checkpoint
[anneal.git] / src / edu / berkeley / qfat / Mesh.java
index 13c00da..747599c 100644 (file)
@@ -11,8 +11,8 @@ import edu.berkeley.qfat.geom.Point;
 
 public class Mesh implements Iterable<Mesh.T> {
 
-    public static float EPSILON = (float)0.0001;
-    public static Random random = new Random();
+    public static final float EPSILON = (float)0.0001;
+    public static final Random random = new Random();
 
     private PointSet<Vert> pointset = new PointSet<Vert>();
 
@@ -50,15 +50,14 @@ public class Mesh implements Iterable<Mesh.T> {
     public int numedges = 0;
     public float avgedge = 0;
 
-    public void unbind() {
+    public void rebindPoints() {
+        // unbind all points
         for(Mesh.T t : this) {
             t.v1().unbind();
             t.v2().unbind();
             t.v3().unbind();
         }
-    }
-
-    public void bind() {
+        // ask edges to re-implement their bindings
         for(Mesh.T t : this) {
             t.e1().dobind();
             t.e2().dobind();
@@ -66,7 +65,25 @@ public class Mesh implements Iterable<Mesh.T> {
         }
     }
 
-    public float rescore() {
+    public void unApplyQuadricToNeighborAll() {
+        HashSet<Vert> done = new HashSet<Vert>();
+        for(T t : this)
+            for(Vert p : new Vert[] { t.v1(), t.v2(), t.v3() }) {
+                if (done.contains(p)) continue;
+                done.add(p);
+                p.unApplyQuadricToNeighbor();
+            }
+    }
+    public void recomputeAllFundamentalQuadrics() {
+        HashSet<Vert> done = new HashSet<Vert>();
+        for(T t : this)
+            for(Vert p : new Vert[] { t.v1(), t.v2(), t.v3() }) {
+                if (done.contains(p)) continue;
+                done.add(p);
+                p.recomputeFundamentalQuadric();
+            }
+    }
+    public float applyQuadricToNeighborAll() {
         int num = 0;
         double dist = 0;
         HashSet<Vert> done = new HashSet<Vert>();
@@ -74,7 +91,8 @@ public class Mesh implements Iterable<Mesh.T> {
             for(Vert p : new Vert[] { t.v1(), t.v2(), t.v3() }) {
                 if (done.contains(p)) continue;
                 done.add(p);
-                p.rescore();
+                p.applyQuadricToNeighbor();
+                
             }
         return (float)(dist/num);
     }
@@ -98,91 +116,109 @@ public class Mesh implements Iterable<Mesh.T> {
         return (float)total;
     }
 
-
-    public class BindingGroup {
-        public HashSet<E> es = new HashSet<E>();
-        public BindingGroup() { }
-        public BindingGroup(E e) {
-            es.add(e);
-        }
-        public void add(E e) {
-            if (e.bg != null) { merge(e.bg); return; }
-            es.add(e);
-            e.bg = this;
-        }
-        public void merge(BindingGroup bg) {
-            for(E e : bg.es) {
-                e.bg = null;
-                add(e);
-            }
-        }
-    }
-
+    public void rebuildPointSet() { pointset.rebuild(); }
     public Vec diagonal() { return pointset.diagonal(); }
     public Point centroid() { return pointset.centroid(); }
     public Vert nearest(Point p) { return pointset.nearest(p); }
 
-    public Vert register(Point p) { Vert v = pointset.get(p); return v==null ? new Vert(p) : v; }
     public final class Vert extends HasPoint {
         public Point p;
+        E e;                // some edge *leaving* this point
+
+        /** the nearest vertex in the "score_against" mesh */
+        Vert   nearest_in_other_mesh;
+        /** the number of vertices in the other mesh for which this is the nearest_in_other_mesh */
+        int    quadric_count;
+        /** the total error quadric (contributions from all vertices in other mesh for which this is nearest) */
+        Matrix quadric = Matrix.ZERO;
+
+        Vert bound_to = this;
+        Matrix binding = new Matrix();
+        float oldscore = 0;
+        boolean quadricStale = false;
+
+        public Matrix errorQuadric() { return quadric; }
         public Point getPoint() { return p; }
+        public float score() { return oldscore; }
+
+        private Matrix fundamentalQuadric = null;
+        public Matrix fundamentalQuadric() {
+            if (fundamentalQuadric == null) recomputeFundamentalQuadric();
+            return fundamentalQuadric;
+        }
+
         private Vert(Point p) {
             this.p = p;
             if (pointset.get(p) != null) throw new Error();
             pointset.add(this);
         }
-        public float score() { return oldscore; }
-        public void unscore() {
-            if (watch == null) return;
-            watch.watch_x -= p.x;
-            watch.watch_y -= p.y;
-            watch.watch_z -= p.z;
-            watch.watch_count--;
-            if (watch.watch_count==0) {
-                watch.watch_x = 0;
-                watch.watch_y = 0;
-                watch.watch_z = 0;
-            }
-            watch = null;
+
+        public void recomputeFundamentalQuadric() {
+            if (!quadricStale && fundamentalQuadric != null) return;
+            quadricStale = false;
+            unApplyQuadricToNeighbor();
+            Matrix m = Matrix.ZERO;
+            E e = this.e;
+            do {
+                T t = e.t;
+                m = m.plus(t.norm().fundamentalQuadric(t.centroid()));
+                e = e.pair.next;
+            } while(e != this.e);
+            fundamentalQuadric = m;
+            applyQuadricToNeighbor();
+        }
+
+        public void unApplyQuadricToNeighbor() {
+            if (nearest_in_other_mesh == null) return;
+            if (fundamentalQuadric == null) return;
+            nearest_in_other_mesh.unComputeError();
+            nearest_in_other_mesh.quadric = nearest_in_other_mesh.quadric.minus(fundamentalQuadric);
+            nearest_in_other_mesh.quadric_count--;
+            if (nearest_in_other_mesh.quadric_count==0)
+                nearest_in_other_mesh.quadric = Matrix.ZERO;
+            nearest_in_other_mesh.computeError();
+            nearest_in_other_mesh = null;
         }
-        public Vert partner() { return watch==null ? this : watch; }
-        public Vert watchback() { return watch_count==0 ? partner() :
-                register(new Point(watch_x/watch_count, watch_y/watch_count, watch_z/watch_count)); }
-        public void rescore() {
+
+        public void applyQuadricToNeighbor() {
             if (score_against == null) return;
 
-            score -= oldscore;
-            oldscore = 0;
+            Vert new_nearest = score_against.nearest(p);
+            if (nearest_in_other_mesh != null && new_nearest == nearest_in_other_mesh) return;
 
-            if (watch != null) unscore();
-            Vert po = this;
-            if (watch == null) {
-                watch = score_against.nearest(po.p);
-
-                // don't attract to vertices that face the other way
-                if (watch.e == null || watch.norm().dot(norm()) < 0) {
-                    watch = null;
-                } else {
-                    watch.watch_x += po.p.x;
-                    watch.watch_y += po.p.y;
-                    watch.watch_z += po.p.z;
-                    watch.watch_count++;
-                }
+            if (nearest_in_other_mesh != null) unApplyQuadricToNeighbor();
+            if (nearest_in_other_mesh != null) throw new Error();
+
+            nearest_in_other_mesh = new_nearest;
+                
+            // don't attract to vertices that face the other way
+            if (nearest_in_other_mesh.e == null || nearest_in_other_mesh.norm().dot(norm()) < 0) {
+                nearest_in_other_mesh = null;
+            } else {
+                nearest_in_other_mesh.unComputeError();
+                nearest_in_other_mesh.quadric = nearest_in_other_mesh.quadric.plus(fundamentalQuadric());
+                nearest_in_other_mesh.quadric_count++;
+                nearest_in_other_mesh.computeError();
             }
+            reComputeError();
+        }
 
-            double s1, s2;
-            if (watch_count==0) s1 = 0;
-            else                s1 = p.distance(watch_x/watch_count, watch_y/watch_count, watch_z/watch_count);
-            s2 = watch==null ? 0 : po.p.distance(watch.p);
-            oldscore = (float)(s1 + s2);
+        public void reComputeError() {
+            unComputeError();
+            computeError();
+        }
+        public void unComputeError() {
+            score -= oldscore;
+            oldscore = 0;
+        }
+        public void computeError() {
+            oldscore = quadric_count == 0 ? 0 : (quadric.preAndPostMultiply(p) / quadric_count);
             score += oldscore;
         }
 
         /** does NOT update bound pairs! */
         public boolean transform(Matrix m) {
-            // FIXME: screws up kdtree 
-            // FIXME: screws up hashmap
-            unscore();
+            unApplyQuadricToNeighbor();
             try {
                 if (pointset.get(this.p)==null) throw new Error();
                 pointset.remove(this);
@@ -190,50 +226,43 @@ public class Mesh implements Iterable<Mesh.T> {
                 float newy = m.e*p.x + m.f*p.y + m.g*p.z + m.h;
                 float newz = m.i*p.x + m.j*p.y + m.k*p.z + m.l;
                 this.p = new Point(newx, newy, newz);
-                // FIXME: what if we move onto exactly where another point is?
                 pointset.add(this);
             } catch (Exception e) {
                 throw new RuntimeException(e);
             }
-            rescore();
+            applyQuadricToNeighbor();
+
+            // should recompute fundamental quadrics of all vertices sharing a face, but we defer...
+            E e = this.e;
+            do {
+                e.p2.quadricStale = true;
+                e = e.pair.next;
+            } while(e != this.e);
+
+            // FIXME: intersection test needed?
             boolean good = true;
-            /*
-            for(T t : this) {
-                for(E e = this.e; ;) {
-                    if (e.intersects(t)) { good = false; break; }
+            for(T t : Mesh.this) {
+                if (!good) break;
+                e = this.e;
+                do {
+                    if (!t.has(e.p1) && !t.has(e.p2) && e.t != null && e.intersects(t)) { good = false; break; }
                     e = e.pair.next;
-                    if (e == this.e) break;
-                }
-            }
-            */
-            /*
-                if (t==this.t) continue;
-                if (this.intersects(t)) good = false;
+                } while(e != this.e);
             }
-            */
             return good;
         }
+
         public boolean move(Vec v) {
             Matrix m = new Matrix(v);
             Vert p = this;
             boolean good = true;
             do {
                 good &= p.transform(m);
-                v = v.times(binding); // bleh wrong
                 p = p.bound_to;
             } while (p != this);
             return good;
         }
 
-        public E makeE(Vert p2) {
-            E e = getE(p2);
-            if (e != null) return e;
-            e = p2.getE(this);
-            if (this.e == null && p2.e == null) return this.e = new E(this, p2);
-            if (this.e == null && p2.e != null) return p2.makeE(this).pair;
-            return new E(getFreeIncident(), p2);
-        }
-
         public E getFreeIncident() {
             E ret = getFreeIncident(e, e);
             if (ret != null) return ret;
@@ -251,6 +280,11 @@ public class Mesh implements Iterable<Mesh.T> {
             return null;
         }
 
+        public E getE(Point p2) {
+            Vert v = pointset.get(p2);
+            if (v==null) return null;
+            return getE(v);
+        }
         public E getE(Vert p2) {
             E e = this.e;
             do {
@@ -261,6 +295,16 @@ public class Mesh implements Iterable<Mesh.T> {
             return null;
         }
 
+        public Vec norm() {
+            Vec norm = new Vec(0, 0, 0);
+            E e = this.e;
+            do {
+                if (e.t != null) norm = norm.plus(e.t.norm().times((float)e.prev.angle()));
+                e = e.pair.next;
+            } while(e != this.e);
+            return norm.norm();
+        }
+
         public boolean isBoundTo(Vert p) {
             Vert px = p;
             do {
@@ -269,7 +313,6 @@ public class Mesh implements Iterable<Mesh.T> {
             } while(px != p);
             return false;
         }
-
         public void unbind() { bound_to = this; binding = new Matrix(); }
         public void bind(Vert p) { bind(p, new Matrix()); }
         public void bind(Vert p, Matrix binding) {
@@ -281,26 +324,44 @@ public class Mesh implements Iterable<Mesh.T> {
             this.bound_to = temp_bound_to;
             this.binding = temp_binding.times(temp_binding); // FIXME: may have order wrong here
         }
-        public Vec norm() {
-            Vec norm = new Vec(0, 0, 0);
-            E e = this.e;
-            do {
-                if (e.t != null) norm = norm.plus(e.t.norm().times((float)e.prev.angle()));
-                e = e.pair.next;
-            } while(e != this.e);
-            return norm.norm();
-        }
+    }
 
-        Vert bound_to = this;
-        int watch_count;
-        float watch_x;
-        float watch_y;
-        float watch_z;
-        Vert watch;
-        E e;                // some edge *leaving* this point
-        Matrix binding = new Matrix();
-        float oldscore = 0;
-        boolean inserted = false;
+    public class BindingGroup {
+        private HashSet<E> set = new HashSet<E>();
+        public BindingGroup bind_others;
+        public BindingGroup other() { return bind_others; }
+        public BindingGroup(BindingGroup bind_others) { this.bind_others = bind_others; }
+        public BindingGroup() { this.bind_others = new BindingGroup(this); }
+        public BindingGroup(E e) { this(); set.add(e); }
+        public void add(E e) {
+            if (set.contains(e)) return;
+            for (E epeer : e.bind_peers.set) {
+                epeer.bind_peers = this;
+                epeer.bind_to    = bind_others;
+                set.add(epeer);
+            }
+            for (E eother : e.bind_to.set) {
+                bind_others.add(eother);
+            }
+
+            for(E eother : bind_others.set) {
+                if (e.next.bind_to.set.contains(eother.prev)) {
+                    e.next.next.bindEdge(eother.prev.prev);
+                }
+            }
+
+        }
+        public void dobind(E e) {
+            for(E ebound : set) {
+                e.p1.bind(ebound.p2);
+                e.p2.bind(ebound.p1);
+            }
+        }
+        public void shatter(BindingGroup bg1, BindingGroup bg2) {
+            for(E e : set) {
+                e.shatter(e.midpoint(), bg1, bg2);
+            }
+        }
     }
 
     /** [UNIQUE] an edge */
@@ -311,25 +372,16 @@ public class Mesh implements Iterable<Mesh.T> {
         E prev;  // previous half-edge
         E next;  // next half-edge
         E pair;  // partner half-edge
-        public BindingGroup bg = new BindingGroup(this);
+        public BindingGroup bind_peers  = new BindingGroup(this);
+        public BindingGroup bind_to     = bind_peers.other();
+        boolean shattered = false;
 
         public int compareTo(E e) { return e.length() > length() ? 1 : -1; }
+        public void bindEdge(E e) { bind_to.add(e); }
+        public void dobind() { bind_to.dobind(this); }
 
-        public void bind(E e) { bind(e, new Matrix()); }
-        public void bind(E e, Matrix m) { e.bg.add(this); }
-
-        public void dobind() {
-            if (bg==null) return;
-            for(E ex : bg.es) {
-                if (ex==this) continue;
-                p1.bind(ex.p1);
-                p2.bind(ex.p2);
-            }
-        }
-
-        boolean shattered = false;
-        public Vert shatter() { return shatter(register(midpoint()), null, null); }
-        public Vert shatter(Vert mid, BindingGroup bg1, BindingGroup bg2) {
+        public Point shatter() { return shatter(midpoint(), null, null); }
+        public Point shatter(Point mid, BindingGroup bg1, BindingGroup bg2) {
             if (shattered) return mid;
             shattered = true;
 
@@ -339,14 +391,15 @@ public class Mesh implements Iterable<Mesh.T> {
 
             if (bg1==null) bg1 = new BindingGroup();
             if (bg2==null) bg2 = new BindingGroup();
-            for(E e : bg.es) e.shatter(register(e.midpoint()), bg1, bg2);
+            bind_peers.shatter(bg1, bg2);
+            bind_to.shatter(bg2.other(), bg1.other());
             pair.shatter();
             destroy();
 
-            newT(r, p1, mid, null);
-            newT(r, mid, p2, null);
+            newT(r.p, p1.p, mid, null);
+            newT(r.p, mid, p2.p, null);
             bg1.add(p1.getE(mid));
-            bg2.add(mid.getE(p2));
+            bg2.add(p2.getE(mid).pair);
             return mid;
         }
 
@@ -361,8 +414,12 @@ public class Mesh implements Iterable<Mesh.T> {
             prev.t = null;
             pair.next.t = null;
             pair.prev.t = null;
-            this.bg = null;
-            pair.bg = null;
+            /*
+            this.bind_to = null;
+            pair.bind_to = null;
+            this.bind_peers = null;
+            pair.bind_peers = null;
+            */
             pair.prev.next = next;
             next.prev = pair.prev;
             prev.next = pair.next;
@@ -379,6 +436,7 @@ public class Mesh implements Iterable<Mesh.T> {
             this.prev.next = this;
             this.next.prev = this;
             this.pair.pair = this;
+            bind_peers.add(this);
             if (this.next.p1 != p2) throw new Error();
             if (this.prev.p2 != p1) throw new Error();
             if (this.p1.e == null) this.p1.e = this;
@@ -420,16 +478,22 @@ public class Mesh implements Iterable<Mesh.T> {
         }
 
         /** creates an isolated edge out in the middle of space */
-        public E(Vert p1, Vert p2) {
-            if (p1==p2) throw new Error("attempt to create edge with single vertex: " + p1);
-            this.p1 = p1;
-            this.p2 = p2;
+        public E(Point p1, Point p2) {
+            if (pointset.get(p1) != null) throw new Error();
+            if (pointset.get(p2) != null) throw new Error();
+            this.p1 = new Vert(p1);
+            this.p2 = new Vert(p2);
             this.prev = this.next = this.pair = new E(this, this, this);
+            this.p1.e = this;
+            this.p2.e = this.pair;
             sync();
         }
 
         /** adds a new half-edge from prev.p2 to p2 */
-        public E(E prev, Vert p2) {
+        public E(E prev, Point p) {
+            Vert p2;
+            p2 = pointset.get(p);
+            if (p2 == null) p2 = new Vert(p);
             this.p1 = prev.p2;
             this.p2 = p2;
             this.prev = prev;
@@ -444,6 +508,7 @@ public class Mesh implements Iterable<Mesh.T> {
                 this.prev.next = this;
                 this.pair = new E(q, this, z);
             }
+            if (p2.e==null) p2.e = this.pair;
             sync();
         }
 
@@ -532,17 +597,29 @@ public class Mesh implements Iterable<Mesh.T> {
         }
     }
 
-    public T newT(Point p1, Point p2, Point p3, Vec norm) { return newT(register(p1), register(p2), register(p3), norm); }
-    public T newT(Vert p1, Vert p2, Vert p3, Vec norm) {
+    public E makeE(Point p1, Point p2) {
+        Vert v1 = pointset.get(p1);
+        Vert v2 = pointset.get(p2);
+        if (v1 != null && v2 != null) {
+            E e = v1.getE(v2);
+            if (e != null) return e;
+            e = v2.getE(v1);
+            if (e != null) return e;
+        }
+        if (v1 != null) return new E(v1.getFreeIncident(), p2);
+        if (v2 != null) return new E(v2.getFreeIncident(), p1).pair;
+        return new E(p1, p2);
+    }
+    public T newT(Point p1, Point p2, Point p3, Vec norm) {
         if (norm != null) {
-            Vec norm2 = p3.p.minus(p1.p).cross(p2.p.minus(p1.p));
+            Vec norm2 = p3.minus(p1).cross(p2.minus(p1));
             float dot = norm.dot(norm2);
             //if (Math.abs(dot) < EPointSILON) throw new Error("dot products within evertsilon of each other: "+norm+" "+norm2);
-            if (dot < 0) { Vert p = p1; p1=p2; p2 = p; }
+            if (dot < 0) { Point p = p1; p1=p2; p2 = p; }
         }
-        E e12 = p1.makeE(p2);
-        E e23 = p2.makeE(p3);
-        E e31 = p3.makeE(p1);
+        E e12 = makeE(p1, p2);
+        E e23 = makeE(p2, p3);
+        E e31 = makeE(p3, p1);
         while(e12.next != e23 || e23.next != e31 || e31.next != e12) {
             e12.makeAdjacent(e23);
             e23.makeAdjacent(e31);