add helper newT() method which does not require a colorclass
[anneal.git] / src / edu / berkeley / qfat / Mesh.java
index a935357..032457b 100644 (file)
@@ -1,61 +1,93 @@
 package edu.berkeley.qfat;
 import java.awt.*;
 import java.util.*;
+import java.io.*;
 import java.awt.event.*;
 import javax.swing.*;
 import javax.media.opengl.*;
 import javax.media.opengl.glu.*;
 import edu.berkeley.qfat.geom.*;
 import edu.wlu.cs.levy.CG.KDTree;
+import edu.berkeley.qfat.bind.*;
 import edu.berkeley.qfat.geom.Point;
+import com.infomatiq.jsi.IntProcedure;
+
+// EDGES RUN COUNTER-CLOCKWISE
 
 public class Mesh implements Iterable<Mesh.T> {
 
     public static final float EPSILON = (float)0.0001;
     public static final Random random = new Random();
 
-    private PointSet<Vert> vertices = new PointSet<Vert>();
-
-    public int size() { return vertices.size(); }
-    public Iterable<Vert> vertices() { return vertices; }
-
-    public Iterable<E> edges() {
-        return
-            new Iterable<E>() {
-            public Iterator<E> iterator() {
-                // HACK
-                HashSet<E> hse = new HashSet<E>();
-                for(T t : Mesh.this) {
-                    hse.add(t.e1());
-                    hse.add(t.e2());
-                    hse.add(t.e3());
-                    hse.add(t.e1().pair);
-                    hse.add(t.e2().pair);
-                    hse.add(t.e3().pair);
+    private RTree<T>         triangles = new RTree<T>();
+    private PointSet<Vertex> vertices  = new PointSet<Vertex>();
+
+    public boolean option_wireframe    = false;
+    public boolean option_errorNormals = false;
+    public boolean option_selectable   = true;
+
+    public void render(GL gl, Matrix m) { render(gl, m, false); }
+    public void render(GL gl, Matrix m, boolean noColor) {
+        if (option_wireframe) {
+            gl.glDisable(GL.GL_LIGHTING);
+            gl.glBegin(GL.GL_LINES);
+            if (!noColor) gl.glColor3f(1, 1, 1);
+            for (T t : this) {
+                // fixme used to be .goodp
+                m.times(t.e1().v1.p).glVertex(gl);
+                m.times(t.e1().v2.p).glVertex(gl);
+                m.times(t.e2().v1.p).glVertex(gl);
+                m.times(t.e2().v2.p).glVertex(gl);
+                m.times(t.e3().v1.p).glVertex(gl);
+                m.times(t.e3().v2.p).glVertex(gl);
+            }
+            gl.glEnd();
+            gl.glEnable(GL.GL_LIGHTING);
+            return;
+        }
+        for(T t : this) {
+            if (!noColor)
+                gl.glColor4f((float)(0.25+(0.05*t.color)),
+                             (float)(0.25+(0.05*t.color)),
+                             (float)(0.75+(0.05*t.color)),
+                             (float)0.3); 
+            /*
+            if (t.red) {
+            gl.glColor4f((float)(0.75+(0.05*t.color)),
+                         (float)(0.25+(0.05*t.color)),
+                         (float)(0.25+(0.05*t.color)),
+                         (float)0.3); 
+            }
+            */
+            t.glTriangle(gl, m);
+        }
+        if (option_errorNormals)
+            for(T t : this)
+                for(Mesh.Vertex p : new Mesh.Vertex[] { t.v1(), t.v2(), t.v3() }) {
+                    if (p.ok) {
+                        gl.glBegin(GL.GL_LINES);
+                        if (!noColor)
+                            gl.glColor3f(1, 1, 1);
+                        p.p.glVertex(gl);
+                        p.p.plus(p.norm().times((float)p.error()*10)).glVertex(gl);
+                        gl.glEnd();
+                    }
                 }
-                return hse.iterator();
-            } };
     }
 
-    public Iterator<T> iterator() {
-        /*
-        for(Vert v : vertices)
-            if (v.e != null && v.e.t != null)
-                return new FaceIterator(v);
-        return new FaceIterator();
-        */
-        return ts.iterator();
-    }
+    public boolean immutableVertices;
+    public Mesh    error_against      = null;
+    public double  error              = 0;
 
-    public HashSet<T> ts = new HashSet<T>();
-    public RTree<T> tris = new RTree<T>();
+    public Mesh(boolean immutableVertices) { this.immutableVertices = immutableVertices; }
 
-    public Mesh score_against = null;
-    public double score = 0;
-    public float score() { return (float)score; }
+    public void makeVerticesImmutable() { this.immutableVertices = true; }
+    public float error() { return (float)error; }
 
-    public int numedges = 0;
-    public float avgedge = 0;
+    public int size() { return vertices.size(); }
+    public int numTriangles() { return triangles.size(); }
+    public Iterable<Vertex> vertices() { return vertices; }
+    public Iterator<T> iterator() { return triangles.iterator(); }
 
     public void rebindPoints() {
         // unbind all points
@@ -70,47 +102,22 @@ public class Mesh implements Iterable<Mesh.T> {
             t.e2().dobind();
             t.e3().dobind();
         }
-    }
-
-    public void unApplyQuadricToNeighborAll() {
-        HashSet<Vert> done = new HashSet<Vert>();
-        for(T t : this)
-            for(Vert p : new Vert[] { t.v1(), t.v2(), t.v3() }) {
-                if (done.contains(p)) continue;
-                done.add(p);
-                p.unApplyQuadricToNeighbor();
-            }
-    }
-    public void recomputeAllFundamentalQuadrics() {
-        HashSet<Vert> done = new HashSet<Vert>();
-        for(T t : this)
-            for(Vert p : new Vert[] { t.v1(), t.v2(), t.v3() }) {
-                if (done.contains(p)) continue;
-                done.add(p);
-                p.recomputeFundamentalQuadric();
-            }
-    }
-    public float applyQuadricToNeighborAll() {
-        int num = 0;
-        double dist = 0;
-        HashSet<Vert> done = new HashSet<Vert>();
-        for(T t : this)
-            for(Vert p : new Vert[] { t.v1(), t.v2(), t.v3() }) {
-                if (done.contains(p)) continue;
-                done.add(p);
-                p.applyQuadricToNeighbor();
-                
-            }
-        return (float)(dist/num);
+        System.out.println("rebound!");
     }
 
     public void transform(Matrix m) {
-        ArrayList<Vert> set = new ArrayList<Vert>();
-        for (Vert v : vertices)
-            set.add(v);
-        for(Vert v : set) v.transform(m);
+        ArrayList<Vertex> set = new ArrayList<Vertex>();
+        for(Vertex v : vertices) set.add(v);
+        for(Vertex v : set) v.transform(m.times(v.p), true, null);
+        for(Vertex v : set) v.goodp = v.p;
     }
 
+    public void rebuild() { /*vertices.rebuild();*/ }
+    public Vec diagonal() { return vertices.diagonal(); }
+    public Point centroid() { return vertices.centroid(); }
+    public Vertex nearest(Point p) { return vertices.nearest(p); }
+
+    /** compute the volume of the mesh */
     public float volume() {
         double total = 0;
         for(T t : this) {
@@ -123,440 +130,657 @@ public class Mesh implements Iterable<Mesh.T> {
         return (float)total;
     }
 
-    public void rebuild() { /*vertices.rebuild();*/ }
-    public Vec diagonal() { return vertices.diagonal(); }
-    public Point centroid() { return vertices.centroid(); }
-    public Vert nearest(Point p) { return vertices.nearest(p); }
 
-    public final class Vert extends HasPoint {
-        public String toString() { return p.toString(); }
-        public Point p;
-        E e;                // some edge *leaving* this point
+    public void subdivide() {
+        for (Vertex v : vertices()) v.original = true;
+        HashSet<E> edges = new HashSet<E>();
+        HashSet<E> flip = new HashSet<E>();
+        HashSet<T> tris = new HashSet<T>();
+        int count = 0;
+        for (T t : this) {
+            tris.add(t);
+            edges.add(t.e1());
+            edges.add(t.e2());
+            edges.add(t.e3());
+            count++;
+        }
+        System.out.println("triangles="+count);
+        count = 0;
+        for(E e : edges) {
+            if (e.destroyed || e.shattered) continue;
+            e.shatter().edge = true;
+            for(E ex : (Iterable<E>)e.getBoundPeers()) {
+                Vertex m = nearest(ex.midpoint());
+                m.edge = true;
+                E e3 = ex.v1.getE(m).next;
+                if (e3.v2.original)
+                    flip.add(e3);
+            }
+        }
 
-        /** the nearest vertex in the "score_against" mesh */
-        Vert   nearest_in_other_mesh;
-        /** the number of vertices in the other mesh for which this is the nearest_in_other_mesh */
-        int    quadric_count;
-        /** the total error quadric (contributions from all vertices in other mesh for which this is nearest) */
-        Matrix quadric = Matrix.ZERO;
+        int i=0;
 
-        Vert bound_to = this;
-        Matrix binding = Matrix.ONE;
-        float oldscore = 0;
-        boolean quadricStale = false;
+        for(E e : flip) {
+            e.flip();
+            System.out.println("flip!");
+            i++;
+        }
+
+        System.out.println("count="+count);
+
+        rebindPoints();
+        HashSet<Vertex> verts = new HashSet<Vertex>();
+        for(Vertex v : vertices()) verts.add(v);
+        for (Vertex v : verts)
+            v.clearWish();
+        for (Vertex v : verts) {
+            if (v.edge) {
+                for(E e = v.e; e!=null; e=e.pair.next==v.e?null:e.pair.next) {
+                    if (e.v2.original) {
+                        v.wish(e.v2);
+                        v.wish(e.v2);
+                        v.wish(e.v2);
+                        v.wish(e.v2);
+                    }
+                }
+                for(E e = v.e; e!=null; e=e.pair.next==v.e?null:e.pair.next) {
+                    for(E e2 = e.v2.e; e2!=null; e2=e2.pair.next==e.v2.e?null:e2.pair.next) {
+                        if (e2.v2.original) {
+                            v.wish(e.v2);
+                        }
+                    }
+                }
+            }
+        }
+        for (Vertex v : verts)
+            v.grantWish();
+        System.out.println("-------------------------------------------------------------------");
+        /*
+        for (Vertex v : verts) {
+            if (v.original) {
+                int n=0;
+                for(E e = v.e; e!=null; e=e.pair.next==v.e?null:e.pair.next) {
+                    n++;
+                    v.wish(e.midpoint());
+                    v.wish(e.midpoint());
+                    v.wish(e.next.pair.t.centroid());
+                }
+                v.avgWish();
+                v.wishes = 3;
+                for(int j=0; j<n-3; j++)
+                    v.wish(v.getPoint());
+            }
+        }
+        for (Vertex v : verts)
+            v.avgWish();
+        for (Vertex v : verts)
+            v.grantWish();
+        */
+    }
+
+    // Vertexices //////////////////////////////////////////////////////////////////////////////
 
-        public Matrix errorQuadric() { return quadric; }
-        public Point getPoint() { return p; }
-        public float score() { return oldscore; }
 
-        private Matrix fundamentalQuadric = null;
-        public Matrix fundamentalQuadric() {
-            if (fundamentalQuadric == null) recomputeFundamentalQuadric();
-            return fundamentalQuadric;
+    /** a vertex in the mesh */
+    public final class Vertex extends HasQuadric implements Visitor, HasPoint {
+        public void bindTo(Matrix bindingMatrix, HasBindingGroup other) {
+            bindTo(bindingMatrix, other, EPSILON);
         }
+        public float getMaxX() { return getPoint().getMaxX(); }
+        public float getMinX() { return getPoint().getMinX(); }
+        public float getMaxY() { return getPoint().getMaxY(); }
+        public float getMinY() { return getPoint().getMinY(); }
+        public float getMaxZ() { return getPoint().getMaxZ(); }
+        public float getMinZ() { return getPoint().getMinZ(); }
+
+        public Point p, goodp;
+        public Point oldp;
+        E e;                // some edge *leaving* this point
 
-        private Vert(Point p) {
+        public boolean original = false;
+        public boolean edge = false;
+        public boolean face = false;
+
+        private int wishes = 0;
+        private Point wish = Point.ZERO;
+        public void clearWish() { wishes = 0; wish = Point.ZERO; }
+        public void wish(HasPoint hp) {
+            Point p = hp.getPoint();
+            wishes++;
+            wish = new Point(wish.x+p.x, wish.y+p.y, wish.z+p.z);
+        }
+        public void grantWish() {
+            for(Vertex v : (Iterable<Vertex>)getBoundPeers()) {
+                if (v==this) continue;
+                if (v.wishes==0) continue;
+                Point p = this.getBindingMatrix(v).times(v.wish.minus(Point.ZERO).div(v.wishes).plus(Point.ZERO));
+                wish = p.minus(Point.ZERO).times(v.wishes).plus(wish);
+                wishes += v.wishes;
+                v.clearWish();
+            }
+            if (wishes==0) return;
+            Vec d = wish.minus(Point.ZERO).div(wishes).plus(Point.ZERO).minus(getPoint());
+            move(d, false);
+            clearWish();
+        }
+        public void avgWish() {
+            if (wishes==0) return;
+            wish = wish.minus(Point.ZERO).div(wishes).plus(Point.ZERO);
+            wishes = 1;
+        }
+
+        private boolean illegal = false;
+
+        public boolean visible = false;
+
+        public Point getPoint() { return p; }
+        public float error() { return olderror; }
+
+        private Vertex(Point p) {
             this.p = p;
+            this.goodp = p;
+            this.oldp = p;
             if (vertices.get(p) != null) throw new Error();
             vertices.add(this);
         }
 
-        private void glNormal(GL gl) {
-            Vec norm = norm();
-            gl.glNormal3f(norm.x, norm.y, norm.z);
+        public void reinsert() {
+            vertices.remove(this);
+            vertices.add(this);
+            for(E e = this.e; e!=null; e=e.pair.next==this.e?null:e.pair.next) e.t.reinsert();
         }
 
-        public void recomputeFundamentalQuadric() {
-            //if (!quadricStale && fundamentalQuadric != null) return;
-            quadricStale = false;
-            unApplyQuadricToNeighbor();
-            Matrix m = Matrix.ZERO;
-            E e = this.e;
+        // the average of all adjacent points
+        public Point recenter() {
             int count = 0;
-            do {
-                T t = e.t;
-                m = m.plus(t.norm().fundamentalQuadric(t.centroid()));
+            Vec vec = Vec.ZERO;
+            for(E e = this.e; e!=null; e=e.pair.next==this.e?null:e.pair.next) {
+                vec = vec.plus(e.getOther(this).getPoint().minus(Point.ZERO));
                 count++;
-                e = e.pair.next;
-            } while(e != this.e);
-            fundamentalQuadric = m.times(1/(float)count);
-            applyQuadricToNeighbor();
+            }
+            return Point.ZERO.plus(vec.div(count));
         }
 
-        public void unApplyQuadricToNeighbor() {
-            if (nearest_in_other_mesh == null) return;
-            if (fundamentalQuadric == null) return;
-            nearest_in_other_mesh.unComputeError();
-            nearest_in_other_mesh.quadric = nearest_in_other_mesh.quadric.minus(fundamentalQuadric);
-            nearest_in_other_mesh.quadric_count--;
-            if (nearest_in_other_mesh.quadric_count==0)
-                nearest_in_other_mesh.quadric = Matrix.ZERO;
-            nearest_in_other_mesh.computeError();
-            nearest_in_other_mesh = null;
+        public float olderror = 0;
+        public void setError(float nerror) {
+            error -= olderror;
+            olderror = nerror;
+            error += olderror;
         }
 
-        public void applyQuadricToNeighbor() {
-            if (score_against == null) return;
-
-            Vert new_nearest = score_against.nearest(p);
-            if (nearest_in_other_mesh != null && new_nearest == nearest_in_other_mesh) return;
-
-            if (nearest_in_other_mesh != null) unApplyQuadricToNeighbor();
-            if (nearest_in_other_mesh != null) throw new Error();
-
-            nearest_in_other_mesh = new_nearest;
-                
-            // don't attract to vertices that face the other way
-            if (nearest_in_other_mesh.e == null || nearest_in_other_mesh.norm().dot(norm()) < 0) {
-                nearest_in_other_mesh = null;
-            } else {
-                nearest_in_other_mesh.unComputeError();
-                nearest_in_other_mesh.quadric = nearest_in_other_mesh.quadric.plus(fundamentalQuadric());
-                nearest_in_other_mesh.quadric_count++;
-                nearest_in_other_mesh.computeError();
+        /*
+        public Vertex hack(GL gl, Point mouse) {
+            double dist = Double.MAX_VALUE;
+            Vertex cur = null;
+            for(E e = this.e; e!=null; e=e.pair.next==this.e?null:e.pair.next) {
+                Vertex v = e.getOther(this);
+                double dist2 = v.getPoint().glProject(gl).distance(mouse);
+                if ((cur==null || dist2 < dist) && v.visible) {
+                    dist = dist2;
+                    cur = v;
+                }
             }
-            reComputeError();
+            return cur;
         }
+        */
 
-        public void reComputeErrorAround() {
-            reComputeError();
-            if (nearest_in_other_mesh != null) nearest_in_other_mesh.reComputeError();
-            E e = this.e;
-            do {
-                e.p2.reComputeError();
-                e = e.pair.next;
-            } while (e != this.e);
+        public float averageTriangleArea() {
+            int count = 0;
+            float ret = 0;
+            for(E e = this.e; e!=null; e=e.pair.next==this.e?null:e.pair.next) {
+                ret += e.t.area();
+                count++;
+            }
+            return ret/count;
         }
-        public void reComputeError() {
-            unComputeError();
-            computeError();
+        public float averageEdgeLength() {
+            int count = 0;
+            float ret = 0;
+            for(E e = this.e; e!=null; e=e.pair.next==this.e?null:e.pair.next) {
+                ret += e.length();
+                count++;
+            }
+            return ret/count;
         }
-        public void unComputeError() {
-            score -= oldscore;
-            oldscore = 0;
+
+        public Matrix _recomputeFundamentalQuadric() {
+            Matrix m = Matrix.ZERO;
+            int count = 0;
+            for(E e = this.e; e!=null; e=e.pair.next==this.e?null:e.pair.next) {
+                m = m.plus(e.t.norm().fundamentalQuadric(e.t.centroid()));
+                count++;
+            }
+            if (count > 0) {
+                m = m.plus(norm().fundamentalQuadric(this.p).times(count));
+                count *= 2;
+            }
+            return m.times(1/(float)count);
         }
+
+        public HasQuadric nearest() { return error_against==null ? null : error_against.vertices.nearest(p, this); }
         public void computeError() {
-            if (quadric_count == 0) {
-                if (!tilemesh) {
-                }
-                else if (nearest_in_other_mesh == null) {
-                    if (score_against != null) {
-                        Vert ne = score_against.nearest(p);
-                        oldscore = ne.fundamentalQuadric().preAndPostMultiply(p) * 100 * 10;
-                    } else {
-                        oldscore = 0;
-                    }
-                } else {
-                    oldscore = nearest_in_other_mesh.fundamentalQuadric().preAndPostMultiply(p) * 100 * 10;
-                }
-            } else {
-                oldscore = (quadric.preAndPostMultiply(p) * 100) / quadric_count;
+            if (error_against==null) return;
+            if (nearest_in_other_mesh == null && nearest()==null) return;
+            float nerror =
+                nearest_in_other_mesh != null
+                ? nearest_in_other_mesh.fundamentalQuadric().preAndPostMultiply(p)
+                : nearest().fundamentalQuadric().preAndPostMultiply(p);
+            if (quadric_count != 0)
+                nerror = (nerror + quadric.preAndPostMultiply(p))/(quadric_count+1);
+
+            if (!immutableVertices && quadric_count == 0) {
+                //nerror = Math.max(nerror, 0.4f);
+                //nerror *= 2;
             }
+            //System.out.println(nerror);
+            for(E e = this.e; e!=null; e=e.pair.next==this.e?null:e.pair.next) {
+                double ang = e.dihedralAngle();
+                if (ang > Math.PI) throw new Error();
+                if (ang < -Math.PI) throw new Error();
+                float minangle = (float)(Math.PI * 0.8);
+                //nerror += ((ang / Math.PI)*(ang/Math.PI)) * e.length() * 0.05;
 
-            oldscore = oldscore;
+                //nerror += (1-e.t.quality())*0.0001;
+                if (ang > minangle) nerror += (ang - minangle);
 
-            int numaspects = 0;
-            float aspects = 0;
-            E e = this.e;
-            do {
-                //double ang = Math.abs(e.crossAngle());
-                double ang = Math.abs(e.crossAngle());
-                if (ang > Math.PI) throw new Error();
+                //System.out.println(((ang / Math.PI)*(ang/Math.PI)) * 0.000001);
                 /*
-                if (e.t != null) {
-                    numaspects++;
-                    aspects += e.t.aspect()*e.t.aspect();
+                if (e.t.aspect() < 0.2) {
+                    nerror += (0.2-e.t.aspect()) * 10;
                 }
                 */
+            }
+            if (!immutableVertices) {
+                Vertex n = (Vertex)nearest();
+                float d = norm().dot(n.norm());
+                if (d > 1 || d < -1) throw new Error();
+                if (d >= 0) {
+                    nerror *= (2.0f - d);
+                } else {
+                    nerror += 0.0003 * (2.0f + d);
+                    nerror *= (2.0f + d);
+                }
+            }
 
-                float minangle = (float)(Math.PI * 0.8);
-                if (ang > minangle)
-                    oldscore += (ang - minangle);
+            setError(nerror);
+        }
 
-                e = e.pair.next;
-            } while (e != this.e);
-            if (numaspects > 0) oldscore += (aspects / numaspects);
+        public boolean move(Vec vv, boolean ignoreProblems) {
 
-            //System.out.println(oldscore);
-            //oldscore = oldscore*oldscore;
-            score += oldscore;
-        }
+            boolean good = true;
 
-        private void removeTrianglesFromRTree() {
-            E e = this.e;
-            do {
-                if (e.t != null) e.t.removeFromRTree();
-                e = e.pair.next;
-            } while(e != this.e);
-        }
-        private void addTrianglesToRTree() {
-            E e = this.e;
-            do {
-                if (e.t != null) e.t.addToRTree();
-                e = e.pair.next;
-            } while(e != this.e);
-        }
+            //     t1' = M * t1
+            //     t2' = t2.getMatrix(t1) * t1'
+            //     t2' = t2.getMatrix(t1) * M * t1
+            //     t1 =     t1.getMatrix(t2) * t2
+            // M * t1 = M * t1.getMatrix(t2) * t2
 
-        /** does NOT update bound pairs! */
-        public boolean transform(Matrix m) {
-            unApplyQuadricToNeighbor();
-            Point oldp = this.p;
-            try {
-                if (vertices.get(this.p)==null) throw new Error();
-                vertices.remove(this);
-                removeTrianglesFromRTree();
-                float newx = m.a*p.x + m.b*p.y + m.c*p.z + m.d;
-                float newy = m.e*p.x + m.f*p.y + m.g*p.z + m.h;
-                float newz = m.i*p.x + m.j*p.y + m.k*p.z + m.l;
-                this.p = new Point(newx, newy, newz);
-                addTrianglesToRTree();
-                vertices.add(this);
-            } catch (Exception e) {
-                throw new RuntimeException(e);
+            /*
+            if (bindingGroup!=null && this != bindingGroup.getMaster()) {
+                Matrix m2 = getBindingMatrix(bindingGroup.getMaster());
+                Vec v2 = m2.times(vv.plus(getPoint())).minus(m2.times(getPoint()));
+                return ((Vertex)bindingGroup.getMaster()).move(v2, ignoreProblems);
             }
-            applyQuadricToNeighbor();
+            */
 
-            // FIXME: intersection test needed?
-            good = true;
+            Point op = this.p;
+            Point pt = vv.plus(getPoint());
+            Point pp = pt;
+            pt = getBindingConstraint().getProjection(pp);
+            if (pt==null) {
+                System.out.println("constraint violation: " + getBindingConstraint());
+                return false;
+            }
+            System.out.println(pt.minus(pp).mag() + " " + getBindingConstraint());
 
-            // should recompute fundamental quadrics of all vertices sharing a face, but we defer...
-            E e = this.e;
-            do {
+            for(Vertex v : (Iterable<Vertex>)getBoundPeers()) {
+                Point pt2 = v.getBindingMatrix(this).times(pt);
                 /*
-                if (Math.abs(e.crossAngle()) > (Math.PI * 0.9) ||
-                    Math.abs(e.next.crossAngle()) > (Math.PI * 0.9)) {
-                    good = false;
-                }
-                if (e.t.aspect() < 0.1) {
-                    good = false;
-                }
+                if (Math.abs( v.p.minus(pt2).mag() / pt.minus(op).mag() ) > 5)
+                    throw new Error(v.p+" "+pt2+"\n"+op+" "+pt+"\n"+v.getBindingMatrix(this));
+                if (Math.abs( v.p.minus(pt2).mag() / pt.minus(op).mag() ) < 1/5) throw new Error();
                 */
-                e.p2.quadricStale = true;
-                e = e.pair.next;
-            } while(e != this.e);
-
-
-            if (!ignorecollision && good) {
-
-                tris.range(new Segment(oldp, this.p),
-                            new Visitor<T>() {
-                                public void visit(T t) {
-                                    if (!good) return;
-                                    E e = Vert.this.e;
-                                    do {
-                                        if (!t.has(e.p1) && !t.has(e.p2) && e.intersects(t)) { good = false; }
-                                        if (e.t != null) {
-                                            if (!e.t.has(t.e1().p1) && !e.t.has(t.e1().p2) && t.e1().intersects(e.t)) { good = false; }
-                                            if (!e.t.has(t.e2().p1) && !e.t.has(t.e2().p2) && t.e2().intersects(e.t)) { good = false; }
-                                            if (!e.t.has(t.e3().p1) && !e.t.has(t.e3().p2) && t.e3().intersects(e.t)) { good = false; }
-                                        }
-                                        e = e.pair.next;
-                                    } while(e != Vert.this.e);
-                                }
-                            });
+                good &= v.transform(pt2, ignoreProblems, v.getBindingMatrix(this));
+            }
 
-                /*
-                for(T t : Mesh.this) {
-                    if (!good) break;
-                    e = this.e;
-                    do {
-                        if (!t.has(e.p1) && !t.has(e.p2) && e.intersects(t)) { good = false; break; }
-                        if (e.t != null) {
-                            if (!e.t.has(t.e1().p1) && !e.t.has(t.e1().p2) && t.e1().intersects(e.t)) { good = false; break; }
-                            if (!e.t.has(t.e2().p1) && !e.t.has(t.e2().p2) && t.e2().intersects(e.t)) { good = false; break; }
-                            if (!e.t.has(t.e3().p1) && !e.t.has(t.e3().p2) && t.e3().intersects(e.t)) { good = false; break; }
-                        }
-                        e = e.pair.next;
-                    } while(e != this.e);
+            if (!good && !ignoreProblems) {
+                for(Vertex v : (Iterable<Vertex>)getBoundPeers()) 
+                    v.transform(v.oldp, true, null);
+            }
+
+            for(Vertex v : (Iterable<Vertex>)getBoundPeers())
+                v.recomputeFundamentalQuadricIfNeighborChanged();
+            for(Vertex v : (Iterable<Vertex>)getBoundPeers())
+                v.reComputeErrorAround();
+            ok = true;
+            return good;
+        }
+        public boolean ok = true;
+
+        /** does NOT update bound pairs! */
+        private boolean transform(Point newp, boolean ignoreProblems, Matrix yes) {
+            this.oldp = this.p;
+            if (immutableVertices) throw new Error();
+
+            unApplyQuadricToNeighbor();
+
+            boolean illegalbefore = illegal;
+            illegal = false;
+            /*
+            if (this.p.minus(newp).mag() > 0.1 && !ignoreProblems) {
+                try {
+                    throw new Exception(""+this.p.minus(newp).mag()+" "+ignoreProblems+" "+yes);
+                } catch(Exception e) {
+                    e.printStackTrace();
                 }
-                */
+                illegal = true;
             }
+            */
 
+            this.p = newp;
+            reinsert();
+            applyQuadricToNeighbor();
 
-            reComputeErrorAround();
-            return good;
+            if (!ignoreProblems) {
+                checkLegality();
+            }
+            for(E e = this.e; e!=null; e=e.pair.next==this.e?null:e.pair.next)
+                e.v2.quadricStale = true;
+            return !illegal || (illegalbefore && illegal);
+        } 
+
+        public void checkLegality() {
+            /*
+            for(E e = this.e; e!=null; e=e.pair.next==this.e?null:e.pair.next) {
+                if (Math.abs(e.dihedralAngle()) > (Math.PI * 0.9) ||
+                    Math.abs(e.next.dihedralAngle()) > (Math.PI * 0.9)) illegal = true;
+                if (e.t.aspect() < 0.2) illegal = true;
+            }
+            */
+            if (!illegal) triangles.range(oldp, this.p, (Visitor<T>)this);
         }
-        private boolean good;
 
-        public boolean move(Vec v) {
-            Matrix m = Matrix.translate(v);
-            Vert p = this;
-            boolean good = true;
-            do {
-                good &= p.transform(m);
-                p = p.bound_to;
-            } while (p != this);
-            return good;
+        public void reComputeErrorAround() {
+            reComputeError();
+            if (nearest_in_other_mesh != null)
+                nearest_in_other_mesh.reComputeError();
+            for(E e = this.e; e!=null; e=e.pair.next==this.e?null:e.pair.next)
+                e.v2.reComputeError();
+        }
+
+        public boolean visit(Object o) {
+            if (o instanceof Vertex)
+                return ((Vertex)o).e != null && ((Vertex)o).norm().dot(Vertex.this.norm()) >= 0;
+            T t = (T)o;
+            if (illegal) return false;
+            for(E e = Vertex.this.e; e!=null; e=e.pair.next==Vertex.this.e?null:e.pair.next) {
+                if (!t.has(e.v1) && !t.has(e.v2) && e.intersects(t)) { illegal = true; }
+                if (e.t != null) {
+                    if (!e.t.has(t.e1().v1) && !e.t.has(t.e1().v2) && t.e1().intersects(e.t)) { illegal = true; }
+                    if (!e.t.has(t.e2().v1) && !e.t.has(t.e2().v2) && t.e2().intersects(e.t)) { illegal = true; }
+                    if (!e.t.has(t.e3().v1) && !e.t.has(t.e3().v2) && t.e3().intersects(e.t)) { illegal = true; }
+                }
+            }
+            return !illegal;
         }
 
+        public E getEdge() { return e; }
         public E getFreeIncident() {
             E ret = getFreeIncident(e, e);
             if (ret != null) return ret;
-            ret = getFreeIncident(e.pair.next, e.pair.next);
-            if (ret == null) {
-                E ex = e;
-                do {
-                    System.out.println(ex + " " + ex.t);
-                    ex = ex.pair.next;
-                } while (ex != e);
-                throw new Error("unable to find free incident to " + this);
-            }
-            return ret;
+            for(E e = this.e; e!=null; e=e.pair.next==this.e?null:e.pair.next)
+                System.out.println(e + " " + e.t);
+            throw new Error("unable to find free incident to " + this);
         }
 
         public E getFreeIncident(E start, E before) {
-            E e = start;
-            do {
-                if (e.pair.p2 == this && e.pair.t == null && e.pair.next.t == null) return e.pair;
-                e = e.pair.next;
-            } while(e != before);
+            for(E e = start; e!=null; e=e.pair.next==before?null:e.pair.next)
+                if (e.pair.v2 == this && e.pair.t == null && e.pair.next.t == null)
+                    return e.pair;
             return null;
         }
 
-        public E getE(Point p2) {
-            Vert v = vertices.get(p2);
+        public E getE(Point v2) {
+            Vertex v = vertices.get(v2);
             if (v==null) return null;
             return getE(v);
         }
-        public E getE(Vert p2) {
-            E e = this.e;
-            do {
-                if (e==null) return null;
-                if (e.p1 == this && e.p2 == p2) return e;
-                e = e.pair.next;
-            } while (e!=this.e);
+        public E getE(Vertex v2) {
+            if (this.e!=null && this!=this.e.v1 && this!=this.e.v2) throw new RuntimeException();
+            int i=0;
+            for(E e = this.e; e!=null; e=e.pair.next==this.e?null:e.pair.next) {
+                if (e.v1 == this && e.v2 == v2) return e;
+                i++;
+                e.sanity();
+                if (e.destroyed) throw new RuntimeException("fark " + i + " " + e.prev + " " + (e.prev.next==e) + " " + e.prev.destroyed);
+            }
             return null;
         }
 
+        private void glNormal(GL gl) {
+            Vec norm = norm();
+            gl.glNormal3f(norm.x, norm.y, norm.z);
+        }
         public Vec norm() {
             Vec norm = new Vec(0, 0, 0);
-            E e = this.e;
-            do {
-                if (e.t != null) norm = norm.plus(e.t.norm().times((float)e.prev.angle()));
-                e = e.pair.next;
-            } while(e != this.e);
+            for(E e = this.e; e!=null; e=e.pair.next==this.e?null:e.pair.next)
+                if (e.t != null)
+                    norm = norm.plus(e.t.norm().times((float)e.prev.angle()));
             return norm.norm();
         }
 
-        public boolean isBoundTo(Vert p) {
-            Vert px = p;
-            do {
-                if (px==this) return true;
-                px = px.bound_to;
-            } while(px != p);
-            return false;
-        }
-        public void unbind() { bound_to = this; binding = Matrix.ONE; }
-        public void bind(Vert p) { bind(p, Matrix.ONE); }
-        public void bind(Vert p, Matrix binding) {
-            if (isBoundTo(p)) return;
-            Vert temp_bound_to = p.bound_to;
-            Matrix temp_binding = p.binding;
-            p.bound_to = this.bound_to;
-            p.binding = binding.times(this.binding); // FIXME: may have order wrong here
-            this.bound_to = temp_bound_to;
-            this.binding = temp_binding.times(temp_binding); // FIXME: may have order wrong here
-        }
+        public void bindTo(Vertex p) { bindTo(Matrix.ONE, p); }
     }
 
-    public class BindingGroup {
-        private HashSet<E> set = new HashSet<E>();
-        public BindingGroup bind_others;
-        public BindingGroup other() { return bind_others; }
-        public BindingGroup(BindingGroup bind_others) { this.bind_others = bind_others; }
-        public BindingGroup() { this.bind_others = new BindingGroup(this); }
-        public BindingGroup(E e) { this(); set.add(e); }
-        public void add(E e) {
-            if (set.contains(e)) return;
-            set.add(e);
-            BindingGroup e_bind_peers = e.bind_peers;
-            BindingGroup e_bind_to    = e.bind_to;
-            e.bind_peers = this;
-            e.bind_to    = bind_others;
-            for (E epeer  : e_bind_peers.set) add(epeer);
-            for (E eother : e_bind_to.set)    bind_others.add(eother);
-
-            for(E eother : bind_others.set) {
-                if (e.next.bind_to.set.contains(eother.prev)) {
-                    e.next.next.bindEdge(eother.prev.prev);
-                }
-                if (e.prev.bind_to.set.contains(eother.next)) {
-                    e.prev.prev.bindEdge(eother.next.next);
-                }
-            }
 
+    /** [UNIQUE] an edge */
+    public final class E extends HasBindingGroup implements Comparable<E> {
+
+        public void bindTo(Matrix bindingMatrix, HasBindingGroup other) {
+            bindTo(bindingMatrix, other, EPSILON);
         }
-        public void dobind(E e) {
-            for(E ebound : set) {
-                e.p1.bind(ebound.p2);
-                e.p2.bind(ebound.p1);
-            }
-        }
-        public void shatter(BindingGroup bg1, BindingGroup bg2) {
-            for(E e : set) {
-                e.shatter(e.midpoint(), bg1, bg2);
-            }
-        }
-    }
 
-    /** [UNIQUE] an edge */
-    public final class E implements Comparable<E> {
+        public void sanity() {
+            if (destroyed) return;
+            if (pair!=null && (pair.v1!=v2 || pair.v2!=v1)) throw new RuntimeException();
+            if (next!=null && next.v1!=v2) throw new RuntimeException();
+            if (prev!=null && prev.v2!=v1) throw new RuntimeException();
+        }
 
-        public final Vert p1, p2;
+        public final Vertex v1, v2;
         T t;     // triangle to our "left"
         E prev;  // previous half-edge
         E next;  // next half-edge
         E pair;  // partner half-edge
-        public BindingGroup bind_peers  = new BindingGroup(this);
-        public BindingGroup bind_to     = bind_peers.other();
         boolean shattered = false;
 
+
+        /** the "edge normal" -- average of the normals of the adjacent faces */
+        public Vec norm() {
+            return
+                (t==null || pair==null || pair.t==null)
+                ? null
+                : t.norm().plus(pair.t.norm()).norm();
+        }
+
+        public void glVertices(GL gl) {
+            Point p1 = v1.p;
+            Point p2 = v2.p;
+            if (t != null) {
+                p1 = p1.plus(t.centroid().minus(p1).times(0.1f));
+                p2 = p2.plus(t.centroid().minus(p2).times(0.1f));
+                p1 = p1.plus(norm().times(length() * 0.01f));
+                p2 = p2.plus(norm().times(length() * 0.01f));
+            }
+            p1.glVertex(gl);
+            p2.glVertex(gl);
+            if (t==null || pair.t==null) return;
+
+            Point atip = p2.minus(Point.ZERO).times(4).plus(p1.minus(Point.ZERO)).div(5).plus(Point.ZERO);
+            atip = (t.norm().plus(pair.t.norm())).norm().times(getSegment().length() / 5).plus(atip);
+            p2.glVertex(gl);
+            atip.glVertex(gl);
+        }
+
+        public boolean intersects(T t) { return t.intersects(v1.p, v2.p); }
+
+        public Segment getSegment() { return new Segment(v1.getPoint(), v2.getPoint()); }
+
+        public void flip() {
+            // FIXME: coplanarity check needed
+            if (destroyed) return;
+            for (E e : (Iterable<E>)getBoundPeers()) {
+                if (!e.pair.isBoundTo(pair)) throw new RuntimeException("cannot flip!");
+            }
+            Vertex v1 = t.getOtherVertex(this);
+            Vertex v2 = pair.t.getOtherVertex(pair);
+            destroy();
+            pair.destroy();
+            T t1 = newT(v1, v2, this.v2);
+            T t2 = newT(v2, v1, this.v1);
+            t1.e1().sanity();
+            t1.e2().sanity();
+            t1.e3().sanity();
+            t2.e1().sanity();
+            t2.e2().sanity();
+            t2.e3().sanity();
+
+            for (E e : (Iterable<E>)getBoundPeers()) {
+                if (e==this) continue;
+                if (e.destroyed) continue;
+                Vertex v1e = e.t.getOtherVertex(e);
+                Vertex v2e = e.pair.t.getOtherVertex(e.pair);
+                e.destroy();
+                e.pair.destroy();
+                if (v1e.getE(v2e)!=null) throw new RuntimeException();
+                newT(v1e, v2e, e.v2).red = true;
+                newT(v2e, v1e, e.v1).red = true;
+                v2e.getE(v1e).bindTo(e.getBindingMatrix(this), v1.getE(v2));
+                v1e.getE(v2e).bindTo(e.pair.getBindingMatrix(this.pair), v2.getE(v1));
+            }
+
+        }
+
+        public void bindingGroupChanged() {
+            HashSet<E> nbg = new HashSet<E>();
+            for(E eother : (Iterable<E>)getBoundPeers()) nbg.add(eother);
+            for(E eother : nbg) {
+                if (next==null || prev==null) continue;
+                if (eother.next==null || eother.prev==null) continue;
+
+                Matrix m = getBindingMatrix(eother);
+                if (next.isBoundTo(eother.pair.prev.pair) &&
+                    !prev.isBoundTo(eother.pair.next.pair) &&
+                    m.equalsModuloEpsilon(next.getBindingMatrix(eother.pair.prev.pair), EPSILON))
+                    prev.bindEdge(next.getBindingMatrix(eother.pair.prev.pair), eother.pair.next.pair);
+                if (!next.isBoundTo(eother.pair.prev.pair) &&
+                    prev.isBoundTo(eother.pair.next.pair)  &&
+                    m.equalsModuloEpsilon(prev.getBindingMatrix(eother.pair.next.pair), EPSILON))
+                    next.bindEdge(prev.getBindingMatrix(eother.pair.next.pair), eother.pair.prev.pair);
+
+                //if (next.isBoundTo(eother.prev) && !prev.isBoundTo(eother.next))
+                //prev.bindTo(next.getBindingMatrix(eother.prev), eother.next);
+                //if (!next.isBoundTo(eother.prev) && prev.isBoundTo(eother.next))
+                //next.bindTo(prev.getBindingMatrix(eother.next), eother.prev);
+
+                if (next.isBoundTo(eother.next) &&
+                    !prev.isBoundTo(eother.prev) &&
+                    m.equalsModuloEpsilon(next.getBindingMatrix(eother.next), EPSILON))
+                    prev.bindEdge(next.getBindingMatrix(eother.next), eother.prev);
+                if (!next.isBoundTo(eother.next) &&
+                    prev.isBoundTo(eother.prev) &&
+                    m.equalsModuloEpsilon(prev.getBindingMatrix(eother.prev), EPSILON))
+                    next.bindEdge(prev.getBindingMatrix(eother.prev), eother.next);
+
+            }
+
+        }
+
+        public float stretchRatio() {
+            Vertex nearest = error_against.nearest(midpoint());
+            float nearest_distance = midpoint().distance(nearest.p);
+            float other_distance =
+                (v1.p.distance(error_against.nearest(v1.p).p)+
+                 v2.p.distance(error_against.nearest(v2.p).p))/2;
+            return nearest_distance/other_distance;
+        }
         public float comparator() {
-            Vert nearest = score_against.nearest(midpoint());
-            //if (t==null) return length();
-            /*
-            double ang = Math.abs(crossAngle());
-            float minangle = (float)(Math.PI * 0.9);
-            if (ang > minangle)
-                return 300;
-            */
-            /*
-            if ((length() * length()) / t.area() > 10)
-                return (float)(length()*Math.sqrt(t.area()));
-            return length()*t.area();
-            */
-            return (float)Math.max(length(), midpoint().distance(nearest.p));
-            //return length();
+            return length();
         }
         public int compareTo(E e) {
             return e.comparator() > comparator() ? 1 : -1;
         }
-        public void bindEdge(E e) { bind_to.add(e); }
-        public void dobind() { bind_to.dobind(this); }
+        public void bindEdge(Matrix m, E e) {
+            bindEdge(e, m);
+        }
+        public void bindEdge(E e, Matrix m) {
+            /*
+            for(E e_ : (Iterable<E>)e.getBoundPeers()) {
+                if (e.v1.getPoint().distance((e.getBindingMatrix(e_).times(e_.v1.getPoint()))) > 0.01f)
+                    throw new RuntimeException("blah! " + e.v1.getPoint() + " " + e.getBindingMatrix(e_).times(e_.v1.getPoint()));
+                if (e.v2.getPoint().distance((e.getBindingMatrix(e_).times(e_.v2.getPoint()))) > 0.01f)
+                    throw new RuntimeException("blah! " + e.v2.getPoint() + " " + e.getBindingMatrix(e_).times(e_.v2.getPoint()));
+                if (v1.getPoint().distance(m.times(e.getBindingMatrix(e_).times(e_.v1.getPoint()))) > 0.01f)
+                    throw new RuntimeException("blah! " + v1.getPoint() + " " + m.times(e_.v1.getPoint()));
+                if (v2.getPoint().distance(m.times(e.getBindingMatrix(e_).times(e_.v2.getPoint()))) > 0.01f)
+                    throw new RuntimeException("blah! " + v2.getPoint() + " " + m.times(e_.v2.getPoint()));
+            }
+            */
+            this.bindTo(m, e,      EPSILON);
+            this.pair.bindTo(m, e.pair, EPSILON);
+        }
+        
+        public void dobind() {
+            for(E e : (Iterable<E>)getBoundPeers()) {
+                if (e==this) continue;
+                v1.bindTo(getBindingMatrix(e), e.v1);
+                v2.bindTo(getBindingMatrix(e), e.v2);
+            }
+        }
 
-        public Point shatter() { return shatter(midpoint(), null, null); }
-        public Point shatter(Point mid, BindingGroup bg1, BindingGroup bg2) {
-            if (shattered || destroyed) return mid;
+        public Vertex shatter() {
+            if (shattered || destroyed) return nearest(midpoint());
             shattered = true;
-
-            Vert r = next.p2;
-            E next = this.next;
-            E prev = this.prev;
-
-            int old_colorclass = t==null ? 0 : t.colorclass;
-            if (bg1==null) bg1 = new BindingGroup();
-            if (bg2==null) bg2 = new BindingGroup();
-            BindingGroup old_bind_to = bind_to;
-            bind_peers.shatter(bg1, bg2);
-            old_bind_to.shatter(bg2.other(), bg1.other());
-            pair.shatter();
-            destroy();
-
-            newT(r.p, p1.p, mid, null, old_colorclass);
-            newT(r.p, mid, p2.p, null, old_colorclass);
-            bg1.add(p1.getE(mid));
-            bg2.add(p2.getE(mid).pair);
-            return mid;
+            E first = null;
+            E firste = null;
+            E firstx = null;
+            E firstq = null;
+            for(E e : (Iterable<E>)getBoundPeers()) {
+                E enext = e.next;
+                E eprev = e.prev;
+                E pnext = e.pair.next;
+                E pprev = e.pair.prev;
+                Point mid = e.midpoint();
+                Vertex r = e.next.v2;
+                Vertex l = e.pair.next.v2;
+                if (!e.destroyed) {
+                    e.destroy();
+                    e.pair.destroy();
+                    newT(r.p, e.v1.p, mid,    null, 0);
+                    newT(r.p, mid,    e.v2.p, null, 0);
+                    newT(l.p, mid,    e.v1.p, null, 0);
+                    newT(l.p, e.v2.p, mid,    null, 0);
+                }
+            }
+            for(E e : (Iterable<E>)getBoundPeers()) {
+                Point mid = e.midpoint();
+                if (first==null) {
+                    first = e.v1.getE(mid);
+                    firste = e;
+                    firstx = e.pair;
+                    firstq = e.v2.getE(mid).pair;
+                    continue;
+                }
+                e.v1.getE(mid).          bindTo(e.getBindingMatrix(firste), first);
+                e.v1.getE(mid).pair.     bindTo(e.getBindingMatrix(firste), first.pair);
+                e.v2.getE(mid).pair.     bindTo(e.getBindingMatrix(firste), firstq);
+                e.v2.getE(mid).pair.pair.bindTo(e.getBindingMatrix(firste), firstq.pair);
+            }
+            /*
+            first.setConstraint(firste.getAffineConstraint());
+            firstq.setConstraint(firste.getAffineConstraint());
+            */
+            return nearest(midpoint());
         }
 
         public boolean destroyed = false;
@@ -581,59 +805,82 @@ public class Mesh implements Iterable<Mesh.T> {
             pair.next.t = null;
             pair.prev.t = null;
 
-            this.bind_to = null;
-            pair.bind_to = null;
-            this.bind_peers = null;
-            pair.bind_peers = null;
             pair.prev.next = next;
             next.prev = pair.prev;
             prev.next = pair.next;
-            pair.next = prev;
-            if (p1.e == this) p1.e = prev.next;
-            if (pair.p1.e == pair) pair.p1.e = pair.prev.next;
-            avgedge -= this.length();
-            avgedge -= pair.length();
-            numedges--;
-            numedges--;
+            pair.next.prev = prev;
+
+            if (v1.e == this) v1.e = pair.next;
+            if (pair.v1.e == pair) pair.v1.e = next;
+
+            if (v2.e == this) throw new RuntimeException();
+            if (pair.v2.e == pair) throw new RuntimeException();
+
+            /*
+            next = pair;
+            prev = pair;
+            pair.next = this;
+            pair.prev = this;
+            */
+
+            /*
+            pair.prev = null;
+            pair.next = null;
+            next = null;
+            prev = null;
+            */
+
+            /*
+            sanity();
+            next.sanity();
+            prev.sanity();
+            pair.sanity();
+            */
         }
 
         private void sync() {
             this.prev.next = this;
             this.next.prev = this;
             this.pair.pair = this;
-            bind_peers.add(this);
-            if (this.next.p1 != p2) throw new Error();
-            if (this.prev.p2 != p1) throw new Error();
-            if (this.p1.e == null) this.p1.e = this;
-            if (!added) {
-                added = true;
-                numedges++;
-                avgedge += length();
-            }
+            if (this.next.v1 != v2) throw new Error();
+            if (this.prev.v2 != v1) throw new Error();
+            if (this.v1.e == null) this.v1.e = this;
+            if (!added) added = true;
         }
         private boolean added = false;
 
         public T makeT(int colorclass) { return t==null ? (t = new T(this, colorclass)) : t; }
 
-        public double crossAngle() {
+        public double dihedralAngle() {
             Vec v1 = t.norm().times(-1);
             Vec v2 = pair.t.norm().times(-1);
-            return Math.acos(v1.norm().dot(v2.norm()));
+            double prod = v1.norm().dot(v2.norm());
+            prod = Math.min(1,prod);
+            prod = Math.max(-1,prod);
+            double ret = Math.acos(prod);
+            if (Double.isNaN(ret)) throw new Error("nan! " + prod);
+            return ret;
         }
 
         /** angle between this half-edge and the next */
         public double angle() {
-            Vec v1 = next.p2.p.minus(p2.p);
-            Vec v2 = this.p1.p.minus(p2.p);
+            Vec v1 = next.v2.p.minus(this.v2.p);
+            Vec v2 = this.v1.p.minus(this.v2.p);
             return Math.acos(v1.norm().dot(v2.norm()));
         }
 
+        public Vertex getOther(Vertex v) {
+            if (this.v1 == v) return v2;
+            if (this.v2 == v) return v1;
+            throw new Error();
+        }
+
         public void makeAdjacent(E e) {
             if (this.next == e) return;
-            if (p2 != e.p1) throw new Error("cannot make adjacent -- no shared vertex");
-            if (t != null || e.t != null) throw new Error("cannot make adjacent -- edges not both free");
+            if (v2 != e.v1) throw new Error("cannot make adjacent -- no shared vertex: " + this + " " + e);
+            if (t != null || e.t != null) throw new Error("cannot make adjacent -- edges not both free " + t + " " + e.t);
 
-            E freeIncident = p2.getFreeIncident(e, this);
+            E freeIncident = v2.getFreeIncident(e, this);
 
             e.prev.next = freeIncident.next;
             freeIncident.next.prev = e.prev;
@@ -649,128 +896,62 @@ public class Mesh implements Iterable<Mesh.T> {
         }
 
         /** creates an isolated edge out in the middle of space */
-        public E(Point p1, Point p2) {
-            if (vertices.get(p1) != null) throw new Error();
-            if (vertices.get(p2) != null) throw new Error();
-            this.p1 = new Vert(p1);
-            this.p2 = new Vert(p2);
+        public E(Point v1, Point v2) {
+            if (vertices.get(v1) != null) throw new Error();
+            if (vertices.get(v2) != null) throw new Error();
+            if (v1.equals(v2)) throw new Error("attempt to create a zero-length edge!");
+            this.v1 = new Vertex(v1);
+            this.v2 = new Vertex(v2);
             this.prev = this.next = this.pair = new E(this, this, this);
-            this.p1.e = this;
-            this.p2.e = this.pair;
+            this.v1.e = this;
+            this.v2.e = this.pair;
             sync();
         }
 
-        /** adds a new half-edge from prev.p2 to p2 */
+        /** adds a new half-edge from prev.v2 to v2 */
         public E(E prev, Point p) {
-            Vert p2;
-            p2 = vertices.get(p);
-            if (p2 == null) p2 = new Vert(p);
-            this.p1 = prev.p2;
-            this.p2 = p2;
+            Vertex v2;
+            v2 = vertices.get(p);
+            if (v2 == null) v2 = new Vertex(p);
+            this.v1 = prev.v2;
+            this.v2 = v2;
             this.prev = prev;
-            if (p2.getE(p1) != null) throw new Error();
-            if (p2.e==null) {
+            if (prev.destroyed) throw new RuntimeException();
+            if (v2.getE(v1) != null) throw new Error();
+            if (v2.e==null) {
                 this.next = this.pair = new E(this, this, prev.next);
             } else {
-                E q = p2.getFreeIncident();
+                E q = v2.getFreeIncident();
                 this.next = q.next;
                 this.next.prev = this;
                 E z = prev.next;
                 this.prev.next = this;
                 this.pair = new E(q, this, z);
             }
-            if (p2.e==null) p2.e = this.pair;
+            if (v2.e==null) v2.e = this.pair;
             sync();
         }
 
         /** adds a new half-edge to the mesh with a given predecessor, successor, and pair */
         public E(E prev, E pair, E next) {
-            this.p1 = prev.p2;
-            this.p2 = next.p1;
+            this.v1 = prev.v2;
+            this.v2 = next.v1;
+            if (prev.destroyed) throw new RuntimeException();
             this.prev = prev;
             this.next = next;
             this.pair = pair;
             sync();
         }
-        public Point midpoint() { return new Point((p1.p.x+p2.p.x)/2, (p1.p.y+p2.p.y)/2, (p1.p.z+p2.p.z)/2); }
-        public boolean has(Vert v) { return v==p1 || v==p2; }
-        public float length() { return p1.p.minus(p2.p).mag(); }
-        public String toString() { return p1+"->"+p2; }
-
-        public boolean intersects(T t) {
-            double A0=t.v1().p.x, A1=t.v1().p.y, A2=t.v1().p.z;
-            double B0=t.v2().p.x, B1=t.v2().p.y, B2=t.v2().p.z;
-            double C0=t.v3().p.x, C1=t.v3().p.y, C2=t.v3().p.z;
-            double j0=p1.p.x, j1=p1.p.y, j2=p1.p.z;
-            double k0=p2.p.x, k1=p2.p.y, k2=p2.p.z;
-            double J0, J1, J2;
-            double K0, K1, K2;
-            double i0, i1, i2;
-            double a0, a1, a2;
-            double b0, b1, b2;
-            double c0, c1, c2;
-            double in_det;
-            double R00, R01, R02, R03,
-                R10, R11, R12, R13,
-                R20, R21, R22, R23,
-                R30, R31, R32, R33;
-
-
-            /* a = B - A */
-            a0 = B0 - A0; 
-            a1 = B1 - A1; 
-            a2 = B2 - A2;
-            /* b = C - B */
-            b0 = C0 - A0;
-            b1 = C1 - A1;
-            b2 = C2 - A2;
-            /* c = a &times; b */
-            c0 = a1 * b2 - a2 * b1;
-            c1 = a2 * b0 - a0 * b2;
-            c2 = a0 * b1 - a1 * b0;
-            /* M^(-1) = (1/det(M)) * adj(M) */
-            in_det = 1 / (c0 * c0 + c1 * c1 + c2 * c2);
-            R00 = (b1 * c2 - b2 * c1) * in_det;
-            R01 = (b2 * c0 - b0 * c2) * in_det;
-            R02 = (b0 * c1 - b1 * c0) * in_det;
-            R10 = (c1 * a2 - c2 * a1) * in_det;
-            R11 = (c2 * a0 - c0 * a2) * in_det;
-            R12 = (c0 * a1 - c1 * a0) * in_det;
-            R20 = (c0) * in_det;
-            R21 = (c1) * in_det;
-            R22 = (c2) * in_det;
-  
-            /* O = M^(-1) * A */
-            R03 = -(R00 * A0 + R01 * A1 + R02 * A2);
-            R13 = -(R10 * A0 + R11 * A1 + R12 * A2);
-            R23 = -(R20 * A0 + R21 * A1 + R22 * A2);
-            /* fill in last row of 4x4 matrix */
-            R30 = R31 = R32 = 0;
-            R33 = 1;
-  
-            J2 = R20 * j0 + R21 * j1 + R22 * j2 + R23;
-            K2 = R20 * k0 + R21 * k1 + R22 * k2 + R23;
-            if (J2 * K2 >= 0) return false;
-
-            J0 = R00 * j0 + R01 * j1 + R02 * j2 + R03;
-            K0 = R00 * k0 + R01 * k1 + R02 * k2 + R03;
-            i0 = J0 + J2 * ((K0 - J0) / (J2 - K2));
-            if (i0 < 0 || i0 > 1) return false;
-  
-            J1 = R10 * j0 + R11 * j1 + R12 * j2 + R13;
-            K1 = R10 * k0 + R11 * k1 + R12 * k2 + R13;
-            i1 = J1 + J2 * ((K1 - J1) / (J2 - K2));
-            if (i1 < 0 || i1 > 1 || i0 + i1 > 1) return false;
-
-            return true;            
-        }
+        public Point midpoint() { return new Point((v1.p.x+v2.p.x)/2, (v1.p.y+v2.p.y)/2, (v1.p.z+v2.p.z)/2); }
+        public boolean has(Vertex v) { return v==v1 || v==v2; }
+        public float length() { return v1.p.minus(v2.p).mag(); }
+        public String toString() { return v1+"->"+v2; }
+
     }
 
     public E makeE(Point p1, Point p2) {
-        Vert v1 = vertices.get(p1);
-        Vert v2 = vertices.get(p2);
+        Vertex v1 = vertices.get(p1);
+        Vertex v2 = vertices.get(p2);
         if (v1 != null && v2 != null) {
             E e = v1.getE(v2);
             if (e != null) return e;
@@ -781,16 +962,35 @@ public class Mesh implements Iterable<Mesh.T> {
         if (v2 != null) return new E(v2.getFreeIncident(), p1).pair;
         return new E(p1, p2);
     }
-    public T newT(Point p1, Point p2, Point p3, Vec norm, int colorclass) {
+    public boolean coalesce = false;
+    private static float round(float f) {
+        return Math.round(f*1000)/1000f;
+    }
+    public T newT(HasPoint v1, HasPoint v2, HasPoint v3) {
+        return newT(v1.getPoint(), v2.getPoint(), v3.getPoint(), null, 0);
+    }
+    public T newT(Point v1, Point v2, Point v3, Vec norm) { return newT(v1, v2, v3, norm, 1); }
+    public T newT(Point v1, Point v2, Point v3, Vec norm, int colorclass) {
+        if (coalesce) {
+
+            for(Vertex v : vertices) { if (v1.distance(v.p) < EPSILON) { v1 = v.p; break; } }
+            for(Vertex v : vertices) { if (v2.distance(v.p) < EPSILON) { v2 = v.p; break; } }
+            for(Vertex v : vertices) { if (v3.distance(v.p) < EPSILON) { v3 = v.p; break; } }
+            /*
+            v1 = new Point(round(v1.x), round(v1.y), round(v1.z));
+            v2 = new Point(round(v2.x), round(v2.y), round(v2.z));
+            v3 = new Point(round(v3.x), round(v3.y), round(v3.z));
+            */
+        }
         if (norm != null) {
-            Vec norm2 = p3.minus(p1).cross(p2.minus(p1));
+            Vec norm2 = v3.minus(v1).cross(v2.minus(v1));
             float dot = norm.dot(norm2);
             //if (Math.abs(dot) < EPointSILON) throw new Error("dot products within evertsilon of each other: "+norm+" "+norm2);
-            if (dot < 0) { Point p = p1; p1=p2; p2 = p; }
+            if (dot < 0) { Point p = v1; v1=v2; v2 = p; }
         }
-        E e12 = makeE(p1, p2);
-        E e23 = makeE(p2, p3);
-        E e31 = makeE(p3, p1);
+        E e12 = makeE(v1, v2);
+        E e23 = makeE(v2, v3);
+        E e31 = makeE(v3, v1);
         while(e12.next != e23 || e23.next != e31 || e31.next != e12) {
             e12.makeAdjacent(e23);
             e23.makeAdjacent(e31);
@@ -803,42 +1003,122 @@ public class Mesh implements Iterable<Mesh.T> {
         return ret;
     }
 
-
-    public class FaceIterator implements Iterator<T> {
-        private HashSet<T> visited = new HashSet<T>();
-        private LinkedList<T> next = new LinkedList<T>();
-        public FaceIterator() { }
-        public FaceIterator(Vert v) { next.addFirst(v.e.t); }
-        public boolean hasNext() { return next.peek()!=null; }
-        public void remove() { throw new Error(); }
-        public T next() {
-            T ret = next.removeFirst();
-            if (ret == null) return null;
-            visited.add(ret);
-            T t1 = ret.e1().pair.t;
-            T t2 = ret.e2().pair.t;
-            T t3 = ret.e3().pair.t;
-            if (t1 != null && !visited.contains(t1)) next.addFirst(t1);
-            if (t2 != null && !visited.contains(t2)) next.addFirst(t2);
-            if (t3 != null && !visited.contains(t3)) next.addFirst(t3);
-            return ret;
-        }
-    }
-
+    private int max_serial = 0;
     /** [UNIQUE] a triangle (face) */
     public final class T extends Triangle {
         public final E e1;
         public final int color;
         public final int colorclass;
 
-        public void removeFromRTree() { tris.remove(this); }
-        public void addToRTree() { tris.insert(this); }
+        public boolean red = false;
+        public boolean old = false;
 
-        public void destroy() {
-            tris.remove(this);
-            ts.remove(this);
+        public final int serial = max_serial++;
+        public boolean occluded;
+
+        public Point shatter() {
+            if (destroyed) return null;
+            E e = e1();
+            
+            HashSet<E> forward = new HashSet<E>();
+            HashSet<E> backward = new HashSet<E>();
+            HashSet<E> both = new HashSet<E>();
+
+            for(E eb : (Iterable<E>)e.getBoundPeers()) {
+                if (eb==e) continue;
+                if (eb.next.isBoundTo(e.next) && eb.prev.isBoundTo(e.prev)) {
+                    forward.add(eb);
+                    both.add(eb);
+                }
+                if (eb.pair.next.pair.isBoundTo(e.prev) && eb.pair.prev.pair.isBoundTo(e.next)) {
+                    backward.add(eb.pair);
+                    both.add(eb.pair);
+                }
+            }
+
+            Vertex v1 = e.t.v1();
+            Vertex v2 = e.t.v2();
+            Vertex v3 = e.t.v3();
+            Point c = e.t.centroid();
+            E e_next = e.next;
+            E e_prev = e.prev;
+            e.t.destroy();
+            newT(v1, v2, c);
+            newT(c,  v2, v3);
+            newT(v3, v1, c);
+
+            // FIXME: forward too
+            for(E ex : backward) {
+                Vertex v1x = ex.t.v1();
+                Vertex v2x = ex.t.v2();
+                Vertex v3x = ex.t.v3();
+                Point cx = ex.t.centroid();
+                E ex_next = ex.next;
+                E ex_prev = ex.prev;
+                ex.t.destroy();
+                newT(v1x, v2x, cx);
+                newT(cx,  v2x, v3x);
+                newT(v3x, v1x, cx);
+
+                // FIXME: i have no idea if this is right
+                e.next.bindTo(e.getBindingMatrix(ex.pair), ex.prev);
+                e.prev.bindTo(e.getBindingMatrix(ex.pair), ex.next);
+                e.next.pair.bindTo(e.getBindingMatrix(ex.pair), ex.prev.pair);
+                e.prev.pair.bindTo(e.getBindingMatrix(ex.pair), ex.next.pair);
+
+                e_next.next.bindTo(e_next.getBindingMatrix(ex_prev.pair), ex_prev.prev.pair);
+                e_next.prev.bindTo(e_next.getBindingMatrix(ex_prev.pair), ex_prev.next.pair);
+
+                e_prev.next.bindTo(e_prev.getBindingMatrix(ex_next.pair), ex_next.prev.pair);
+                e_prev.prev.bindTo(e_prev.getBindingMatrix(ex_next.pair), ex_next.next.pair);
+            }
+
+            /*
+
+            E first = null;
+            E firste = null;
+            E firstx = null;
+            E firstq = null;
+            for(E e : (Iterable<E>)getBoundPeers()) {
+                E enext = e.next;
+                E eprev = e.prev;
+                E pnext = e.pair.next;
+                E pprev = e.pair.prev;
+                Point mid = e.midpoint();
+                Vertex r = e.next.v2;
+                Vertex l = e.pair.next.v2;
+                if (!e.destroyed) {
+                    e.destroy();
+                    e.pair.destroy();
+                    newT(r.p, e.v1.p, mid,    null, 0);
+                    newT(r.p, mid,    e.v2.p, null, 0);
+                    newT(l.p, mid,    e.v1.p, null, 0);
+                    newT(l.p, e.v2.p, mid,    null, 0);
+                }
+            }
+            for(E e : (Iterable<E>)getBoundPeers()) {
+                Point mid = e.midpoint();
+                if (first==null) {
+                    first = e.v1.getE(mid);
+                    firste = e;
+                    firstx = e.pair;
+                    firstq = e.v2.getE(mid).pair;
+                    continue;
+                }
+                e.v1.getE(mid).          bindTo(e.getBindingMatrix(firste), first);
+                e.v1.getE(mid).pair.     bindTo(e.getBindingMatrix(firste), first.pair);
+                e.v2.getE(mid).pair.     bindTo(e.getBindingMatrix(firste), firstq);
+                e.v2.getE(mid).pair.pair.bindTo(e.getBindingMatrix(firste), firstq.pair);
+            }
+            */
+            /*
+            first.setConstraint(firste.getAffineConstraint());
+            firstq.setConstraint(firste.getAffineConstraint());
+            */
+            return null;
         }
 
+
         T(E e1, int colorclass) {
             this.e1 = e1;
             E e2 = e1.next;
@@ -862,33 +1142,83 @@ public class Mesh implements Iterable<Mesh.T> {
             }
             this.color = color;
             this.colorclass = colorclass;
-            ts.add(this);
-            tris.add(this);
+            triangles.add(this);
         }
         public E e1() { return e1; }
         public E e2() { return e1.next; }
         public E e3() { return e1.prev; }
-        public Vert v1() { return e1.p1; }
-        public Vert v2() { return e1.p2; }
-        public Vert v3() { return e1.next.p2; }
-        public Point p1() { return e1.p1.p; }
-        public Point p2() { return e1.p2.p; }
-        public Point p3() { return e1.next.p2.p; }
+        public Vertex v1() { return e1.v1; }
+        public Vertex v2() { return e1.v2; }
+        public Vertex v3() { return e1.next.v2; }
+        public Point p1() { return e1.v1.p; }
+        public Point p2() { return e1.v2.p; }
+        public Point p3() { return e1.next.v2.p; }
         public boolean hasE(E e) { return e1==e || e1.next==e || e1.prev==e; }
-        public boolean has(Vert v) { return v1()==v || v2()==v || v3()==v; }
+        public boolean has(Vertex v) { return v1()==v || v2()==v || v3()==v; }
+
+        public Vertex getOtherVertex(E e) {
+            if (!hasE(e)) throw new RuntimeException();
+            if (!e.has(v1())) return v1();
+            if (!e.has(v2())) return v2();
+            if (!e.has(v3())) return v3();
+            throw new RuntimeException();
+        }
 
-        public void glVertices(GL gl) {
+        public void removeFromRTree() { triangles.remove(this); }
+        public void addToRTree() { triangles.insert(this); }
+        public void destroy() {
+            if (e1 != null) {
+                e1.t = null;
+                e1.next.t = null;
+                e1.prev.t = null;
+            }
+            triangles.remove(this);
+            destroyed = true;
+        }
+        public void reinsert() { triangles.remove(this); triangles.add(this); }
+
+        private boolean destroyed = false;
+        public boolean destroyed() { return destroyed; }
 
-            if (e1().bind_to.set.size() == 0) return;
-            if (e2().bind_to.set.size() == 0) return;
-            if (e3().bind_to.set.size() == 0) return;
+        public boolean shouldBeDrawn() {
+            if (e1().bindingGroupUnconstrained()) return false;
+            if (e2().bindingGroupUnconstrained()) return false;
+            if (e3().bindingGroupUnconstrained()) return false;
+            return true;
+        }
 
-            norm().glNormal(gl);
-            p1().glVertex(gl);
-            p2().glVertex(gl);
-            p3().glVertex(gl);
+        public void glTriangle(GL gl, Matrix m) {
+            gl.glPushName(serial);
+            gl.glBegin(GL.GL_TRIANGLES);
+            glVertices(gl, m);
+            gl.glEnd();
+            gl.glPopName();
         }
+
+        /** issue gl.glVertex() for each of the triangle's points */
+        public void glVertices(GL gl, Matrix m) {
+            if (!shouldBeDrawn()) return;
+            super.glVertices(gl, m);
+        }
+    }
+
+    // Dump /////////////////////////////////////////////////////////////////////////////
+
+    public void dump(OutputStream os) throws IOException {
+        PrintWriter pw = new PrintWriter(new OutputStreamWriter(os));
+        pw.println("solid dump");
+        for(Mesh.T t : this) {
+            Vec normal = t.norm();
+            pw.println("facet normal " + normal.x + " " + normal.y + " " + normal.z);
+            pw.println("  outer loop");
+            for(Mesh.Vertex v : new Mesh.Vertex[] { t.v1(), t.v2(), t.v3() }) {
+                pw.println("    vertex " + v.p.x + " " + v.p.y + " " + v.p.z);
+            }
+            pw.println("  endloop");
+            pw.println("endfacet");
+        }
+        pw.println("endsolid dump");
+        pw.flush();
     }
-    public boolean tilemesh = false;
-    public boolean ignorecollision = false;
+
 }