-- errors in ctype. The basic problem is that
-- (Eq a, Ord a)
-- looks so much like a tuple type. We can't tell until we find the =>
+--
+-- We have the t1 ~ t2 form here and in gentype, to permit an individual
+-- equational constraint without parenthesis.
context :: { LHsContext RdrName }
- : btype {% checkContext $1 }
+ : btype '~' btype {% checkContext
+ (LL $ HsPredTy (HsEqualP $1 $3)) }
+ | btype {% checkContext $1 }
type :: { LHsType RdrName }
: ipvar '::' gentype { LL (HsPredTy (HsIParam (unLoc $1) $3)) }
| btype qtyconop gentype { LL $ HsOpTy $1 $2 $3 }
| btype tyvarop gentype { LL $ HsOpTy $1 $2 $3 }
| btype '->' ctype { LL $ HsFunTy $1 $3 }
- | btype '~' gentype { LL $ HsPredTy (HsEqualP $1 $3) }
+ | btype '~' btype { LL $ HsPredTy (HsEqualP $1 $3) }
btype :: { LHsType RdrName }
: btype atype { LL $ HsAppTy $1 $2 }
data PredType
= ClassP Class [Type] -- Class predicate
| IParam (IPName Name) Type -- Implicit parameter
- | EqPred Type Type -- Equality predicate (ty1 :=: ty2)
+ | EqPred Type Type -- Equality predicate (ty1 ~ ty2)
type ThetaType = [PredType]
\end{code}
Note [Equality predicates]
~~~~~~~~~~~~~~~~~~~~~~~~~~
- forall a b. (a :=: S b) => a -> b
+ forall a b. (a ~ S b) => a -> b
could be represented by
ForAllTy a (ForAllTy b (FunTy (PredTy (EqPred a (S b))) ...))
OR
isLiftedTypeKind other = False
isCoercionKind :: Kind -> Bool
--- All coercions are of form (ty1 :=: ty2)
+-- All coercions are of form (ty1 ~ ty2)
-- This function is here rather than in Coercion,
-- because it's used in a knot-tied way to enforce invariants in Var
isCoercionKind (NoteTy _ k) = isCoercionKind k
pprPred :: PredType -> SDoc
pprPred (ClassP cls tys) = pprClassPred cls tys
pprPred (IParam ip ty) = ppr ip <> dcolon <> pprType ty
-pprPred (EqPred ty1 ty2) = sep [ppr ty1, nest 2 (ptext SLIT(":=:")), ppr ty2]
+pprPred (EqPred ty1 ty2) = sep [ppr ty1, nest 2 (ptext SLIT("~")), ppr ty2]
pprClassPred :: Class -> [Type] -> SDoc
pprClassPred clas tys = parenSymOcc (getOccName clas) (ppr clas)