checkpoint
[anneal.git] / src / edu / berkeley / qfat / Mesh.java
index e4b5bf4..babad37 100644 (file)
@@ -8,6 +8,7 @@ import javax.media.opengl.glu.*;
 import edu.berkeley.qfat.geom.*;
 import edu.wlu.cs.levy.CG.KDTree;
 import edu.berkeley.qfat.geom.Point;
+import com.infomatiq.jsi.IntProcedure;
 
 public class Mesh implements Iterable<Mesh.T> {
 
@@ -18,14 +19,13 @@ public class Mesh implements Iterable<Mesh.T> {
     private PointSet<Vertex> vertices  = new PointSet<Vertex>();
 
     public boolean immutableVertices;
-    public boolean ignorecollision = false;
-    public Mesh    score_against = null;
-    public double  score = 0;
+    public Mesh    error_against      = null;
+    public double  error              = 0;
 
     public Mesh(boolean immutableVertices) { this.immutableVertices = immutableVertices; }
 
     public void makeVerticesImmutable() { this.immutableVertices = true; }
-    public float score() { return (float)score; }
+    public float error() { return (float)error; }
 
     public int size() { return vertices.size(); }
     public Iterable<Vertex> vertices() { return vertices; }
@@ -46,42 +46,10 @@ public class Mesh implements Iterable<Mesh.T> {
         }
     }
 
-    public void unApplyQuadricToNeighborAll() {
-        HashSet<Vertex> done = new HashSet<Vertex>();
-        for(T t : this)
-            for(Vertex p : new Vertex[] { t.v1(), t.v2(), t.v3() }) {
-                if (done.contains(p)) continue;
-                done.add(p);
-                p.unApplyQuadricToNeighbor();
-            }
-    }
-    public void recomputeAllFundamentalQuadrics() {
-        HashSet<Vertex> done = new HashSet<Vertex>();
-        for(T t : this)
-            for(Vertex p : new Vertex[] { t.v1(), t.v2(), t.v3() }) {
-                if (done.contains(p)) continue;
-                done.add(p);
-                p.recomputeFundamentalQuadric();
-            }
-    }
-    public float applyQuadricToNeighborAll() {
-        int num = 0;
-        double dist = 0;
-        HashSet<Vertex> done = new HashSet<Vertex>();
-        for(T t : this)
-            for(Vertex p : new Vertex[] { t.v1(), t.v2(), t.v3() }) {
-                if (done.contains(p)) continue;
-                done.add(p);
-                p.applyQuadricToNeighbor();
-                
-            }
-        return (float)(dist/num);
-    }
-
     public void transform(Matrix m) {
         ArrayList<Vertex> set = new ArrayList<Vertex>();
         for(Vertex v : vertices) set.add(v);
-        for(Vertex v : set) v.transform(m);
+        for(Vertex v : set) v.transform(m.times(v.p), true);
     }
 
     public void rebuild() { /*vertices.rebuild();*/ }
@@ -106,32 +74,16 @@ public class Mesh implements Iterable<Mesh.T> {
     // Vertexices //////////////////////////////////////////////////////////////////////////////
 
     /** a vertex in the mesh */
-    public final class Vertex extends HasPoint {
-        public String toString() { return p.toString(); }
-        public Point p;
+    public final class Vertex extends HasQuadric implements Visitor {
+        public Point p, oldp;
         E e;                // some edge *leaving* this point
 
-        /** the nearest vertex in the "score_against" mesh */
-        Vertex   nearest_in_other_mesh;
-        /** the number of vertices in the other mesh for which this is the nearest_in_other_mesh */
-        int    quadric_count;
-        /** the total error quadric (contributions from all vertices in other mesh for which this is nearest) */
-        Matrix quadric = Matrix.ZERO;
-
-        Vertex bound_to = this;
         Matrix binding = Matrix.ONE;
-        float oldscore = 0;
-        boolean quadricStale = false;
+        Vertex bound_to = this;
+        private boolean illegal = false;
 
-        public Matrix errorQuadric() { return quadric; }
         public Point getPoint() { return p; }
-        public float score() { return oldscore; }
-
-        private Matrix fundamentalQuadric = null;
-        public Matrix fundamentalQuadric() {
-            if (fundamentalQuadric == null) recomputeFundamentalQuadric();
-            return fundamentalQuadric;
-        }
+        public float error() { return olderror; }
 
         private Vertex(Point p) {
             this.p = p;
@@ -139,255 +91,144 @@ public class Mesh implements Iterable<Mesh.T> {
             vertices.add(this);
         }
 
-        private void glNormal(GL gl) {
-            Vec norm = norm();
-            gl.glNormal3f(norm.x, norm.y, norm.z);
+        public void reinsert() {
+            vertices.remove(this);
+            vertices.add(this);
+            for(E e = this.e; e!=null; e=e.pair.next==this.e?null:e.pair.next) e.t.reinsert();
         }
 
-        public void recomputeFundamentalQuadric() {
-            if (!quadricStale && fundamentalQuadric != null) return;
-            quadricStale = false;
-            unApplyQuadricToNeighbor();
-            Matrix m = Matrix.ZERO;
-            E e = this.e;
+        public float olderror = 0;
+        public void setError(float nerror) {
+            error -= olderror;
+            olderror = nerror;
+            error += olderror;
+        }
+
+        public float averageTriangleArea() {
             int count = 0;
-            do {
-                T t = e.t;
-                m = m.plus(t.norm().fundamentalQuadric(t.centroid()));
+            float ret = 0;
+            for(E e = this.e; e!=null; e=e.pair.next==this.e?null:e.pair.next) {
+                ret += e.t.area();
                 count++;
-                e = e.pair.next;
-            } while(e != this.e);
-            fundamentalQuadric = m.times(1/(float)count);
-            applyQuadricToNeighbor();
+            }
+            return ret/count;
         }
-
-        public void unApplyQuadricToNeighbor() {
-            if (nearest_in_other_mesh == null) return;
-            if (fundamentalQuadric == null) return;
-            nearest_in_other_mesh.unComputeError();
-            nearest_in_other_mesh.quadric = nearest_in_other_mesh.quadric.minus(fundamentalQuadric);
-            nearest_in_other_mesh.quadric_count--;
-            if (nearest_in_other_mesh.quadric_count==0)
-                nearest_in_other_mesh.quadric = Matrix.ZERO;
-            nearest_in_other_mesh.computeError();
-            nearest_in_other_mesh = null;
+        public float averageEdgeLength() {
+            int count = 0;
+            float ret = 0;
+            for(E e = this.e; e!=null; e=e.pair.next==this.e?null:e.pair.next) {
+                ret += e.length();
+                count++;
+            }
+            return ret/count;
         }
 
-        public void applyQuadricToNeighbor() {
-            if (score_against == null) return;
-
-            Vertex new_nearest = score_against.nearest(p);
-            if (nearest_in_other_mesh != null && new_nearest == nearest_in_other_mesh) return;
-
-            if (nearest_in_other_mesh != null) unApplyQuadricToNeighbor();
-            if (nearest_in_other_mesh != null) throw new Error();
-
-            nearest_in_other_mesh = new_nearest;
-                
-            // don't attract to vertices that face the other way
-            if (nearest_in_other_mesh.e == null || nearest_in_other_mesh.norm().dot(norm()) < 0) {
-                nearest_in_other_mesh = null;
-            } else {
-                nearest_in_other_mesh.unComputeError();
-                nearest_in_other_mesh.quadric = nearest_in_other_mesh.quadric.plus(fundamentalQuadric());
-                nearest_in_other_mesh.quadric_count++;
-                nearest_in_other_mesh.computeError();
+        public Matrix _recomputeFundamentalQuadric() {
+            Matrix m = Matrix.ZERO;
+            int count = 0;
+            for(E e = this.e; e!=null; e=e.pair.next==this.e?null:e.pair.next) {
+                m = m.plus(e.t.norm().fundamentalQuadric(e.t.centroid()));
+                count++;
             }
-            reComputeError();
+            return m.times(1/(float)count);
         }
 
-        public void reComputeErrorAround() {
-            reComputeError();
-            if (nearest_in_other_mesh != null) nearest_in_other_mesh.reComputeError();
-            E e = this.e;
-            do {
-                e.p2.reComputeError();
-                e = e.pair.next;
-            } while (e != this.e);
-        }
-        public void reComputeError() {
-            unComputeError();
-            computeError();
-        }
-        public void unComputeError() {
-            score -= oldscore;
-            oldscore = 0;
-        }
+        public HasQuadric nearest() { return error_against==null ? null : error_against.vertices.nearest(p, this); }
         public void computeError() {
-            if (quadric_count == 0) {
-                if (immutableVertices) {
-                } else if (nearest_in_other_mesh == null) {
-                    if (score_against != null) {
-                        Vertex ne = score_against.nearest(p);
-                        oldscore = ne.fundamentalQuadric().preAndPostMultiply(p) * 100 * 10;
-                    } else {
-                        oldscore = 0;
-                    }
-                } else {
-                    oldscore = nearest_in_other_mesh.fundamentalQuadric().preAndPostMultiply(p) * 100 * 10;
-                }
-            } else {
-                oldscore = (quadric.preAndPostMultiply(p) * 100) / quadric_count;
-            }
-
-            oldscore = oldscore;
-
-            int numaspects = 0;
-            float aspects = 0;
-            E e = this.e;
-            do {
-                //double ang = Math.abs(e.crossAngle());
+            if (error_against==null) return;
+            float nerror =
+                quadric_count != 0
+                ? (quadric.preAndPostMultiply(p) * 100)/quadric_count
+                : nearest_in_other_mesh != null
+                ? nearest_in_other_mesh.fundamentalQuadric().preAndPostMultiply(p) * 100
+                : nearest().fundamentalQuadric().preAndPostMultiply(p) * 100;
+            for(E e = this.e; e!=null; e=e.pair.next==this.e?null:e.pair.next) {
                 double ang = Math.abs(e.crossAngle());
                 if (ang > Math.PI) throw new Error();
+                float minangle = (float)(Math.PI * 0.8);
+                if (ang > minangle) nerror += (ang - minangle);
                 /*
-                if (e.t != null) {
-                    numaspects++;
-                    aspects += e.t.aspect()*e.t.aspect();
+                if (e.t.aspect() < 0.2) {
+                    nerror += (0.2-e.t.aspect()) * 300;
                 }
                 */
-
-                float minangle = (float)(Math.PI * 0.8);
-                if (ang > minangle)
-                    oldscore += (ang - minangle);
-
-                e = e.pair.next;
-            } while (e != this.e);
-            if (numaspects > 0) oldscore += (aspects / numaspects);
-
-            //System.out.println(oldscore);
-            //oldscore = oldscore*oldscore;
-            score += oldscore;
-        }
-
-        private void removeTrianglesFromRTree() {
-            E e = this.e;
-            do {
-                if (e.t != null) e.t.removeFromRTree();
-                e = e.pair.next;
-            } while(e != this.e);
-        }
-        private void addTrianglesToRTree() {
-            E e = this.e;
-            do {
-                if (e.t != null) e.t.addToRTree();
-                e = e.pair.next;
-            } while(e != this.e);
+            }
+            setError(nerror);
         }
 
         /** does NOT update bound pairs! */
-        public boolean transform(Matrix m) {
+        private boolean transform(Point newp, boolean ignoreProblems) {
+            this.oldp = this.p;
             if (immutableVertices) throw new Error();
+
             unApplyQuadricToNeighbor();
-            Point oldp = this.p;
-            try {
-                if (vertices.get(this.p)==null) throw new Error();
-                vertices.remove(this);
-                removeTrianglesFromRTree();
-                float newx = m.a*p.x + m.b*p.y + m.c*p.z + m.d;
-                float newy = m.e*p.x + m.f*p.y + m.g*p.z + m.h;
-                float newz = m.i*p.x + m.j*p.y + m.k*p.z + m.l;
-                this.p = new Point(newx, newy, newz);
-                addTrianglesToRTree();
-                vertices.add(this);
-            } catch (Exception e) {
-                throw new RuntimeException(e);
-            }
+            this.p = newp;
+            reinsert();
             applyQuadricToNeighbor();
 
-            // FIXME: intersection test needed?
-            good = true;
+            if (!ignoreProblems) {
+                illegal = false;
+                checkLegality();
+            }
+            for(E e = this.e; e!=null; e=e.pair.next==this.e?null:e.pair.next) e.p2.quadricStale = true;
+            return !illegal;
+        } 
 
-            // should recompute fundamental quadrics of all vertices sharing a face, but we defer...
-            E e = this.e;
-            do {
-                /*
+        public void checkLegality() {
+            for(E e = this.e; e!=null; e=e.pair.next==this.e?null:e.pair.next) {
                 if (Math.abs(e.crossAngle()) > (Math.PI * 0.9) ||
-                    Math.abs(e.next.crossAngle()) > (Math.PI * 0.9)) {
-                    good = false;
-                }
-                if (e.t.aspect() < 0.1) {
-                    good = false;
-                }
-                */
-                e.p2.quadricStale = true;
-                e = e.pair.next;
-            } while(e != this.e);
-
-
-            if (!ignorecollision && good) {
-
-                triangles.range(new Segment(oldp, this.p),
-                            new Visitor<T>() {
-                                public void visit(T t) {
-                                    if (!good) return;
-                                    E e = Vertex.this.e;
-                                    do {
-                                        if (!t.has(e.p1) && !t.has(e.p2) && e.intersects(t)) { good = false; }
-                                        if (e.t != null) {
-                                            if (!e.t.has(t.e1().p1) && !e.t.has(t.e1().p2) && t.e1().intersects(e.t)) { good = false; }
-                                            if (!e.t.has(t.e2().p1) && !e.t.has(t.e2().p2) && t.e2().intersects(e.t)) { good = false; }
-                                            if (!e.t.has(t.e3().p1) && !e.t.has(t.e3().p2) && t.e3().intersects(e.t)) { good = false; }
-                                        }
-                                        e = e.pair.next;
-                                    } while(e != Vertex.this.e);
-                                }
-                            });
-
-                /*
-                for(T t : Mesh.this) {
-                    if (!good) break;
-                    e = this.e;
-                    do {
-                        if (!t.has(e.p1) && !t.has(e.p2) && e.intersects(t)) { good = false; break; }
-                        if (e.t != null) {
-                            if (!e.t.has(t.e1().p1) && !e.t.has(t.e1().p2) && t.e1().intersects(e.t)) { good = false; break; }
-                            if (!e.t.has(t.e2().p1) && !e.t.has(t.e2().p2) && t.e2().intersects(e.t)) { good = false; break; }
-                            if (!e.t.has(t.e3().p1) && !e.t.has(t.e3().p2) && t.e3().intersects(e.t)) { good = false; break; }
-                        }
-                        e = e.pair.next;
-                    } while(e != this.e);
-                }
-                */
+                    Math.abs(e.next.crossAngle()) > (Math.PI * 0.9)) illegal = true;
+                //if (e.t.aspect() < 0.1) illegal = true;
             }
+            if (!illegal) triangles.range(oldp, this.p, (Visitor<T>)this);
+        }
 
+        public void reComputeErrorAround() {
+            reComputeError();
+            if (nearest_in_other_mesh != null)
+                nearest_in_other_mesh.reComputeError();
+            for(E e = this.e; e!=null; e=e.pair.next==this.e?null:e.pair.next)
+                e.p2.reComputeError();
+        }
 
-            reComputeErrorAround();
-            return good;
+        public boolean visit(Object o) {
+            if (o instanceof Vertex)
+                return ((Vertex)o).e != null && ((Vertex)o).norm().dot(Vertex.this.norm()) >= 0;
+            T t = (T)o;
+            if (illegal) return false;
+            for(E e = Vertex.this.e; e!=null; e=e.pair.next==Vertex.this.e?null:e.pair.next) {
+                if (!t.has(e.p1) && !t.has(e.p2) && e.intersects(t)) { illegal = true; }
+                if (e.t != null) {
+                    if (!e.t.has(t.e1().p1) && !e.t.has(t.e1().p2) && t.e1().intersects(e.t)) { illegal = true; }
+                    if (!e.t.has(t.e2().p1) && !e.t.has(t.e2().p2) && t.e2().intersects(e.t)) { illegal = true; }
+                    if (!e.t.has(t.e3().p1) && !e.t.has(t.e3().p2) && t.e3().intersects(e.t)) { illegal = true; }
+                }
+            }
+            return !illegal;
         }
-        private boolean good;
 
-        public boolean move(Vec v) {
-            Matrix m = Matrix.translate(v);
-            Vertex p = this;
+        public boolean move(Matrix m, boolean ignoreProblems) {
             boolean good = true;
-            do {
-                good &= p.transform(m);
-                p = p.bound_to;
-            } while (p != this);
+            for(Vertex p = this; p != null; p = (p.bound_to==this)?null:p.bound_to)
+                good &= p.transform(m.times(p.p), ignoreProblems);
+            for(Vertex p = this; p != null; p = (p.bound_to==this)?null:p.bound_to)
+                if (good || ignoreProblems)  p.reComputeErrorAround();
+                else                         p.transform(p.oldp, true);
             return good;
         }
 
         public E getFreeIncident() {
             E ret = getFreeIncident(e, e);
             if (ret != null) return ret;
-            ret = getFreeIncident(e.pair.next, e.pair.next);
-            if (ret == null) {
-                E ex = e;
-                do {
-                    System.out.println(ex + " " + ex.t);
-                    ex = ex.pair.next;
-                } while (ex != e);
-                throw new Error("unable to find free incident to " + this);
-            }
-            return ret;
+            for(E e = this.e; e!=null; e=e.pair.next==this.e?null:e.pair.next)
+                System.out.println(e + " " + e.t);
+            throw new Error("unable to find free incident to " + this);
         }
 
         public E getFreeIncident(E start, E before) {
-            E e = start;
-            do {
-                if (e.pair.p2 == this && e.pair.t == null && e.pair.next.t == null) return e.pair;
-                e = e.pair.next;
-            } while(e != before);
+            for(E e = start; e!=null; e=e.pair.next==before?null:e.pair.next)
+                if (e.pair.p2 == this && e.pair.t == null && e.pair.next.t == null)
+                    return e.pair;
             return null;
         }
 
@@ -397,33 +238,30 @@ public class Mesh implements Iterable<Mesh.T> {
             return getE(v);
         }
         public E getE(Vertex p2) {
-            E e = this.e;
-            do {
-                if (e==null) return null;
+            for(E e = this.e; e!=null; e=e.pair.next==this.e?null:e.pair.next)
                 if (e.p1 == this && e.p2 == p2) return e;
-                e = e.pair.next;
-            } while (e!=this.e);
             return null;
         }
 
+        private void glNormal(GL gl) {
+            Vec norm = norm();
+            gl.glNormal3f(norm.x, norm.y, norm.z);
+        }
         public Vec norm() {
             Vec norm = new Vec(0, 0, 0);
-            E e = this.e;
-            do {
-                if (e.t != null) norm = norm.plus(e.t.norm().times((float)e.prev.angle()));
-                e = e.pair.next;
-            } while(e != this.e);
+            for(E e = this.e; e!=null; e=e.pair.next==this.e?null:e.pair.next)
+                if (e.t != null)
+                    norm = norm.plus(e.t.norm().times((float)e.prev.angle()));
             return norm.norm();
         }
 
         public boolean isBoundTo(Vertex p) {
-            Vertex px = p;
-            do {
-                if (px==this) return true;
-                px = px.bound_to;
-            } while(px != p);
+            for(Vertex px = p; px!=null; px=(px.bound_to==p?null:px.bound_to))
+                if (px==this)
+                    return true;
             return false;
         }
+
         public void unbind() { bound_to = this; binding = Matrix.ONE; }
         public void bind(Vertex p) { bind(p, Matrix.ONE); }
         public void bind(Vertex p, Matrix binding) {
@@ -491,21 +329,18 @@ public class Mesh implements Iterable<Mesh.T> {
 
         public boolean intersects(T t) { return t.intersects(p1.p, p2.p); }
         public float comparator() {
-            Vertex nearest = score_against.nearest(midpoint());
-            //if (t==null) return length();
-            /*
-            double ang = Math.abs(crossAngle());
-            float minangle = (float)(Math.PI * 0.9);
-            if (ang > minangle)
-                return 300;
-            */
             /*
-            if ((length() * length()) / t.area() > 10)
-                return (float)(length()*Math.sqrt(t.area()));
-            return length()*t.area();
+            Vertex nearest = error_against.nearest(midpoint());
+            //return (float)Math.max(length(), midpoint().distance(nearest.p));
+            //return length();
+            float nearest_distance = midpoint().distance(nearest.p);
+            float other_distance =
+                (p1.p.distance(error_against.nearest(p1.p).p)+
+                 p2.p.distance(error_against.nearest(p2.p).p))/2;
+            return nearest_distance/other_distance;
             */
-            return (float)Math.max(length(), midpoint().distance(nearest.p));
             //return length();
+            return t==null?0:(1/t.aspect());
         }
         public int compareTo(E e) {
             return e.comparator() > comparator() ? 1 : -1;
@@ -705,18 +540,12 @@ public class Mesh implements Iterable<Mesh.T> {
         return ret;
     }
 
-
     /** [UNIQUE] a triangle (face) */
     public final class T extends Triangle {
         public final E e1;
         public final int color;
         public final int colorclass;
 
-        public void removeFromRTree() { triangles.remove(this); }
-        public void addToRTree() { triangles.insert(this); }
-
-        public void destroy() { triangles.remove(this); }
-
         T(E e1, int colorclass) {
             this.e1 = e1;
             E e2 = e1.next;
@@ -754,6 +583,11 @@ public class Mesh implements Iterable<Mesh.T> {
         public boolean hasE(E e) { return e1==e || e1.next==e || e1.prev==e; }
         public boolean has(Vertex v) { return v1()==v || v2()==v || v3()==v; }
 
+        public void removeFromRTree() { triangles.remove(this); }
+        public void addToRTree() { triangles.insert(this); }
+        public void destroy() { triangles.remove(this); }
+        public void reinsert() { triangles.remove(this); triangles.add(this); }
+
         public boolean shouldBeDrawn() {
             if (e1().bind_to.set.size() == 0) return false;
             if (e2().bind_to.set.size() == 0) return false;