | length tyvars /= length tys + = pprTrace "mkTopTvSubst" (ppr tyvars $$ ppr tys) emptyVarEnv + | otherwise +#endif + = zip_ty_env tyvars tys emptyVarEnv + +-- Later substitutions in the list over-ride earlier ones, +-- but there should be no loops +zip_ty_env [] [] env = env +zip_ty_env (tv:tvs) (ty:tys) env = zip_ty_env tvs tys (extendVarEnv env tv ty) + -- There used to be a special case for when + -- ty == TyVarTy tv + -- (a not-uncommon case) in which case the substitution was dropped. + -- But the type-tidier changes the print-name of a type variable without + -- changing the unique, and that led to a bug. Why? Pre-tidying, we had + -- a type {Foo t}, where Foo is a one-method class. So Foo is really a newtype. + -- And it happened that t was the type variable of the class. Post-tiding, + -- it got turned into {Foo t2}. The ext-core printer expanded this using + -- sourceTypeRep, but that said "Oh, t == t2" because they have the same unique, + -- and so generated a rep type mentioning t not t2. + -- + -- Simplest fix is to nuke the "optimisation" + +instance Outputable TvSubst where + ppr (TvSubst ins env) + = sep[ ptext SLIT(" ppr ins), + nest 2 (ptext SLIT("Env:") <+> ppr env) ] +\end{code} + +%************************************************************************ +%* * + Performing type substitutions +%* * +%************************************************************************ + +\begin{code} +substTyWith :: [TyVar] -> [Type] -> Type -> Type +substTyWith tvs tys = substTy (zipTvSubst tvs tys) + +substTy :: TvSubst -> Type -> Type +substTy subst ty | isEmptyTvSubst subst = ty + | otherwise = subst_ty subst ty - cmps env [] [] = EQ - cmps env (t:ts) [] = GT - cmps env [] (t:ts) = LT - cmps env (t1:t1s) (t2:t2s) = cmp env t1 t2 `thenCmp` cmps env t1s t2s +substTys :: TvSubst -> [Type] -> [Type] +substTys subst tys | isEmptyTvSubst subst = tys + | otherwise = map (subst_ty subst) tys + +deShadowTy :: Type -> Type -- Remove any shadowing from the type +deShadowTy ty = subst_ty emptyTvSubst ty + +substTheta :: TvSubst -> ThetaType -> ThetaType +substTheta subst theta + | isEmptyTvSubst subst = theta + | otherwise = map (substPred subst) theta + +substPred :: TvSubst -> PredType -> PredType +substPred subst (IParam n ty) = IParam n (subst_ty subst ty) +substPred subst (ClassP clas tys) = ClassP clas (map (subst_ty subst) tys) + +-- Note that the in_scope set is poked only if we hit a forall +-- so it may often never be fully computed +subst_ty subst@(TvSubst in_scope env) ty + = go ty + where + go ty@(TyVarTy tv) = case (lookupVarEnv env tv) of + Nothing -> ty + Just ty' -> ty' -- See Note [Apply Once] + + go (TyConApp tc tys) = let args = map go tys + in args `seqList` TyConApp tc args + + go (PredTy p) = PredTy $! (substPred subst p) + + go (NoteTy (SynNote ty1) ty2) = NoteTy (SynNote $! (go ty1)) $! (go ty2) + go (NoteTy (FTVNote _) ty2) = go ty2 -- Discard the free tyvar note + + go (FunTy arg res) = (FunTy $! (go arg)) $! (go res) + go (AppTy fun arg) = mkAppTy (go fun) $! (go arg) + -- The mkAppTy smart constructor is important + -- we might be replacing (a Int), represented with App + -- by [Int], represented with TyConApp + go (ForAllTy tv ty) = case substTyVar subst tv of + (subst', tv') -> ForAllTy tv' $! (subst_ty subst' ty) + +substTyVar :: TvSubst -> TyVar -> (TvSubst, TyVar) +substTyVar subst@(TvSubst in_scope env) old_var + | old_var == new_var -- No need to clone + -- But we *must* zap any current substitution for the variable. + -- For example: + -- (\x.e) with id_subst = [x |-> e'] + -- Here we must simply zap the substitution for x + -- + -- The new_id isn't cloned, but it may have a different type + -- etc, so we must return it, not the old id + = (TvSubst (in_scope `extendInScopeSet` new_var) (delVarEnv env old_var), + new_var) + + | otherwise -- The new binder is in scope so + -- we'd better rename it away from the in-scope variables + -- Extending the substitution to do this renaming also + -- has the (correct) effect of discarding any existing + -- substitution for that variable + = (TvSubst (in_scope `extendInScopeSet` new_var) (extendVarEnv env old_var (TyVarTy new_var)), + new_var) + where + new_var = uniqAway in_scope old_var + -- The uniqAway part makes sure the new variable is not already in scope \end{code}