checkpoint
[anneal.git] / src / edu / berkeley / qfat / Mesh.java
index f635754..8a697dc 100644 (file)
@@ -50,15 +50,14 @@ public class Mesh implements Iterable<Mesh.T> {
     public int numedges = 0;
     public float avgedge = 0;
 
-    public void unbind() {
+    public void rebindPoints() {
+        // unbind all points
         for(Mesh.T t : this) {
             t.v1().unbind();
             t.v2().unbind();
             t.v3().unbind();
         }
-    }
-
-    public void bind() {
+        // ask edges to re-implement their bindings
         for(Mesh.T t : this) {
             t.e1().dobind();
             t.e2().dobind();
@@ -66,7 +65,25 @@ public class Mesh implements Iterable<Mesh.T> {
         }
     }
 
-    public float rescore() {
+    public void unApplyQuadricToNeighborAll() {
+        HashSet<Vert> done = new HashSet<Vert>();
+        for(T t : this)
+            for(Vert p : new Vert[] { t.v1(), t.v2(), t.v3() }) {
+                if (done.contains(p)) continue;
+                done.add(p);
+                p.unApplyQuadricToNeighbor();
+            }
+    }
+    public void recomputeAllFundamentalQuadrics() {
+        HashSet<Vert> done = new HashSet<Vert>();
+        for(T t : this)
+            for(Vert p : new Vert[] { t.v1(), t.v2(), t.v3() }) {
+                if (done.contains(p)) continue;
+                done.add(p);
+                p.recomputeFundamentalQuadric();
+            }
+    }
+    public float applyQuadricToNeighborAll() {
         int num = 0;
         double dist = 0;
         HashSet<Vert> done = new HashSet<Vert>();
@@ -74,7 +91,8 @@ public class Mesh implements Iterable<Mesh.T> {
             for(Vert p : new Vert[] { t.v1(), t.v2(), t.v3() }) {
                 if (done.contains(p)) continue;
                 done.add(p);
-                p.rescore();
+                p.applyQuadricToNeighbor();
+                
             }
         return (float)(dist/num);
     }
@@ -98,25 +116,7 @@ public class Mesh implements Iterable<Mesh.T> {
         return (float)total;
     }
 
-    public class BindingGroup {
-        public HashSet<E> es = new HashSet<E>();
-        public BindingGroup() { }
-        public BindingGroup(E e) {
-            es.add(e);
-        }
-        public void add(E e) {
-            if (e.bg != null) { merge(e.bg); return; }
-            es.add(e);
-            e.bg = this;
-        }
-        public void merge(BindingGroup bg) {
-            for(E e : bg.es) {
-                e.bg = null;
-                add(e);
-            }
-        }
-    }
-
+    public void rebuildPointSet() { pointset.rebuild(); }
     public Vec diagonal() { return pointset.diagonal(); }
     public Point centroid() { return pointset.centroid(); }
     public Vert nearest(Point p) { return pointset.nearest(p); }
@@ -125,83 +125,100 @@ public class Mesh implements Iterable<Mesh.T> {
         public Point p;
         E e;                // some edge *leaving* this point
 
+        /** the nearest vertex in the "score_against" mesh */
+        Vert   nearest_in_other_mesh;
+        /** the number of vertices in the other mesh for which this is the nearest_in_other_mesh */
+        int    quadric_count;
+        /** the total error quadric (contributions from all vertices in other mesh for which this is nearest) */
+        Matrix quadric = Matrix.ZERO;
+
         Vert bound_to = this;
-        int nearest_vert_in_other_mesh_count;
-        float nearest_vert_in_other_mesh_x;
-        float nearest_vert_in_other_mesh_y;
-        float nearest_vert_in_other_mesh_z;
-        Vert nearest_vert_in_other_mesh;
         Matrix binding = new Matrix();
         float oldscore = 0;
-        boolean inserted = false;
+        boolean quadricStale = false;
 
-        public Matrix quadric() {
-            Matrix m = new Matrix(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);
+        public Matrix errorQuadric() { return quadric; }
+        public Point getPoint() { return p; }
+        public float score() { return oldscore; }
+
+        private Matrix fundamentalQuadric = null;
+        public Matrix fundamentalQuadric() {
+            if (fundamentalQuadric == null) recomputeFundamentalQuadric();
+            return fundamentalQuadric;
+        }
+
+        private Vert(Point p) {
+            this.p = p;
+            if (pointset.get(p) != null) throw new Error();
+            pointset.add(this);
+        }
+
+        public void recomputeFundamentalQuadric() {
+            if (!quadricStale && fundamentalQuadric != null) return;
+            quadricStale = false;
+            unApplyQuadricToNeighbor();
+            Matrix m = Matrix.ZERO;
             E e = this.e;
             do {
                 T t = e.t;
                 m = m.plus(t.norm().fundamentalQuadric(t.centroid()));
                 e = e.pair.next;
             } while(e != this.e);
-            return m;
+            fundamentalQuadric = m;
+            applyQuadricToNeighbor();
         }
 
-        public Point getPoint() { return p; }
-        private Vert(Point p) {
-            this.p = p;
-            if (pointset.get(p) != null) throw new Error();
-            pointset.add(this);
+        public void unApplyQuadricToNeighbor() {
+            if (nearest_in_other_mesh == null) return;
+            if (fundamentalQuadric == null) return;
+            nearest_in_other_mesh.unComputeError();
+            nearest_in_other_mesh.quadric = nearest_in_other_mesh.quadric.minus(fundamentalQuadric);
+            nearest_in_other_mesh.quadric_count--;
+            if (nearest_in_other_mesh.quadric_count==0)
+                nearest_in_other_mesh.quadric = Matrix.ZERO;
+            nearest_in_other_mesh.computeError();
+            nearest_in_other_mesh = null;
         }
-        public float score() { return oldscore; }
-        public void unscore() {
-            if (nearest_vert_in_other_mesh == null) return;
-            nearest_vert_in_other_mesh.nearest_vert_in_other_mesh_x -= p.x;
-            nearest_vert_in_other_mesh.nearest_vert_in_other_mesh_y -= p.y;
-            nearest_vert_in_other_mesh.nearest_vert_in_other_mesh_z -= p.z;
-            nearest_vert_in_other_mesh.nearest_vert_in_other_mesh_count--;
-            if (nearest_vert_in_other_mesh.nearest_vert_in_other_mesh_count==0) {
-                nearest_vert_in_other_mesh.nearest_vert_in_other_mesh_x = 0;
-                nearest_vert_in_other_mesh.nearest_vert_in_other_mesh_y = 0;
-                nearest_vert_in_other_mesh.nearest_vert_in_other_mesh_z = 0;
-            }
-            nearest_vert_in_other_mesh = null;
-        }
-        public Vert partner() { return nearest_vert_in_other_mesh==null ? this : nearest_vert_in_other_mesh; }
-        public Point nearest_vert_in_other_mesh() { return nearest_vert_in_other_mesh_count==0 ? partner().p :
-                new Point(nearest_vert_in_other_mesh_x/nearest_vert_in_other_mesh_count, nearest_vert_in_other_mesh_y/nearest_vert_in_other_mesh_count, nearest_vert_in_other_mesh_z/nearest_vert_in_other_mesh_count); }
-        public void rescore() {
+
+        public void applyQuadricToNeighbor() {
             if (score_against == null) return;
 
-            score -= oldscore;
-            oldscore = 0;
+            Vert new_nearest = score_against.nearest(p);
+            if (nearest_in_other_mesh != null && new_nearest == nearest_in_other_mesh) return;
 
-            if (nearest_vert_in_other_mesh != null) unscore();
-            Vert po = this;
-            if (nearest_vert_in_other_mesh == null) {
-                nearest_vert_in_other_mesh = score_against.nearest(po.p);
-
-                // don't attract to vertices that face the other way
-                if (nearest_vert_in_other_mesh.e == null || nearest_vert_in_other_mesh.norm().dot(norm()) < 0) {
-                    nearest_vert_in_other_mesh = null;
-                } else {
-                    nearest_vert_in_other_mesh.nearest_vert_in_other_mesh_x += po.p.x;
-                    nearest_vert_in_other_mesh.nearest_vert_in_other_mesh_y += po.p.y;
-                    nearest_vert_in_other_mesh.nearest_vert_in_other_mesh_z += po.p.z;
-                    nearest_vert_in_other_mesh.nearest_vert_in_other_mesh_count++;
-                }
+            if (nearest_in_other_mesh != null) unApplyQuadricToNeighbor();
+            if (nearest_in_other_mesh != null) throw new Error();
+
+            nearest_in_other_mesh = new_nearest;
+                
+            // don't attract to vertices that face the other way
+            if (nearest_in_other_mesh.e == null || nearest_in_other_mesh.norm().dot(norm()) < 0) {
+                nearest_in_other_mesh = null;
+            } else {
+                nearest_in_other_mesh.unComputeError();
+                nearest_in_other_mesh.quadric = nearest_in_other_mesh.quadric.plus(fundamentalQuadric());
+                nearest_in_other_mesh.quadric_count++;
+                nearest_in_other_mesh.computeError();
             }
+            reComputeError();
+        }
 
-            double s1, s2;
-            if (nearest_vert_in_other_mesh_count==0) s1 = 0;
-            else                s1 = p.distance(nearest_vert_in_other_mesh_x/nearest_vert_in_other_mesh_count, nearest_vert_in_other_mesh_y/nearest_vert_in_other_mesh_count, nearest_vert_in_other_mesh_z/nearest_vert_in_other_mesh_count);
-            s2 = nearest_vert_in_other_mesh==null ? 0 : po.p.distance(nearest_vert_in_other_mesh.p);
-            oldscore = (float)(s1 + s2);
+        public void reComputeError() {
+            unComputeError();
+            computeError();
+        }
+        public void unComputeError() {
+            score -= oldscore;
+            oldscore = 0;
+        }
+        public void computeError() {
+            oldscore = quadric_count == 0 ? 0 : (quadric.preAndPostMultiply(p) / quadric_count);
             score += oldscore;
         }
 
         /** does NOT update bound pairs! */
         public boolean transform(Matrix m) {
-            unscore();
+            unApplyQuadricToNeighbor();
             try {
                 if (pointset.get(this.p)==null) throw new Error();
                 pointset.remove(this);
@@ -213,31 +230,26 @@ public class Mesh implements Iterable<Mesh.T> {
             } catch (Exception e) {
                 throw new RuntimeException(e);
             }
-            rescore();
-            boolean good = true;
-            /*
-            for(T t : this) {
-                for(E e = this.e; ;) {
-                    if (e.intersects(t)) { good = false; break; }
-                    e = e.pair.next;
-                    if (e == this.e) break;
-                }
-            }
-            */
-            /*
-                if (t==this.t) continue;
-                if (this.intersects(t)) good = false;
-            }
-            */
-            return good;
+            applyQuadricToNeighbor();
+
+            // should recompute fundamental quadrics of all vertices sharing a face, but we defer...
+            E e = this.e;
+            do {
+                e.p2.quadricStale = true;
+                e = e.pair.next;
+            } while(e != this.e);
+
+
+            // FIXME: intersection test needed?
+            return true;
         }
+
         public boolean move(Vec v) {
             Matrix m = new Matrix(v);
             Vert p = this;
             boolean good = true;
             do {
                 good &= p.transform(m);
-                v = v.times(binding); // bleh wrong
                 p = p.bound_to;
             } while (p != this);
             return good;
@@ -275,6 +287,16 @@ public class Mesh implements Iterable<Mesh.T> {
             return null;
         }
 
+        public Vec norm() {
+            Vec norm = new Vec(0, 0, 0);
+            E e = this.e;
+            do {
+                if (e.t != null) norm = norm.plus(e.t.norm().times((float)e.prev.angle()));
+                e = e.pair.next;
+            } while(e != this.e);
+            return norm.norm();
+        }
+
         public boolean isBoundTo(Vert p) {
             Vert px = p;
             do {
@@ -283,7 +305,6 @@ public class Mesh implements Iterable<Mesh.T> {
             } while(px != p);
             return false;
         }
-
         public void unbind() { bound_to = this; binding = new Matrix(); }
         public void bind(Vert p) { bind(p, new Matrix()); }
         public void bind(Vert p, Matrix binding) {
@@ -295,14 +316,55 @@ public class Mesh implements Iterable<Mesh.T> {
             this.bound_to = temp_bound_to;
             this.binding = temp_binding.times(temp_binding); // FIXME: may have order wrong here
         }
-        public Vec norm() {
-            Vec norm = new Vec(0, 0, 0);
-            E e = this.e;
-            do {
-                if (e.t != null) norm = norm.plus(e.t.norm().times((float)e.prev.angle()));
-                e = e.pair.next;
-            } while(e != this.e);
-            return norm.norm();
+    }
+
+    public class BindingGroup {
+        private HashSet<E> left = new HashSet<E>();
+        private HashSet<E> right = new HashSet<E>();
+        public BindingGroup() { }
+        public BindingGroup(E e) {
+            left.add(e);
+        }
+        public void add(E e, boolean swap) {
+            if (e.bg != null) {
+                if (e.bg == this) return;
+                for(E ex : (!swap ? e.bg.left : e.bg.right)) {
+                    ex.bg = this;
+                    left.add(ex);
+                }
+                for(E ex : (!swap ? e.bg.right : e.bg.left)) {
+                    ex.bg = this;
+                    right.add(ex);
+                }
+            } else {
+                (!swap ? left : right).add(e);
+                e.bg = this;
+            }
+        }
+        public void dobind(E e) {
+            // assumes e is part of the "left" set
+            Vert v1 = null;
+            Vert v2 = null;
+            if (left.contains(e)) { v1 = e.p1; v2 = e.p2; }
+            if (right.contains(e)) { v1 = e.p2; v2 = e.p1; }
+            for(E ex : left) {
+                if (ex==e) continue;
+                v1.bind(ex.p1);
+                v2.bind(ex.p2);
+            }
+            for(E ex : right) {
+                if (ex==e) continue;
+                v1.bind(ex.p2);
+                v2.bind(ex.p1);
+            }
+        }
+        public void shatter(BindingGroup bg1, BindingGroup bg2) {
+            for(E e : left) {
+                e.shatter(e.midpoint(), bg1, bg2);
+            }
+            for(E e : right) {
+                e.shatter(e.midpoint(), bg2, bg1);  /* swap correct? */
+            }
         }
     }
 
@@ -319,17 +381,10 @@ public class Mesh implements Iterable<Mesh.T> {
 
         public int compareTo(E e) { return e.length() > length() ? 1 : -1; }
 
-        public void bind(E e) { bind(e, new Matrix()); }
-        public void bind(E e, Matrix m) { e.bg.add(this); }
-
-        public void dobind() {
-            if (bg==null) return;
-            for(E ex : bg.es) {
-                if (ex==this) continue;
-                p1.bind(ex.p1);
-                p2.bind(ex.p2);
-            }
+        public void bindEdge(E e) {
+            bg.add(e.pair, false);
         }
+        public void dobind() { if (bg != null) bg.dobind(this); }
 
         public Point shatter() { return shatter(midpoint(), null, null); }
         public Point shatter(Point mid, BindingGroup bg1, BindingGroup bg2) {
@@ -342,14 +397,14 @@ public class Mesh implements Iterable<Mesh.T> {
 
             if (bg1==null) bg1 = new BindingGroup();
             if (bg2==null) bg2 = new BindingGroup();
-            for(E e : bg.es) e.shatter(e.midpoint(), bg1, bg2);
+            bg.shatter(bg1, bg2);
             pair.shatter();
             destroy();
 
             newT(r.p, p1.p, mid, null);
             newT(r.p, mid, p2.p, null);
-            bg1.add(p1.getE(mid));
-            bg2.add(p2.getE(mid).pair);
+            bg1.add(p1.getE(mid), false);
+            bg2.add(p2.getE(mid).pair, false);
             return mid;
         }