X-Git-Url: http://git.megacz.com/?a=blobdiff_plain;f=src%2Fedu%2Fberkeley%2Fqfat%2FMesh.java;h=5ba7404022c20b24bab3ee207ed2604e9774047d;hb=671c9fafbbf48db2c6ea279d182c6bd9d4961796;hp=efeb89b484b9115f10f53ad0d6682b64090cef04;hpb=5d34d8a30db663c0d3a6e6ebaa05744e79cc5be8;p=anneal.git diff --git a/src/edu/berkeley/qfat/Mesh.java b/src/edu/berkeley/qfat/Mesh.java index efeb89b..5ba7404 100644 --- a/src/edu/berkeley/qfat/Mesh.java +++ b/src/edu/berkeley/qfat/Mesh.java @@ -50,15 +50,14 @@ public class Mesh implements Iterable { public int numedges = 0; public float avgedge = 0; - public void unbind() { + public void rebindPoints() { + // unbind all points for(Mesh.T t : this) { t.v1().unbind(); t.v2().unbind(); t.v3().unbind(); } - } - - public void bind() { + // ask edges to re-implement their bindings for(Mesh.T t : this) { t.e1().dobind(); t.e2().dobind(); @@ -66,6 +65,24 @@ public class Mesh implements Iterable { } } + public void unscore() { + HashSet done = new HashSet(); + for(T t : this) + for(Vert p : new Vert[] { t.v1(), t.v2(), t.v3() }) { + if (done.contains(p)) continue; + done.add(p); + p.unscore(); + } + } + public void recomputeAllFundamentalQuadrics() { + HashSet done = new HashSet(); + for(T t : this) + for(Vert p : new Vert[] { t.v1(), t.v2(), t.v3() }) { + if (done.contains(p)) continue; + done.add(p); + p.recomputeFundamentalQuadric(); + } + } public float rescore() { int num = 0; double dist = 0; @@ -75,6 +92,7 @@ public class Mesh implements Iterable { if (done.contains(p)) continue; done.add(p); p.rescore(); + } return (float)(dist/num); } @@ -125,8 +143,6 @@ public class Mesh implements Iterable { public Point p; E e; // some edge *leaving* this point - Vert bound_to = this; - /** the nearest vertex in the "score_against" mesh */ Vert nearest_in_other_mesh; /** the number of vertices in the other mesh for which this is the nearest_in_other_mesh */ @@ -134,11 +150,13 @@ public class Mesh implements Iterable { /** the total error quadric (contributions from all vertices in other mesh for which this is nearest) */ Matrix quadric = Matrix.ZERO; + Vert bound_to = this; Matrix binding = new Matrix(); float oldscore = 0; - boolean inserted = false; public Matrix errorQuadric() { return quadric; } + public Point getPoint() { return p; } + public float score() { return oldscore; } private Matrix fundamentalQuadric = null; public Matrix fundamentalQuadric() { @@ -146,13 +164,11 @@ public class Mesh implements Iterable { return fundamentalQuadric; } - public Point getPoint() { return p; } private Vert(Point p) { this.p = p; if (pointset.get(p) != null) throw new Error(); pointset.add(this); } - public float score() { return oldscore; } public void recomputeFundamentalQuadric() { unscore(); @@ -196,15 +212,7 @@ public class Mesh implements Iterable { } } - /* - double s1, s2; - if (quadric_count==0) s1 = 0; - else s1 = p.distance(quadric_x/quadric_count, quadric_y/quadric_count, quadric_z/quadric_count); - s2 = quadric==null ? 0 : po.p.distance(quadric.p); - oldscore = (float)(s1 + s2); - */ - oldscore = quadric.preAndPostMultiply(p); - + oldscore = quadric_count == 0 ? 0 : (quadric.preAndPostMultiply(p) / quadric_count); score += oldscore; } @@ -222,42 +230,19 @@ public class Mesh implements Iterable { } catch (Exception e) { throw new RuntimeException(e); } - fundamentalQuadric = fundamentalQuadric(); rescore(); - // recompute fundamental quadrics of all vertices sharing a face - E e = this.e; - do { - e.t.v1().recomputeFundamentalQuadric(); - e.t.v2().recomputeFundamentalQuadric(); - e.t.v3().recomputeFundamentalQuadric(); - e = e.pair.next; - } while(e != this.e); - - boolean good = true; - /* - for(T t : this) { - for(E e = this.e; ;) { - if (e.intersects(t)) { good = false; break; } - e = e.pair.next; - if (e == this.e) break; - } - } - */ - /* - if (t==this.t) continue; - if (this.intersects(t)) good = false; - } - */ - return good; + // should recompute fundamental quadrics of all vertices sharing a face, but we defer... + // FIXME: intersection test needed? + return true; } + public boolean move(Vec v) { Matrix m = new Matrix(v); Vert p = this; boolean good = true; do { good &= p.transform(m); - v = v.times(binding); // bleh wrong p = p.bound_to; } while (p != this); return good; @@ -295,6 +280,16 @@ public class Mesh implements Iterable { return null; } + public Vec norm() { + Vec norm = new Vec(0, 0, 0); + E e = this.e; + do { + if (e.t != null) norm = norm.plus(e.t.norm().times((float)e.prev.angle())); + e = e.pair.next; + } while(e != this.e); + return norm.norm(); + } + public boolean isBoundTo(Vert p) { Vert px = p; do { @@ -303,7 +298,6 @@ public class Mesh implements Iterable { } while(px != p); return false; } - public void unbind() { bound_to = this; binding = new Matrix(); } public void bind(Vert p) { bind(p, new Matrix()); } public void bind(Vert p, Matrix binding) { @@ -315,15 +309,6 @@ public class Mesh implements Iterable { this.bound_to = temp_bound_to; this.binding = temp_binding.times(temp_binding); // FIXME: may have order wrong here } - public Vec norm() { - Vec norm = new Vec(0, 0, 0); - E e = this.e; - do { - if (e.t != null) norm = norm.plus(e.t.norm().times((float)e.prev.angle())); - e = e.pair.next; - } while(e != this.e); - return norm.norm(); - } } /** [UNIQUE] an edge */