private KDTree kd = new KDTree(3);
- public static float EPSILON = (float)0.000001;
+ public static float EPSILON = (float)0.0001;
public static Random random = new Random();
private HashMap<P,P> ps = new HashMap<P,P>();
- public PriorityQueue<E> es = new PriorityQueue<E>();
+ //public PriorityQueue<E> es = new PriorityQueue<E>();
+ public HashSet<E> es = new HashSet<E>();
//private HashSet<T> ts = new HashSet<T>();
public ArrayList<T> ts = new ArrayList<T>();
public Iterator<T> iterator() { return ts.iterator(); }
- public P newP(double x, double y, double z) { return newP((float)x, (float)y, (float)z); }
- public P newP(float x, float y, float z) {
- P p = new P(x, y, z);
- P p2 = ps.get(p);
- if (p2 != null) return p2;
- ps.put(p,p);
- p.name = allname++;
- //try { kd.insert(new double[]{p.x,p.y,p.z},p); } catch (Exception e) { throw new Error(e); }
- return p;
+ public P origin() { return newP(0, 0, 0); }
+
+ public Geom score_against = null;
+ public double score = 0;
+ public float score() {
+ return (float)score;
+ }
+
+ public float rescore() {
+ int num = 0;
+ double dist = 0;
+ HashSet<P> done = new HashSet<P>();
+ for(T t : ts)
+ for(P p : new P[] { t.p1(), t.p2(), t.p3() }) {
+ if (done.contains(p)) continue;
+ done.add(p);
+ p.rescore();
+ }
+ for(T t : ts)
+ for(P p : new P[] { t.p1(), t.p2(), t.p3() })
+ p.kdremove();
+ kd = new KDTree(3);
+ for(T t : ts)
+ for(P p : new P[] { t.p1(), t.p2(), t.p3() })
+ p.kdinsert();
+ return (float)(dist/num);
}
+
+ public void transform(M m) {
+ ArrayList<P> set = new ArrayList<P>();
+ set.addAll(ps.keySet());
+ for(P p : set) p.transform(m);
+ }
+
+ public V diagonal() {
+ float min_x = Float.MAX_VALUE;
+ float min_y = Float.MAX_VALUE;
+ float min_z = Float.MAX_VALUE;
+ float max_x = Float.MIN_VALUE;
+ float max_y = Float.MIN_VALUE;
+ float max_z = Float.MIN_VALUE;
+ for(P p : ps.keySet()) {
+ if (p.x < min_x) min_x = p.x;
+ if (p.y < min_y) min_y = p.y;
+ if (p.z < min_z) min_z = p.z;
+ if (p.x > max_x) max_x = p.x;
+ if (p.y > max_y) max_y = p.y;
+ if (p.z > max_z) max_z = p.z;
+ }
+ return new V(max_x - min_x, max_y - min_y, max_z - min_z);
+ }
+
+ public P centroid() {
+ float min_x = Float.MAX_VALUE;
+ float min_y = Float.MAX_VALUE;
+ float min_z = Float.MAX_VALUE;
+ float max_x = Float.MIN_VALUE;
+ float max_y = Float.MIN_VALUE;
+ float max_z = Float.MIN_VALUE;
+ for(P p : ps.keySet()) {
+ if (p.x < min_x) min_x = p.x;
+ if (p.y < min_y) min_y = p.y;
+ if (p.z < min_z) min_z = p.z;
+ if (p.x > max_x) max_x = p.x;
+ if (p.y > max_y) max_y = p.y;
+ if (p.z > max_z) max_z = p.z;
+ }
+ return new P((float)(max_x + min_x)/2,
+ (float)(max_y + min_y)/2,
+ (float)(max_z + min_z)/2);
+ }
+
+ public P newP(double x, double y, double z) { return newP((float)x, (float)y, (float)z); }
+ public P newP(float x, float y, float z) { return new P(x, y, z); }
public T newT(P p12, P p23, P p31, V norm) {
V norm2 = p31.minus(p12).cross(p23.minus(p12));
float dot = norm.dot(norm2);
- if (Math.abs(dot) < EPSILON) throw new Error("dot products within epsilon of each other: "+norm+" "+norm2);
+ //if (Math.abs(dot) < EPSILON) throw new Error("dot products within epsilon of each other: "+norm+" "+norm2);
if (dot < 0) { P p = p12; p12=p23; p23 = p; }
return newT(p12, p23, p31);
}
+
+ public float volume() {
+ double total = 0;
+ for(T t : ts) {
+ double area = t.area();
+ V origin_to_centroid = new V(newP(0, 0, 0), t.centroid());
+ boolean facingAway = t.norm().dot(origin_to_centroid) > 0;
+ double height = Math.abs(t.norm().dot(origin_to_centroid));
+ total += ((facingAway ? 1 : -1) * area * height) / 3.0;
+ }
+ return (float)total;
+ }
+
+ public P nearest(P p) {
+ Object[] results;
+ try { results = kd.nearest(new double[]{p.x,p.y,p.z},1); } catch (Exception e) { throw new Error(e); }
+ return (P)results[0];
+ }
+
public T newT(P p1, P p2, P p3) {
+ p1 = p1.register();
+ p2 = p2.register();
+ p3 = p3.register();
E e12 = p1.makeE(p2);
E e23 = p2.makeE(p3);
E e31 = p3.makeE(p1);
private char allname = 'A';
+ public M aspect = new M();
+ public M invaspect = new M();
+
/** [UNIQUE] point in 3-space */
public final class P {
char name;
float x, y, z;
+ int watch_count;
+ float watch_x;
+ float watch_y;
+ float watch_z;
+ P watch;
+
private E e; // some edge *leaving* this point
private M binding = new M();
private P bound_to = this;
+ private float oldscore = 0;
+
+ private boolean inserted = false;
+
+ public P register() {
+ P p2 = ps.get(this);
+ if (p2==null) { p2 = this; ps.put(this,this); name = allname++; }
+ return p2;
+ }
+
+ public void kdremove() {
+ if (!inserted) return;
+ inserted = false;
+ P p = this;
+ try { kd.delete(new double[]{p.x,p.y,p.z}); } catch (Exception e) { }
+ }
+ public void kdinsert() {
+ if (inserted) return;
+ inserted = true;
+ P p = this;
+ try { kd.insert(new double[]{p.x,p.y,p.z},this); } catch (Exception e) { throw new Error(e); }
+ }
+
+ public float score() { return oldscore; }
+ public void unscore() {
+ if (watch == null) return;
+ watch.watch_x -= x;
+ watch.watch_y -= y;
+ watch.watch_z -= z;
+ watch.watch_count--;
+ if (watch.watch_count==0) {
+ watch.watch_x = 0;
+ watch.watch_y = 0;
+ watch.watch_z = 0;
+ }
+ watch = null;
+ }
+ public P times(M m) { return m.times(this); }
+ public P partner() {
+ if (watch==null) return this;
+ return watch.times(score_against.aspect).times(invaspect);
+ }
+ public P watchback() {
+ if (watch_count==0) return partner();
+ return newP(watch_x/watch_count, watch_y/watch_count, watch_z/watch_count);
+ }
+ public void rescore() {
+ if (score_against == null) return;
+
+ score -= oldscore;
+ oldscore = 0;
+
+ if (watch != null) unscore();
+ P po = this.times(aspect).times(score_against.invaspect);
+ if (watch == null) {
+ watch = score_against.nearest(po);
+
+ // don't attract to vertices that face the other way
+ if (watch.norm().times(score_against.aspect).times(invaspect).dot(norm()) < 0) {
+ watch = null;
+ } else {
+ watch.watch_x += po.x;
+ watch.watch_y += po.y;
+ watch.watch_z += po.z;
+ watch.watch_count++;
+ }
+ }
+
+ double s1, s2;
+ if (watch_count==0) s1 = 0;
+ else s1 = this.distance(watch_x/watch_count, watch_y/watch_count, watch_z/watch_count);
+ s2 = watch==null ? 0 : po.distance(watch);
+ oldscore = (float)(s1 + s2);
+ score += oldscore;
+ }
+
+ public float distance(P p) { return distance(p.x, p.y, p.z); }
+ public float distance(float ox, float oy, float oz) {
+ return
+ (float)Math.sqrt((x-ox)*(x-ox)+
+ (y-oy)*(y-oy)+
+ (z-oz)*(z-oz));
+ }
+
+ /** does NOT update bound pairs! */
+ public boolean transform(M m) {
+ // FIXME: screws up kdtree
+ // FIXME: screws up hashmap
+ unscore();
+ try {
+ if (ps.get(this)==null) throw new Error();
+ ps.remove(this);
+ float newx = m.a*x + m.b*y + m.c*z + m.d;
+ float newy = m.e*x + m.f*y + m.g*z + m.h;
+ float newz = m.i*x + m.j*y + m.k*z + m.l;
+ this.x = newx;
+ this.y = newy;
+ this.z = newz;
+ // FIXME: what if we move onto exactly where another point is?
+ ps.put(this,this);
+ } catch (Exception e) {
+ throw new RuntimeException(e);
+ }
+ rescore();
+ boolean good = true;
+
+ for(T t : ts) {
+ for(E e = this.e; ;) {
+ if (e.intersects(t)) { good = false; break; }
+ e = e.pair.next;
+ if (e == this.e) break;
+ }
+ }
+ /*
+ if (t==this.t) continue;
+ if (this.intersects(t)) good = false;
+ }
+ */
+ return good;
+ }
+ public boolean move(V v) {
+ M m = new M(v);
+ P p = this;
+ boolean good = true;
+ do {
+ good &= p.transform(m);
+ v = v.times(binding); // bleh wrong
+ p = p.bound_to;
+ } while (p != this);
+ return good;
+ }
+
public E makeE(P p2) {
+ p2 = p2.register();
E e = getE(p2);
if (e != null) return e;
e = p2.getE(this);
}
public E getE(P p2) {
+ p2 = p2.register();
E e = this.e;
do {
if (e==null) return null;
}
public boolean isBoundTo(P p) {
+ p = p.register();
P px = p;
do {
if (px==this) return true;
return false;
}
- public void unbind() { bound_to = null; binding = null; }
+ public void unbind() { bound_to = this; binding = new M(); }
public void bind(P p) { bind(p, new M()); }
public void bind(P p, M binding) {
+ p = p.register();
if (isBoundTo(p)) return;
P temp_bound_to = p.bound_to;
M temp_binding = p.binding;
this.binding = temp_binding.times(temp_binding); // FIXME: may have order wrong here
}
- public void move(V v) {
- P p = this;
- do {
- p.x = p.x+v.x;
- p.y = p.y+v.y;
- p.z = p.z+v.z;
- v = v.times(binding);
- p = p.bound_to;
- } while (p != this);
- }
-
public P(float x, float y, float z) {
this.x = x; this.y = y; this.z = z;
}
- /*
- public P nearest() {
- Object[] results;
- try { results = kd.nearest(new double[]{x,y,z},2); } catch (Exception e) { throw new Error(e); }
- if (results[0] != this) throw new Error();
- return (P)results[1];
- }
- */
+
public V minus(P p) { return new V(x-p.x, y-p.y, z-p.z); }
public P plus(V v) { return newP(x+v.x, y+v.y, z+v.z); }
- public P times(M m) { return m.apply(this); }
public boolean equals(Object o) {
if (o==null || !(o instanceof P)) return false;
P p = (P)o;
Float.floatToIntBits(y) ^
Float.floatToIntBits(z);
}
- public void glVertex(GL gl) { gl.glVertex3f(x, y, z); }
+ public void glVertex(GL gl) {
+ this.times(aspect)._glVertex(gl);
+ }
+ private void _glVertex(GL gl) {
+ gl.glVertex3f(x, y, z);
+ }
public String toString() { return "("+x+","+y+","+z+")"; }
public V norm() {
V norm = new V(0, 0, 0);
public final float x, y, z;
public V(double x, double y, double z) { this((float)x, (float)y, (float)z); }
public V(float x, float y, float z) { this.x = x; this.y = y; this.z = z; }
+ public V(P p1, P p2) { this(p2.x-p1.x, p2.y-p1.y, p2.z-p1.z); }
public V cross(V v) { return new V(y*v.z-z*v.y, z*v.x-x*v.z, x*v.y-y*v.x); }
public V plus(V v) { return new V(x+v.x, y+v.y, z+v.z); }
- public V norm() { return div(mag()); }
+ public V norm() { return mag()==0 ? this : div(mag()); }
public V times(M m) { return m.apply(this); }
public float mag() { return (float)Math.sqrt(x*x+y*y+z*z); }
public float dot(V v) { return x*v.x + y*v.y + z*v.z; }
public class BindingGroup {
public HashSet<E> es = new HashSet<E>();
public BindingGroup() { }
- public BindingGroup(E e) { es.add(e); }
+ public BindingGroup(E e) {
+ es.add(e);
+ }
public void add(E e) {
if (e.bg != null) { merge(e.bg); return; }
es.add(e);
/** [UNIQUE] an edge */
public final class E implements Comparable<E> {
+ public boolean intersects(T t) {
+ double A0=t.p1().x, A1=t.p1().y, A2=t.p1().z;
+ double B0=t.p2().x, B1=t.p2().y, B2=t.p2().z;
+ double C0=t.p3().x, C1=t.p3().y, C2=t.p3().z;
+ double j0=p1.x, j1=p1.y, j2=p1.z;
+ double k0=p2.x, k1=p2.y, k2=p2.z;
+ double J0, J1, J2;
+ double K0, K1, K2;
+ double i0, i1, i2;
+ double a0, a1, a2;
+ double b0, b1, b2;
+ double c0, c1, c2;
+ double in_det;
+ double R00, R01, R02, R03,
+ R10, R11, R12, R13,
+ R20, R21, R22, R23,
+ R30, R31, R32, R33;
+
+
+ /* a = B - A */
+ a0 = B0 - A0;
+ a1 = B1 - A1;
+ a2 = B2 - A2;
+ /* b = C - B */
+ b0 = C0 - A0;
+ b1 = C1 - A1;
+ b2 = C2 - A2;
+ /* c = a × b */
+ c0 = a1 * b2 - a2 * b1;
+ c1 = a2 * b0 - a0 * b2;
+ c2 = a0 * b1 - a1 * b0;
+
+ /* M^(-1) = (1/det(M)) * adj(M) */
+ in_det = 1 / (c0 * c0 + c1 * c1 + c2 * c2);
+ R00 = (b1 * c2 - b2 * c1) * in_det;
+ R01 = (b2 * c0 - b0 * c2) * in_det;
+ R02 = (b0 * c1 - b1 * c0) * in_det;
+ R10 = (c1 * a2 - c2 * a1) * in_det;
+ R11 = (c2 * a0 - c0 * a2) * in_det;
+ R12 = (c0 * a1 - c1 * a0) * in_det;
+ R20 = (c0) * in_det;
+ R21 = (c1) * in_det;
+ R22 = (c2) * in_det;
+
+ /* O = M^(-1) * A */
+ R03 = -(R00 * A0 + R01 * A1 + R02 * A2);
+ R13 = -(R10 * A0 + R11 * A1 + R12 * A2);
+ R23 = -(R20 * A0 + R21 * A1 + R22 * A2);
+
+ /* fill in last row of 4x4 matrix */
+ R30 = R31 = R32 = 0;
+ R33 = 1;
+
+ J2 = R20 * j0 + R21 * j1 + R22 * j2 + R23;
+ K2 = R20 * k0 + R21 * k1 + R22 * k2 + R23;
+ if (J2 * K2 >= 0) return false;
+
+ J0 = R00 * j0 + R01 * j1 + R02 * j2 + R03;
+ K0 = R00 * k0 + R01 * k1 + R02 * k2 + R03;
+ i0 = J0 + J2 * ((K0 - J0) / (J2 - K2));
+ if (i0 < 0 || i0 > 1) return false;
+
+ J1 = R10 * j0 + R11 * j1 + R12 * j2 + R13;
+ K1 = R10 * k0 + R11 * k1 + R12 * k2 + R13;
+ i1 = J1 + J2 * ((K1 - J1) / (J2 - K2));
+ if (i1 < 0 || i1 > 1 || i0 + i1 > 1) return false;
+
+ return true;
+ }
+
public int compareTo(E e) {
return e.length() > length() ? 1 : -1;
}
boolean shattered = false;
public P shatter() { return shatter(midpoint(), null, null); }
public P shatter(P mid, BindingGroup bg1, BindingGroup bg2) {
+ mid = mid.register();
if (shattered) return mid;
shattered = true;
if (destroyed) return;
destroyed = true;
pair.destroyed = true;
- if (next.t != null) ts.remove(next.t);
- if (prev.t != null) ts.remove(prev.t);
+ if (next.t != null) next.t.destroy();
+ if (prev.t != null) prev.t.destroy();
if (pair.next.t != null) ts.remove(pair.next.t);
if (pair.prev.t != null) ts.remove(pair.prev.t);
next.t = null;
if (pair.p1.e == pair) pair.p1.e = pair.prev.next;
es.remove(this);
es.remove(pair);
+ avgedge -= this.length();
+ avgedge -= pair.length();
+ numedges--;
+ numedges--;
}
private void sync() {
if (this.prev.p2 != p1) throw new Error();
if (this.p1.e == null) this.p1.e = this;
es.add(this);
+ if (!added) {
+ added = true;
+ numedges++;
+ avgedge += length();
+ }
}
+ private boolean added = false;
public T makeT() { return t==null ? (t = new T(this)) : t; }
/** creates an isolated edge out in the middle of space */
public E(P p1, P p2) {
+ p1 = p1.register();
+ p2 = p2.register();
if (p1==p2) throw new Error("attempt to create edge with single vertex: " + p1);
this.p1 = p1;
this.p2 = p2;
/** adds a new half-edge from prev.p2 to p2 */
public E(E prev, P p2) {
+ p2 = p2.register();
this.p1 = prev.p2;
this.p2 = p2;
this.prev = prev;
this.pair = pair;
sync();
}
- public P midpoint() { return newP((p1.x+p2.x)/2, (p1.y+p2.y)/2, (p1.z+p2.z)/2); }
- public boolean has(P p) { return p==p1 || p==p2; }
+ public P midpoint() { return newP((p1.x+p2.x)/2, (p1.y+p2.y)/2, (p1.z+p2.z)/2).register(); }
+ public boolean has(P p) {
+ p = p.register();
+ return p==p1 || p==p2;
+ }
public float length() { return p1.minus(p2).mag(); }
public String toString() { return p1+"->"+p2; }
}
public final E e1;
public final int color;
+ public void destroy() {
+ ts.remove(this);
+ }
+
+ public P nearest(P p) {
+ float d1 = p1().distance(p);
+ float d2 = p2().distance(p);
+ float d3 = p3().distance(p);
+ if (d1 < d2 && d1 < d3) return p1();
+ if (d2 < d3) return p2();
+ return p3();
+ }
+
T(E e1) {
this.e1 = e1;
E e2 = e1.next;
// FIXME unnecssary
ts.add(this);
+ p1().kdinsert();
+ p2().kdinsert();
+ p3().kdinsert();
this.color = color;
}
public V norm() { return p2().minus(p1()).cross(p3().minus(p1())).norm(); }
public boolean hasE(E e) { return e1==e || e1.next==e || e1.prev==e; }
public boolean has(P p) { return p1()==p || p2()==p || p3()==p; }
+
+ public float area() {
+ return (float)Math.abs(0.5 * e1().length() * new V(p1(), p2()).norm().dot(new V(p2(), p3())));
+ }
+
public void glVertices(GL gl) {
p1().glVertex(gl);
p2().glVertex(gl);
/** matrix */
public class M {
- public M() { }
+ //
+ // [ a b c d ] [ x ]
+ // [ e f g h ] [ y ]
+ // [ i j k l ] [ z ]
+ // [ 0 0 0 1 ] [ 1 ]
+ //
+ public final float a, b, c, d, e, f, g, h, i, j, k, l;
+ public M() { this(1); }
+ public M(float scale) {
+ a = f = k = scale;
+ l = h = d = e = b = i = c = j = g = 0;
+ }
+ public M(float scalex, float scaley, float scalez) {
+ a = scalex;
+ f = scaley;
+ k = scalez;
+ l = h = d = e = b = i = c = j = g = 0;
+ }
+ public M(V translate) {
+ d = translate.x; h = translate.y; l = translate.z;
+ a = f = k = 1;
+ b = c = e = g = i = j = 0;
+ }
+ public M(float a, float b, float c, float d, float e, float f, float g, float h, float i, float j, float k, float l) {
+ this.a = a; this.b = b; this.c = c; this.d = d; this.e = e; this.f = f; this.g = g; this.h = h; this.i = i;
+ this.j = j; this.k = k; this.l = l;
+ }
+ public M times(float x) {
+ return new M(a*x, b*x, c*x, d*x, e*x, f*x, g*x, h*x, i*x, j*x, k*x, l*x);
+ }
+ public M(V axis, float angle) {
+ double q = Math.cos(angle);
+ double s = Math.sin(angle);
+ double t = 1.0 - q;
+ a = (float)(q + axis.x*axis.x*t);
+ f = (float)(q + axis.y*axis.y*t);
+ k = (float)(q + axis.z*axis.z*t);
+ double tmp1 = axis.x*axis.y*t;
+ double tmp2 = axis.z*s;
+ e = (float)(tmp1 + tmp2);
+ b = (float)(tmp1 - tmp2);
+ tmp1 = axis.x*axis.z*t;
+ tmp2 = axis.y*s;
+ i = (float)(tmp1 - tmp2);
+ c = (float)(tmp1 + tmp2);
+ tmp1 = axis.y*axis.z*t;
+ tmp2 = axis.x*s;
+ j = (float)(tmp1 + tmp2);
+ g = (float)(tmp1 - tmp2);
+ d = h = l = 0;
+ }
+ public P times(P p) {
+ return newP(a*p.x + b*p.y + c*p.z + d,
+ e*p.x + f*p.y + g*p.z + h,
+ i*p.x + j*p.y + k*p.z + l);
+ }
public P apply(P p) { return p; }
public V apply(V v) { return v; }
public M invert() { return this; }
}
public void unbind() {
- /*
+
for(Geom.T t : this) {
t.p1().unbind();
t.p2().unbind();
t.p3().unbind();
}
- */
+
}
public void bind() {
for(Geom.T t : this) {
t.e3().dobind();
}
}
+ public int numedges = 0;
+ public float avgedge = 0;
}
import javax.media.opengl.glu.*;
import java.util.*;
-// FEATURE: check google's 3D warehouse for sample shapes
+// FIXME: recenter goal to have centroid coincident with tile
+// FIXME: re-orient goal (how?)
+// fish case: ensure that spinal axis of fish is the x-axis of the tile
public class Main implements GLEventListener, MouseListener, MouseMotionListener, KeyListener, MouseWheelListener {
mousey = e.getY();
}
- private Geom geom = new Geom();
+ private Geom tile = new Geom();
+ private Geom goal = new Geom();
/** magnification factor */
private static final float MAG = 1;
- Geom.V[] translations;
+ Geom.M[] translations;
Geom.P[] points;
public Main(StlFile stlf) {
- Geom.P ltf = geom.newP(-0.2, 0.1, 0.1);
- Geom.P mtf = geom.newP( 0.0, 0.1, 0.1);
- Geom.P rtf = geom.newP( 0.2, 0.1, 0.1);
- Geom.P ltn = geom.newP(-0.2, 0.1, -0.1);
- Geom.P mtn = geom.newP( 0.0, 0.1, -0.1);
- Geom.P rtn = geom.newP( 0.2, 0.1, -0.1);
- Geom.P lbf = geom.newP(-0.2, -0.1, 0.1);
- Geom.P mbf = geom.newP( 0.0, -0.1, 0.1);
- Geom.P rbf = geom.newP( 0.2, -0.1, 0.1);
- Geom.P lbn = geom.newP(-0.2, -0.1, -0.1);
- Geom.P mbn = geom.newP( 0.0, -0.1, -0.1);
- Geom.P rbn = geom.newP( 0.2, -0.1, -0.1);
+ for(int i=0; i<stlf.coordArray.length; i+=3) {
+ Geom.P p0 = goal.newP(stlf.coordArray[i+0].x * MAG, stlf.coordArray[i+0].y * MAG, stlf.coordArray[i+0].z * MAG);
+ Geom.P p1 = goal.newP(stlf.coordArray[i+1].x * MAG, stlf.coordArray[i+1].y * MAG, stlf.coordArray[i+1].z * MAG);
+ Geom.P p2 = goal.newP(stlf.coordArray[i+2].x * MAG, stlf.coordArray[i+2].y * MAG, stlf.coordArray[i+2].z * MAG);
+ Geom.V n = goal.new V(stlf.normArray[i/3].x * MAG, stlf.normArray[i/3].y * MAG, stlf.normArray[i/3].z * MAG);
+ Geom.T t = goal.newT(p0, p1, p2, n);
+ }
+
+ // rotate to align major axis -- this probably needs to be done by a human.
+ goal.transform(goal.new M(goal.new V(0, 0, 1), (float)(Math.PI/2)));
+
+
+ float goal_width = goal.diagonal().dot(goal.new V(1, 0, 0));
+ float goal_height = goal.diagonal().dot(goal.new V(0, 1, 0));
+ float goal_depth = goal.diagonal().dot(goal.new V(0, 0, 1));
+
+ float width = (float)0.6;
+ float height = (float)0.08;
+ float depth = (float)0.3;
+ translations = new Geom.M[] {
+
+ tile.new M(tile.new V(-(width/2), height, 0)),
+ tile.new M(tile.new V( (width/2), height, 0)),
+ tile.new M(tile.new V(-(width/2), -height, 0)),
+ tile.new M(tile.new V( (width/2), -height, 0)),
+ tile.new M(tile.new V(-(width/2), 0, depth)),
+ tile.new M(tile.new V( (width/2), 0, depth)),
+ tile.new M(tile.new V(-(width/2), 0, -depth)),
+ tile.new M(tile.new V( (width/2), 0, -depth)),
+
+ tile.new M(tile.new V( width, 0, 0)),
+ tile.new M(tile.new V(-width, 0, 0)),
+ /*
+ tile.new M(tile.new V( 0, 0, depth)),
+ tile.new M(tile.new V( 0, 0, -depth)),
+ */
+ };
+
+
+ Geom.P ltf = tile.newP(-(width/2), (height/2), (depth/2));
+ Geom.P mtf = tile.newP( 0.0, (height/2), (depth/2));
+ Geom.P rtf = tile.newP( (width/2), (height/2), (depth/2));
+ Geom.P ltn = tile.newP(-(width/2), (height/2), -(depth/2));
+ Geom.P mtn = tile.newP( 0.0, (height/2), -(depth/2));
+ Geom.P rtn = tile.newP( (width/2), (height/2), -(depth/2));
+ Geom.P lbf = tile.newP(-(width/2), -(height/2), (depth/2));
+ Geom.P mbf = tile.newP( 0.0, -(height/2), (depth/2));
+ Geom.P rbf = tile.newP( (width/2), -(height/2), (depth/2));
+ Geom.P lbn = tile.newP(-(width/2), -(height/2), -(depth/2));
+ Geom.P mbn = tile.newP( 0.0, -(height/2), -(depth/2));
+ Geom.P rbn = tile.newP( (width/2), -(height/2), -(depth/2));
points = new Geom.P[] {
ltf,
rbn
};
- translations = new Geom.V[] {
- geom.new V(-0.2, 0.2, 0),
- geom.new V( 0.2, 0.2, 0),
- geom.new V(-0.2, -0.2, 0),
- geom.new V( 0.2, -0.2, 0),
- geom.new V( 0.4, 0, 0),
- geom.new V(-0.4, 0, 0),
- geom.new V( 0, 0, 0.2),
- geom.new V( 0, 0, -0.2),
- };
// top
- geom.newT(ltf, mtf, mtn);
- geom.newT(mtn, ltn, ltf);
- geom.newT(mtf, rtf, rtn);
- geom.newT(rtn, mtn, mtf);
+ tile.newT(ltf, mtf, mtn);
+ tile.newT(mtn, ltn, ltf);
+ tile.newT(mtf, rtf, rtn);
+ tile.newT(rtn, mtn, mtf);
// bottom (swap normals)
- geom.newT(mbf, lbf, mbn);
- geom.newT(lbn, mbn, lbf);
- geom.newT(rbf, mbf, rbn);
- geom.newT(mbn, rbn, mbf);
+ tile.newT(mbf, lbf, mbn);
+ tile.newT(lbn, mbn, lbf);
+ tile.newT(rbf, mbf, rbn);
+ tile.newT(mbn, rbn, mbf);
// left
- geom.newT(ltf, ltn, lbn);
- geom.newT(lbn, lbf, ltf);
+ tile.newT(ltf, ltn, lbn);
+ tile.newT(lbn, lbf, ltf);
// right (swap normals)
- geom.newT(rtn, rtf, rbn);
- geom.newT(rbf, rbn, rtf);
+ tile.newT(rtn, rtf, rbn);
+ tile.newT(rbf, rbn, rtf);
// front
- geom.newT(ltn, mtn, mbn);
- geom.newT(ltn, mbn, lbn);
- geom.newT(mtn, rtn, rbn);
- geom.newT(mtn, rbn, mbn);
+ tile.newT(ltn, mtn, mbn);
+ tile.newT(ltn, mbn, lbn);
+ tile.newT(mtn, rtn, rbn);
+ tile.newT(mtn, rbn, mbn);
// back
- geom.newT(mtf, ltf, mbf);
- geom.newT(mbf, ltf, lbf);
- geom.newT(rtf, mtf, rbf);
- geom.newT(rbf, mtf, mbf);
-
- for(Geom.V v : translations) {
- for(Geom.T t1 : geom) {
- for(Geom.T t2 : geom) {
+ tile.newT(mtf, ltf, mbf);
+ tile.newT(mbf, ltf, lbf);
+ tile.newT(rtf, mtf, rbf);
+ tile.newT(rbf, mtf, mbf);
+
+ for(Geom.M m : translations) {
+ for(Geom.T t1 : tile) {
+ for(Geom.T t2 : tile) {
if (t1==t2) continue;
- if ((t1.p1().plus(v).minus(t2.p1()).mag() < Geom.EPSILON) &&
- (t1.p2().plus(v).minus(t2.p3()).mag() < Geom.EPSILON) &&
- (t1.p3().plus(v).minus(t2.p2()).mag() < Geom.EPSILON)) {
+ if ((t1.p1().times(m).minus(t2.p1()).mag() < Geom.EPSILON) &&
+ (t1.p2().times(m).minus(t2.p3()).mag() < Geom.EPSILON) &&
+ (t1.p3().times(m).minus(t2.p2()).mag() < Geom.EPSILON)) {
t1.e1().bind(t2.e3().pair);
t1.e2().bind(t2.e2().pair);
t1.e3().bind(t2.e1().pair);
}
- if ((t1.p2().plus(v).minus(t2.p1()).mag() < Geom.EPSILON) &&
- (t1.p3().plus(v).minus(t2.p3()).mag() < Geom.EPSILON) &&
- (t1.p1().plus(v).minus(t2.p2()).mag() < Geom.EPSILON)) {
+ if ((t1.p2().times(m).minus(t2.p1()).mag() < Geom.EPSILON) &&
+ (t1.p3().times(m).minus(t2.p3()).mag() < Geom.EPSILON) &&
+ (t1.p1().times(m).minus(t2.p2()).mag() < Geom.EPSILON)) {
t1.e2().bind(t2.e3().pair);
t1.e3().bind(t2.e2().pair);
t1.e1().bind(t2.e1().pair);
}
- if ((t1.p3().plus(v).minus(t2.p1()).mag() < Geom.EPSILON) &&
- (t1.p1().plus(v).minus(t2.p3()).mag() < Geom.EPSILON) &&
- (t1.p2().plus(v).minus(t2.p2()).mag() < Geom.EPSILON)) {
+ if ((t1.p3().times(m).minus(t2.p1()).mag() < Geom.EPSILON) &&
+ (t1.p1().times(m).minus(t2.p3()).mag() < Geom.EPSILON) &&
+ (t1.p2().times(m).minus(t2.p2()).mag() < Geom.EPSILON)) {
t1.e3().bind(t2.e3().pair);
t1.e1().bind(t2.e2().pair);
t1.e2().bind(t2.e1().pair);
}
}
- Geom.P mid = ltn.getE(mbn).shatter();
+ //xGeom.P mid = lbf.getE(mbn).shatter();
+
+ // rescale to match volume
+ float factor = (float)Math.pow(tile.volume() / goal.volume(), 1.0/3.0);
+ goal.transform(goal.new M(factor));
+
+ // translate to match centroid
+ goal.transform(goal.new M(tile.centroid().minus(goal.centroid())));
//tx.e2.shatter();
//tx.e3.shatter();
- geom.bind();
+ tile.bind();
- mid.move(geom.new V((float)0,0,(float)-0.05));
- //ltn.move(geom.new V((float)0,0,(float)-0.05));
+ //mid.move(tile.new V((float)0,0,(float)-0.05));
+ //ltn.move(tile.new V((float)0,0,(float)-0.05));
- //mtf.move(geom.new V(0, (float)-0.05, (float)0.05));
- /*
- for(int i=0; i<100; i++) {
- rand();
- }
- */
+ //mtf.move(tile.new V(0, (float)-0.05, (float)0.05));
- /*
- for(int i=0; i<stlf.coordArray.length; i+=3) {
- Geom.P p0 = geom.newP(stlf.coordArray[i+0].x * MAG, stlf.coordArray[i+0].y * MAG, stlf.coordArray[i+0].z * MAG);
- Geom.P p1 = geom.newP(stlf.coordArray[i+1].x * MAG, stlf.coordArray[i+1].y * MAG, stlf.coordArray[i+1].z * MAG);
- Geom.P p2 = geom.newP(stlf.coordArray[i+2].x * MAG, stlf.coordArray[i+2].y * MAG, stlf.coordArray[i+2].z * MAG);
- Geom.V n = geom.new V(stlf.normArray[i/3].x * MAG, stlf.normArray[i/3].y * MAG, stlf.normArray[i/3].z * MAG);
- Geom.T t = geom.newT(p0, p1, p2, n);
- }
- */
-
+ System.out.println("tile volume: " + tile.volume());
+ System.out.println("goal volume: " + goal.volume());
+ tile.score_against = goal;
+ goal.score_against = tile;
}
Random random = new Random();
public synchronized void breakit() {
- int i = Math.abs(random.nextInt()) % geom.es.size();
- Geom.E e = geom.es.poll();
- System.out.println("shatter " + e);
- e.shatter();
- geom.unbind();
- geom.bind();
+ if (verts > 40) return;
+ //double min = (tile.avgedge/tile.numedges)*(1+(4/(double)verts));
+ //if (verts>0 && tile.es.peek().length() < min) return;
+ PriorityQueue<Geom.E> es = new PriorityQueue<Geom.E>();
+ for(Geom.E e : tile.es) es.add(e);
+ for(int i=0; i<1; i++) {
+ Geom.E e = es.poll();
+ verts++;
+ System.out.println("shatter " + e);
+ e.shatter();
+ tile.unbind();
+ tile.bind();
+ }
}
- public synchronized void rand() {
- for(int i=0; i<10; i++) {
- Geom.P p = geom.ts.get(Math.abs(random.nextInt()) % geom.ts.size()).e1().p1;
- float r1 = Math.abs(random.nextFloat());
- r1 = r1 - (float)Math.floor(r1);
- r1 = r1 * (float)0.01;
- r1 = r1 - (float)0.005;
- switch(Math.abs(random.nextInt()) % 3) {
- case 0: p.move(geom.new V((float)0, (float)r1, (float)0)); break;
- case 1: p.move(geom.new V((float)r1, (float)0, (float)0)); break;
- case 2: p.move(geom.new V((float)0, (float)0, (float)r1)); break;
+
+ public synchronized void rand(double temperature, Geom.P p) {
+ double tile_score = tile.score();
+ double goal_score = goal.score();
+
+ p.rescore();
+ //if (p.watch==null) return;
+ float r1 = Math.abs(random.nextFloat());
+ r1 = r1 - (float)Math.floor(r1);
+ r1 = r1 * (float)0.01;
+ r1 = r1 - (float)0.005;
+ Geom.V v = p.watchback().minus(p).norm().times(r1);
+
+ //v = p.norm().times(v.dot(p.norm()));
+
+ boolean aspect = false;//(Math.abs(random.nextInt()) % 100) <= 2;
+ Geom.M old_tile_aspect = goal.aspect;
+ boolean good = true;
+ if (aspect) {
+ v = v.times(10);
+ tile.aspect = tile.new M(tile.aspect.a / (v.x+1), tile.aspect.f / (v.y+1), tile.aspect.k / (v.z+1));
+ tile.invaspect = tile.new M(1/tile.aspect.a, 1/tile.aspect.f, 1/tile.aspect.k);
+ goal.rescore();
+ tile.rescore();
+ } else {
+ good = p.move(v);
+ }
+ double new_tile_score = tile.score();
+ double new_goal_score = goal.score();
+ double tile_delta = new_tile_score - tile_score;
+ double goal_delta = new_goal_score - goal_score;
+ double delta = tile_delta + goal_delta;
+ double swapProbability = Math.exp((-1 * delta) / temperature);
+ //boolean doSwap = Math.random() < swapProbability;
+ boolean doSwap = good && (tile_delta <= 0 && goal_delta <= 0);
+ if (doSwap) {
+ tile_score = new_tile_score;
+ goal_score = new_goal_score;
+ //System.out.println("score: " + tile_score + " / " + goal_score);
+ if (aspect) System.out.println("aspect " + v);
+ } else {
+ if (aspect) {
+ tile.aspect = old_tile_aspect;
+ tile.invaspect = tile.new M(1/tile.aspect.a, 1/tile.aspect.f, 1/tile.aspect.k);
+ goal.rescore();
+ tile.rescore();
+ } else {
+ p.move(v.times(-1));
}
}
}
GL gl = gld.getGL();
gl.glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
gl.glViewport(0, 0, 500, 300);
- gl.glMatrixMode(GL.GL_PROJECTION);
gl.glEnable(GL.GL_DEPTH_TEST);
gl.glClearDepth(1.0);
gl.glDepthFunc(GL.GL_LEQUAL);
+ gl.glMatrixMode(GL.GL_PROJECTION);
gl.glLoadIdentity();
- //glu.gluOrtho2D(0.0, 500.0, 0.0, 300.0);
+ gl.glMatrixMode(GL.GL_MODELVIEW);
display(gld);
}
gl.glRotatef(angley/3, 1, 0, 0);
gl.glBegin(GL.GL_TRIANGLES);
- draw(gl, true);
+ draw(gl, true, tile);
gl.glEnd();
- for(Geom.V v1 : translations) {
- if (v1.z==0 && v1.y==0) continue;
- Geom.V v = v1.times((float)1.1);
+ gl.glBegin(GL.GL_TRIANGLES);
+ gl.glColor4f((float)0.5, (float)0.5, (float)0.5, (float)0.8);
+ //draw(gl, false, goal);
+ gl.glEnd();
+
+
+ int i = 0;
+ //gl.glDisable(GL.GL_DEPTH_TEST);
+ gl.glColor4f(1,1,1,1);
+ for(Geom.M m : translations) {
+ //if (v1.z==0 && v1.y==0) continue;
+ i++;
+ if (i != 1 /*&& i!=4*/) continue;
+ Geom.P p = tile.newP(0, 0, 0).times(m);
+ Geom.V v = tile.new V(p.x, p.y, p.z);
+ v = v.times((float)1.04);
gl.glTranslatef(v.x, v.y, v.z);
- draw(gl, false);
+ draw(gl, false, tile);
gl.glTranslatef(-v.x, -v.y, -v.z);
- break;
}
-
+ //gl.glEnable(GL.GL_DEPTH_TEST);
}
- private synchronized void draw(GL gl, boolean triangles) {
+ private synchronized void draw(GL gl, boolean triangles, Geom mesh) {
float red = 0.0f;
float green = 0.0f;
float blue = 0.0f;
- for(Geom.T t : geom) {
+ for(Geom.T t : mesh) {
if (red < 0.15) red = 1.0f;
if (green < 0.15) green = 1.0f;
if (blue < 0.15) blue = 1.0f;
red -= .09f;
green -= .12f;
blue -= .15f;
- gl.glColor3f(red, green, blue);
- switch(t.color) {
- case 0: gl.glColor3f((float)0.25, (float)0.25, (float)0.75); break;
- case 1: gl.glColor3f((float)0.25, (float)0.75, (float)0.25); break;
- case 2: gl.glColor3f((float)0.75, (float)0.25, (float)0.25); break;
- case 3: gl.glColor3f((float)0.50, (float)0.50, (float)0.50); break;
+
+ if (triangles) switch(t.color) {
+ case 0: gl.glColor4f((float)0.25, (float)0.25, (float)0.75, (float)0.3); break;
+ case 1: gl.glColor4f((float)0.25, (float)0.75, (float)0.25, (float)0.3); break;
+ case 2: gl.glColor4f((float)0.75, (float)0.25, (float)0.25, (float)0.3); break;
+ case 3: gl.glColor4f((float)0.50, (float)0.50, (float)0.50, (float)0.3); break;
}
//gl.glBegin(GL.GL_LINES);
+
if (triangles) {
gl.glBegin(GL.GL_TRIANGLES);
t.glVertices(gl);
centroid.glVertex(gl);
centroid.plus(t.norm().times(t.diameter())).glVertex(gl);
*/
- /*
- t.p1().glVertex(gl);
- t.p1().plus(t.p1().norm().times(t.diameter())).glVertex(gl);
- t.p2().glVertex(gl);
- t.p2().plus(t.p2().norm().times(t.diameter())).glVertex(gl);
- t.p3().glVertex(gl);
- t.p3().plus(t.p3().norm().times(t.diameter())).glVertex(gl);
- */
+
+ if (mesh==goal)
+ for(Geom.P p : new Geom.P[] { t.p1(), t.p2(), t.p3() }) {
+ p.glVertex(gl);
+ //p.plus(p.norm().times(p.score()*10)).glVertex(gl);
+ p.partner().glVertex(gl);
+ //tile.nearest(p).centroid().glVertex(gl);
+ }
+
gl.glEnd();
}
public static void main(String[] s) throws Exception {
StlFile stlf = new StlFile();
- stlf.load("teapot.stl");
+ stlf.load("simplefish.stl");
Main main = new Main(stlf);
Frame f = new Frame();
GLCapabilities glcaps = new GLCapabilities();
glcanvas.addMouseWheelListener(main);
glcanvas.addKeyListener(main);
- int i = 0;
+ main.anneal(glcanvas);
+ }
+ public static int verts = 0;
+ public void anneal(GLCanvas glcanvas) throws Exception {
+ int verts = 0;
while(true) {
- Thread.sleep(10);
- glcanvas.repaint();
- main.rand();
- if (i++>10) { main.breakit(); i = 0; }
+ //Thread.sleep(10);
+ for(int i=0; i<1; i++) {
+ glcanvas.repaint();
+ //tile.ts.get(Math.abs(random.nextInt()) % tile.ts.size()).e1().p1
+ for(Geom.T t : tile)
+ for(Geom.P p : new Geom.P[] { t.p1(), t.p2(), t.p3() }) {
+ rand(10,p);
+ }
+ goal.rescore();
+ tile.rescore();
+ }
+ breakit();
}
}