From: simonpj Date: Wed, 3 Jul 2002 08:53:50 +0000 (+0000) Subject: [project @ 2002-07-03 08:53:50 by simonpj] X-Git-Tag: Approx_11550_changesets_converted~1899 X-Git-Url: http://git.megacz.com/?a=commitdiff_plain;h=2c4ec803130da8408510adb122f41e7445aa0503;p=ghc-hetmet.git [project @ 2002-07-03 08:53:50 by simonpj] Reorder sections of type-system extensions --- diff --git a/ghc/docs/users_guide/glasgow_exts.sgml b/ghc/docs/users_guide/glasgow_exts.sgml index 3024254..667eef4 100644 --- a/ghc/docs/users_guide/glasgow_exts.sgml +++ b/ghc/docs/users_guide/glasgow_exts.sgml @@ -232,6 +232,68 @@ like expressions. More specifically: + +Explicitly-kinded quantification + + +Haskell infers the kind of each type variable. Sometimes it is nice to be able +to give the kind explicitly as (machine-checked) documentation, +just as it is nice to give a type signature for a function. On some occasions, +it is essential to do so. For example, in his paper "Restricted Data Types in Haskell" (Haskell Workshop 1999) +John Hughes had to define the data type: + + data Set cxt a = Set [a] + | Unused (cxt a -> ()) + +The only use for the Unused constructor was to force the correct +kind for the type variable cxt. + + +GHC now instead allows you to specify the kind of a type variable directly, wherever +a type variable is explicitly bound. Namely: + +data declarations: + + data Set (cxt :: * -> *) a = Set [a] + +type declarations: + + type T (f :: * -> *) = f Int + +class declarations: + + class (Eq a) => C (f :: * -> *) a where ... + +forall's in type signatures: + + f :: forall (cxt :: * -> *). Set cxt Int + + + + + +The parentheses are required. Some of the spaces are required too, to +separate the lexemes. If you write (f::*->*) you +will get a parse error, because "::*->*" is a +single lexeme in Haskell. + + + +As part of the same extension, you can put kind annotations in types +as well. Thus: + + f :: (Int :: *) -> Int + g :: forall a. a -> (a :: *) + +The syntax is + + atype ::= '(' ctype '::' kind ') + +The parentheses are required. + + + + Class method types @@ -2219,66 +2281,6 @@ in f4's scope. - -Explicitly-kinded quantification - - -Haskell infers the kind of each type variable. Sometimes it is nice to be able -to give the kind explicitly as (machine-checked) documentation, -just as it is nice to give a type signature for a function. On some occasions, -it is essential to do so. For example, in his paper "Restricted Data Types in Haskell" (Haskell Workshop 1999) -John Hughes had to define the data type: - - data Set cxt a = Set [a] - | Unused (cxt a -> ()) - -The only use for the Unused constructor was to force the correct -kind for the type variable cxt. - - -GHC now instead allows you to specify the kind of a type variable directly, wherever -a type variable is explicitly bound. Namely: - -data declarations: - - data Set (cxt :: * -> *) a = Set [a] - -type declarations: - - type T (f :: * -> *) = f Int - -class declarations: - - class (Eq a) => C (f :: * -> *) a where ... - -forall's in type signatures: - - f :: forall (cxt :: * -> *). Set cxt Int - - - - - -The parentheses are required. Some of the spaces are required too, to -separate the lexemes. If you write (f::*->*) you -will get a parse error, because "::*->*" is a -single lexeme in Haskell. - - - -As part of the same extension, you can put kind annotations in types -as well. Thus: - - f :: (Int :: *) -> Int - g :: forall a. a -> (a :: *) - -The syntax is - - atype ::= '(' ctype '::' kind ') - -The parentheses are required. - -