X-Git-Url: http://git.megacz.com/?p=anneal.git;a=blobdiff_plain;f=src%2FGeom.java;h=9cc1a4c2d1be769955040c238c64cb8bee9ce058;hp=dafdfa268e1372a1d26fa7a6a6b58d82fe2d608d;hb=2b22e6b0af24d1f81ced5f19ff6a742f60187d4e;hpb=ae06bf5a432c0ac822e2fab6e977b299fb3d5cf3 diff --git a/src/Geom.java b/src/Geom.java index dafdfa2..9cc1a4c 100644 --- a/src/Geom.java +++ b/src/Geom.java @@ -4,223 +4,809 @@ import java.awt.event.*; import javax.swing.*; import javax.media.opengl.*; import javax.media.opengl.glu.*; +import edu.wlu.cs.levy.CG.KDTree; public class Geom implements Iterable { - public static float EPSILON = (float)0.000001; + private KDTree kd = new KDTree(3); - private HashMap ps = new HashMap(); - private HashMap es = new HashMap(); - private HashSet ts = new HashSet(); + public static float EPSILON = (float)0.0001; + public static Random random = new Random(); + + private HashMap ps = new HashMap(); + public HashSet es = new HashSet(); + public ArrayList ts = new ArrayList(); public Iterator iterator() { return ts.iterator(); } - public P newP(float x, float y, float z) { - P p = new P(x, y, z); - P p2 = ps.get(p); - if (p2 != null) return p2; - ps.put(p,p); - return p; + public P origin() { return newP(0, 0, 0); } + + public Geom score_against = null; + public double score = 0; + public float score() { + return (float)score; + } + + public float rescore() { + int num = 0; + double dist = 0; + HashSet done = new HashSet(); + for(T t : ts) + for(V p : new V[] { t.p1(), t.p2(), t.p3() }) { + if (done.contains(p)) continue; + done.add(p); + p.rescore(); + } + for(T t : ts) + for(V p : new V[] { t.p1(), t.p2(), t.p3() }) + p.kdremove(); + kd = new KDTree(3); + for(T t : ts) + for(V p : new V[] { t.p1(), t.p2(), t.p3() }) + p.kdinsert(); + return (float)(dist/num); + } + + public void transform(M m) { + ArrayList set = new ArrayList(); + set.addAll(ps.values()); + for(V v : set) v.transform(m); } + + public Vec diagonal() { + float min_x = Float.MAX_VALUE; + float min_y = Float.MAX_VALUE; + float min_z = Float.MAX_VALUE; + float max_x = Float.MIN_VALUE; + float max_y = Float.MIN_VALUE; + float max_z = Float.MIN_VALUE; + for(P p : ps.keySet()) { + if (p.x < min_x) min_x = p.x; + if (p.y < min_y) min_y = p.y; + if (p.z < min_z) min_z = p.z; + if (p.x > max_x) max_x = p.x; + if (p.y > max_y) max_y = p.y; + if (p.z > max_z) max_z = p.z; + } + return new Vec(max_x - min_x, max_y - min_y, max_z - min_z); + } + + public P centroid() { + float min_x = Float.MAX_VALUE; + float min_y = Float.MAX_VALUE; + float min_z = Float.MAX_VALUE; + float max_x = Float.MIN_VALUE; + float max_y = Float.MIN_VALUE; + float max_z = Float.MIN_VALUE; + for(P p : ps.keySet()) { + if (p.x < min_x) min_x = p.x; + if (p.y < min_y) min_y = p.y; + if (p.z < min_z) min_z = p.z; + if (p.x > max_x) max_x = p.x; + if (p.y > max_y) max_y = p.y; + if (p.z > max_z) max_z = p.z; + } + return new P((float)(max_x + min_x)/2, + (float)(max_y + min_y)/2, + (float)(max_z + min_z)/2); + } + + public P newP(double x, double y, double z) { return newP((float)x, (float)y, (float)z); } + public P newP(float x, float y, float z) { return new P(x, y, z); } - public E newE(P p1, P p2) { - E e = new E(p1, p2); - E e2 = es.get(e); - if (e2 != null) return e2; - es.put(e,e); - return e; - } - - /** ensures that e1.cross(e2).norm()==e2.cross(e3).norm()==e3.cross(e1).norm()==t.norm() */ - public T newT(E e1, E e2, E e3, V norm) { - P p12 = e1.shared(e2); - P p23 = e2.shared(e3); - P p31 = e3.shared(e1); - V norm2 = p31.minus(p12).cross(p23.minus(p12)); + public T newT(V p12, V p23, V p31, Vec norm) { + Vec norm2 = p31.minus(p12).cross(p23.minus(p12)); float dot = norm.dot(norm2); - if (Math.abs(dot) < EPSILON) throw new Error("dot products within epsilon of each other: "+norm+" "+norm2); - if (dot < 0) { E t = e1; e1 = e3; e2 = e2; e3 = t; } - if (e1.t1 != null && e1.t1.hasE(e1) && e1.t1.hasE(e2) && e1.t1.hasE(e3)) return e1.t1; - if (e1.t2 != null && e1.t2.hasE(e1) && e1.t2.hasE(e2) && e1.t2.hasE(e3)) return e1.t2; - if (e2.t1 != null && e2.t1.hasE(e1) && e2.t1.hasE(e2) && e2.t1.hasE(e3)) return e2.t1; - if (e2.t2 != null && e2.t2.hasE(e1) && e2.t2.hasE(e2) && e2.t2.hasE(e3)) return e2.t2; - if (e3.t1 != null && e3.t1.hasE(e1) && e3.t1.hasE(e2) && e3.t1.hasE(e3)) return e3.t1; - if (e3.t2 != null && e3.t2.hasE(e1) && e3.t2.hasE(e2) && e3.t2.hasE(e3)) return e3.t2; - T ret = new T(e1, e2, e3); - ts.add(ret); + //if (Math.abs(dot) < EPSILON) throw new Error("dot products within epsilon of each other: "+norm+" "+norm2); + if (dot < 0) { V p = p12; p12=p23; p23 = p; } + return newT(p12, p23, p31); + } + + + public float volume() { + double total = 0; + for(T t : ts) { + double area = t.area(); + Vec origin_to_centroid = new Vec(newP(0, 0, 0), t.centroid()); + boolean facingAway = t.norm().dot(origin_to_centroid) > 0; + double height = Math.abs(t.norm().dot(origin_to_centroid)); + total += ((facingAway ? 1 : -1) * area * height) / 3.0; + } + return (float)total; + } + + public P nearest(P p) { + Object[] results; + try { results = kd.nearest(new double[]{p.x,p.y,p.z},1); } catch (Exception e) { throw new Error(e); } + return (P)results[0]; + } + + public T newT(V p1, V p2, V p3) { + p1 = p1.register(); + p2 = p2.register(); + p3 = p3.register(); + E e12 = p1.makeE(p2); + E e23 = p2.makeE(p3); + E e31 = p3.makeE(p1); + while(e12.next != e23 || e23.next != e31 || e31.next != e12) { + e12.makeAdjacent(e23); + e23.makeAdjacent(e31); + e31.makeAdjacent(e12); + } + T ret = e12.makeT(); + if (e12.t == null) throw new Error(); + if (e23.t == null) throw new Error(); + if (e31.t == null) throw new Error(); return ret; } - /** [UNIQUE] point in 3-space */ - public final class P { - public final float x, y, z; - private T t = null; // any of the triangles incident at this point - public P(float x, float y, float z) { this.x = x; this.y = y; this.z = z; } - public V minus(P p) { return new V(x-p.x, y-p.y, z-p.z); } - public P plus(V v) { return newP(x+v.x, y+v.y, z+v.z); } - public boolean equals(Object o) { - if (o==null || !(o instanceof P)) return false; - P p = (P)o; - return p.x==x && p.y==y && p.z==z; + public final class V extends P { + public P p = this; + public V(P p) { + super(p.x, p.y, p.z); + if (ps.get(p) != null) throw new Error(); + this.p = p; + ps.put(this.p, this); } + /* + public int hashCode() { + throw new Error(); + } + */ + public void kdremove() { + if (!inserted) return; + inserted = false; + try { kd.delete(new double[]{p.x,p.y,p.z}); } catch (Exception e) { } + } + public void kdinsert() { + if (inserted) return; + inserted = true; + try { kd.insert(new double[]{p.x,p.y,p.z},this); } catch (Exception e) { throw new Error(e); } + } + + public float score() { return oldscore; } + public void unscore() { + if (watch == null) return; + watch.watch_x -= x; + watch.watch_y -= y; + watch.watch_z -= z; + watch.watch_count--; + if (watch.watch_count==0) { + watch.watch_x = 0; + watch.watch_y = 0; + watch.watch_z = 0; + } + watch = null; + } + public V partner() { return watch==null ? this : watch; } + public V watchback() { return watch_count==0 ? partner() : + newP(watch_x/watch_count, watch_y/watch_count, watch_z/watch_count).register(); } + public void rescore() { + if (score_against == null) return; + + score -= oldscore; + oldscore = 0; + + if (watch != null) unscore(); + V po = this; + if (watch == null) { + watch = (V)score_against.nearest(po); + + // don't attract to vertices that face the other way + if (watch.norm().dot(norm()) < 0) { + watch = null; + } else { + watch.watch_x += po.x; + watch.watch_y += po.y; + watch.watch_z += po.z; + watch.watch_count++; + } + } + + double s1, s2; + if (watch_count==0) s1 = 0; + else s1 = this.distance(watch_x/watch_count, watch_y/watch_count, watch_z/watch_count); + s2 = watch==null ? 0 : po.distance(watch); + oldscore = (float)(s1 + s2); + score += oldscore; + } + + + /** does NOT update bound pairs! */ + public boolean transform(M m) { + // FIXME: screws up kdtree + // FIXME: screws up hashmap + unscore(); + try { + if (ps.get(this.p)==null) throw new Error(); + ps.remove(this.p); + float newx = m.a*p.x + m.b*p.y + m.c*p.z + m.d; + float newy = m.e*p.x + m.f*p.y + m.g*p.z + m.h; + float newz = m.i*p.x + m.j*p.y + m.k*p.z + m.l; + this.x = newx; + this.y = newy; + this.z = newz; + this.p = new P(newx, newy, newz); + // FIXME: what if we move onto exactly where another point is? + ps.put(this.p,(V)this); + } catch (Exception e) { + throw new RuntimeException(e); + } + rescore(); + boolean good = true; + /* + for(T t : ts) { + for(E e = this.e; ;) { + if (e.intersects(t)) { good = false; break; } + e = e.pair.next; + if (e == this.e) break; + } + } + */ + /* + if (t==this.t) continue; + if (this.intersects(t)) good = false; + } + */ + return good; + } + public boolean move(Vec v) { + M m = new M(v); + V p = this; + boolean good = true; + do { + good &= p.transform(m); + v = v.times(binding); // bleh wrong + p = p.bound_to; + } while (p != this); + return good; + } + + public E makeE(V p2) { + E e = getE(p2); + if (e != null) return e; + e = p2.getE(this); + if (this.e == null && p2.e == null) return this.e = new E(this, p2); + if (this.e == null && p2.e != null) return p2.makeE(this).pair; + return new E(getFreeIncident(), p2); + } + + public E getFreeIncident() { + E ret = getFreeIncident(e, e); + if (ret != null) return ret; + ret = getFreeIncident(e.pair.next, e.pair.next); + if (ret == null) throw new Error("unable to find free incident to " + this); + return ret; + } + + public E getFreeIncident(E start, E before) { + E e = start; + do { + if (e.pair.p2 == this && e.pair.t == null && e.pair.next.t == null) return e.pair; + e = e.pair.next; + } while(e != before); + return null; + } + + public E getE(V p2) { + p2 = p2.register(); + E e = this.e; + do { + if (e==null) return null; + if (e.p1 == this && e.p2 == p2) return e; + e = e.pair.next; + } while (e!=this.e); + return null; + } + + public boolean isBoundTo(V p) { + p = p.register(); + V px = p; + do { + if (px==this) return true; + px = px.bound_to; + } while(px != p); + return false; + } + + public void unbind() { bound_to = this; binding = new M(); } + public void bind(V p) { bind(p, new M()); } + public void bind(V p, M binding) { + p = p.register(); + if (isBoundTo(p)) return; + V temp_bound_to = p.bound_to; + M temp_binding = p.binding; + p.bound_to = this.bound_to; + p.binding = binding.times(this.binding); // FIXME: may have order wrong here + this.bound_to = temp_bound_to; + this.binding = temp_binding.times(temp_binding); // FIXME: may have order wrong here + } + public Vec norm() { + Vec norm = new Vec(0, 0, 0); + E e = this.e; + do { + if (e.t != null) norm = norm.plus(e.t.norm().times((float)e.prev.angle())); + e = e.pair.next; + } while(e != this.e); + return norm.norm(); + } + V bound_to = this; + + int watch_count; + float watch_x; + float watch_y; + float watch_z; + V watch; + E e; // some edge *leaving* this point + M binding = new M(); + float oldscore = 0; + boolean inserted = false; + } + + public class P { + float x, y, z; + public P(float x, float y, float z) { this.x = x; this.y = y; this.z = z; } + public float distance(P p) { return distance(p.x, p.y, p.z); } + public float distance(float ox, float oy, float oz) { return (float)Math.sqrt((x-ox)*(x-ox)+(y-oy)*(y-oy)+(z-oz)*(z-oz)); } + public V register() { V v = ps.get(this); return v==null ? new V(this) : v; } + public P times(M m) { return m.times(this); } + public Vec minus(P p) { return new Vec(x-p.x, y-p.y, z-p.z); } + public P plus(Vec v) { return newP(x+v.x, y+v.y, z+v.z); } + public boolean equals(Object o) { return o!=null && (o instanceof P) && ((P)o).x==x && ((P)o).y==y && ((P)o).z==z; } + public void glVertex(GL gl) { _glVertex(gl); } + private void _glVertex(GL gl) { gl.glVertex3f(x, y, z); } + public String toString() { return "("+x+","+y+","+z+")"; } + // FIXME: moving a point alters its hashCode public int hashCode() { return Float.floatToIntBits(x) ^ Float.floatToIntBits(y) ^ Float.floatToIntBits(z); } - public void glVertex(GL gl) { gl.glVertex3f(x, y, z); } - public String toString() { return "("+x+","+y+","+z+")"; } - public V norm() { - if (t==null) throw new Error("attempt to get vertex normal for point which does not belong to any triangles"); - T ti = t; - V norm = new V(0, 0, 0); - do { - norm = norm.plus(ti.norm().times((float)ti.angle(this))); - ti = ti.nextT(this); - } while(ti != t); - return norm.norm(); - } } /** vector in 3-space */ - public final class V { - private final float x, y, z; - public V(float x, float y, float z) { this.x = x; this.y = y; this.z = z; } - public V cross(V v) { return new V(y*v.z-z*v.y, z*v.x-x*v.z, x*v.y-y*v.x); } - public V plus(V v) { return new V(x+v.x, y+v.y, z+v.z); } - public V norm() { float m = mag(); return new V(x/m, y/m, z/m); } + public final class Vec { + public final float x, y, z; + public Vec(double x, double y, double z) { this((float)x, (float)y, (float)z); } + public Vec(float x, float y, float z) { this.x = x; this.y = y; this.z = z; } + public Vec(P p1, P p2) { this(p2.x-p1.x, p2.y-p1.y, p2.z-p1.z); } + public Vec cross(Vec v) { return new Vec(y*v.z-z*v.y, z*v.x-x*v.z, x*v.y-y*v.x); } + public Vec plus(Vec v) { return new Vec(x+v.x, y+v.y, z+v.z); } + public Vec norm() { return mag()==0 ? this : div(mag()); } + public Vec times(M m) { return m.apply(this); } public float mag() { return (float)Math.sqrt(x*x+y*y+z*z); } - public float dot(V v) { return x*v.x + y*v.y + z*v.z; } - public V times(float mag) { return new V(x*mag, y*mag, z*mag); } + public float dot(Vec v) { return x*v.x + y*v.y + z*v.z; } + public Vec times(float mag) { return new Vec(x*mag, y*mag, z*mag); } + public Vec div(float mag) { return new Vec(x/mag, y/mag, z/mag); } public String toString() { return "<"+x+","+y+","+z+">"; } } + public class BindingGroup { + public HashSet es = new HashSet(); + public BindingGroup() { } + public BindingGroup(E e) { + es.add(e); + } + public void add(E e) { + if (e.bg != null) { merge(e.bg); return; } + es.add(e); + e.bg = this; + } + public void merge(BindingGroup bg) { + for(E e : bg.es) { + e.bg = null; + add(e); + } + } + } + /** [UNIQUE] an edge */ - public final class E { - public final P p1, p2; - T t1, t2; - public E(P p1, P p2) { + public final class E implements Comparable { + + public boolean intersects(T t) { + double A0=t.p1().x, A1=t.p1().y, A2=t.p1().z; + double B0=t.p2().x, B1=t.p2().y, B2=t.p2().z; + double C0=t.p3().x, C1=t.p3().y, C2=t.p3().z; + double j0=p1.x, j1=p1.y, j2=p1.z; + double k0=p2.x, k1=p2.y, k2=p2.z; + double J0, J1, J2; + double K0, K1, K2; + double i0, i1, i2; + double a0, a1, a2; + double b0, b1, b2; + double c0, c1, c2; + double in_det; + double R00, R01, R02, R03, + R10, R11, R12, R13, + R20, R21, R22, R23, + R30, R31, R32, R33; + + + /* a = B - A */ + a0 = B0 - A0; + a1 = B1 - A1; + a2 = B2 - A2; + /* b = C - B */ + b0 = C0 - A0; + b1 = C1 - A1; + b2 = C2 - A2; + /* c = a × b */ + c0 = a1 * b2 - a2 * b1; + c1 = a2 * b0 - a0 * b2; + c2 = a0 * b1 - a1 * b0; + + /* M^(-1) = (1/det(M)) * adj(M) */ + in_det = 1 / (c0 * c0 + c1 * c1 + c2 * c2); + R00 = (b1 * c2 - b2 * c1) * in_det; + R01 = (b2 * c0 - b0 * c2) * in_det; + R02 = (b0 * c1 - b1 * c0) * in_det; + R10 = (c1 * a2 - c2 * a1) * in_det; + R11 = (c2 * a0 - c0 * a2) * in_det; + R12 = (c0 * a1 - c1 * a0) * in_det; + R20 = (c0) * in_det; + R21 = (c1) * in_det; + R22 = (c2) * in_det; + + /* O = M^(-1) * A */ + R03 = -(R00 * A0 + R01 * A1 + R02 * A2); + R13 = -(R10 * A0 + R11 * A1 + R12 * A2); + R23 = -(R20 * A0 + R21 * A1 + R22 * A2); + + /* fill in last row of 4x4 matrix */ + R30 = R31 = R32 = 0; + R33 = 1; + + J2 = R20 * j0 + R21 * j1 + R22 * j2 + R23; + K2 = R20 * k0 + R21 * k1 + R22 * k2 + R23; + if (J2 * K2 >= 0) return false; + + J0 = R00 * j0 + R01 * j1 + R02 * j2 + R03; + K0 = R00 * k0 + R01 * k1 + R02 * k2 + R03; + i0 = J0 + J2 * ((K0 - J0) / (J2 - K2)); + if (i0 < 0 || i0 > 1) return false; + + J1 = R10 * j0 + R11 * j1 + R12 * j2 + R13; + K1 = R10 * k0 + R11 * k1 + R12 * k2 + R13; + i1 = J1 + J2 * ((K1 - J1) / (J2 - K2)); + if (i1 < 0 || i1 > 1 || i0 + i1 > 1) return false; + + return true; + } + + public int compareTo(E e) { + return e.length() > length() ? 1 : -1; + } + + public final V p1, p2; + T t; // triangle to our "left" + E prev; // previous half-edge + E next; // next half-edge + E pair; // partner half-edge + + + public BindingGroup bg = new BindingGroup(this); + + public void bind(E e) { bind(e, new M()); } + public void bind(E e, M m) { e.bg.add(this); } + + public void dobind() { + if (bg==null) return; + for(E ex : bg.es) { + if (ex==this) continue; + p1.bind(ex.p1); + p2.bind(ex.p2); + } + } + + boolean shattered = false; + public V shatter() { return shatter(midpoint().register(), null, null); } + public V shatter(V mid, BindingGroup bg1, BindingGroup bg2) { + mid = mid.register(); + if (shattered) return mid; + shattered = true; + + V r = next.p2; + E next = this.next; + E prev = this.prev; + + if (bg1==null) bg1 = new BindingGroup(); + if (bg2==null) bg2 = new BindingGroup(); + for(E e : bg.es) e.shatter(e.midpoint().register(), bg1, bg2); + pair.shatter(); + destroy(); + + newT(r, p1, mid); + newT(r, mid, p2); + bg1.add(p1.getE(mid)); + bg2.add(mid.getE(p2)); + return mid; + } + + public boolean destroyed = false; + public void destroy() { + if (destroyed) return; + destroyed = true; + pair.destroyed = true; + if (next.t != null) next.t.destroy(); + if (prev.t != null) prev.t.destroy(); + if (pair.next.t != null) ts.remove(pair.next.t); + if (pair.prev.t != null) ts.remove(pair.prev.t); + next.t = null; + prev.t = null; + pair.next.t = null; + pair.prev.t = null; + this.bg = null; + pair.bg = null; + pair.prev.next = next; + next.prev = pair.prev; + prev.next = pair.next; + pair.next = prev; + if (p1.e == this) p1.e = prev.next; + if (pair.p1.e == pair) pair.p1.e = pair.prev.next; + es.remove(this); + es.remove(pair); + avgedge -= this.length(); + avgedge -= pair.length(); + numedges--; + numedges--; + } + + private void sync() { + this.prev.next = this; + this.next.prev = this; + this.pair.pair = this; + if (this.next.p1 != p2) throw new Error(); + if (this.prev.p2 != p1) throw new Error(); + if (this.p1.e == null) this.p1.e = this; + es.add(this); + if (!added) { + added = true; + numedges++; + avgedge += length(); + } + } + private boolean added = false; + + public T makeT() { return t==null ? (t = new T(this)) : t; } + + /** angle between this half-edge and the next */ + public double angle() { + Vec v1 = next.p2.minus(p2); + Vec v2 = this.p1.minus(p2); + return Math.acos(v1.norm().dot(v2.norm())); + } + + public void makeAdjacent(E e) { + if (this.next == e) return; + if (p2 != e.p1) throw new Error("cannot make adjacent -- no shared vertex"); + if (t != null || e.t != null) throw new Error("cannot make adjacent -- edges not both free"); + + E freeIncident = p2.getFreeIncident(e, this); + + e.prev.next = freeIncident.next; + freeIncident.next.prev = e.prev; + + freeIncident.next = this.next; + this.next.prev = freeIncident; + + this.next = e; + e.prev = this; + + sync(); + freeIncident.sync(); + } + + /** creates an isolated edge out in the middle of space */ + public E(V p1, V p2) { + p1 = p1.register(); + p2 = p2.register(); if (p1==p2) throw new Error("attempt to create edge with single vertex: " + p1); this.p1 = p1; this.p2 = p2; + this.prev = this.next = this.pair = new E(this, this, this); + sync(); } - public int hashCode() { return p1.hashCode() ^ p2.hashCode(); } - public float length() { return p1.minus(p2).mag(); } - public boolean equals(Object o) { - if (o==null || !(o instanceof E)) return false; - E e = (E)o; - if (this.p1 == e.p1 && this.p2 == e.p2) return true; - if (this.p2 == e.p1 && this.p1 == e.p2) return true; - return false; - } - public P shared(E e) { - if (p1==e.p1) return p1; - if (p1==e.p2) return p1; - if (p2==e.p1) return p2; - if (p2==e.p2) return p2; - throw new Error("no shared vertex in shared()"); - } - public P unshared(E e) { - if (p1==e.p1) return p2; - if (p1==e.p2) return p2; - if (p2==e.p1) return p1; - if (p2==e.p2) return p1; - throw new Error("no shared vertex in unshared()"); + + /** adds a new half-edge from prev.p2 to p2 */ + public E(E prev, V p2) { + p2 = p2.register(); + this.p1 = prev.p2; + this.p2 = p2; + this.prev = prev; + if (p2.getE(p1) != null) throw new Error(); + if (p2.e==null) { + this.next = this.pair = new E(this, this, prev.next); + } else { + E q = p2.getFreeIncident(); + this.next = q.next; + this.next.prev = this; + E z = prev.next; + this.prev.next = this; + this.pair = new E(q, this, z); + } + sync(); } - public T other(T t) { - if (t1==t) return t2; - if (t2==t) return t1; - throw new Error("edge " + this + " does not own triangle " + t); + + /** adds a new half-edge to the mesh with a given predecessor, successor, and pair */ + public E(E prev, E pair, E next) { + this.p1 = prev.p2; + this.p2 = next.p1; + this.prev = prev; + this.next = next; + this.pair = pair; + sync(); } - public P other(P p) { - if (p==p1) return p2; - if (p==p2) return p1; - throw new Error("edge " + this + " does not own point " + p); + public P midpoint() { return newP((p1.x+p2.x)/2, (p1.y+p2.y)/2, (p1.z+p2.z)/2).register(); } + public boolean has(P p) { + p = p.register(); + return p==p1 || p==p2; } + public float length() { return p1.minus(p2).mag(); } + public String toString() { return p1+"->"+p2; } } /** [UNIQUE] a triangle (face) */ public final class T { - public final E e1, e2, e3; - T(E e1, E e2, E e3) { - if (e1.p1.t==null) e1.p1.t = this; - if (e1.p2.t==null) e1.p2.t = this; - if (e2.p1.t==null) e2.p1.t = this; - if (e2.p2.t==null) e2.p2.t = this; - if (e3.p1.t==null) e3.p1.t = this; - if (e3.p2.t==null) e3.p2.t = this; - if (e1==e2) throw new Error("attempt to create triangle with duplicate edge: " + e1); - if (e2==e3) throw new Error("attempt to create triangle with duplicate edge: " + e2); - if (e3==e1) throw new Error("attempt to create triangle with duplicate edge: " + e3); - // check that each pair of edges shares a vertex - e1.shared(e2); - e2.shared(e3); - e3.shared(e1); + public final E e1; + public final int color; + + public void destroy() { + ts.remove(this); + } + + public P nearest(P p) { + float d1 = p1().distance(p); + float d2 = p2().distance(p); + float d3 = p3().distance(p); + if (d1 < d2 && d1 < d3) return p1(); + if (d2 < d3) return p2(); + return p3(); + } + + T(E e1) { this.e1 = e1; - this.e2 = e2; - this.e3 = e3; - // FEATURE: colinearity/sliverness check? - if (e1.t1 == null) e1.t1 = this; else if (e1.t2 == null) e1.t2 = this; else throw new Error("non-manifold surface"); - if (e2.t1 == null) e2.t1 = this; else if (e2.t2 == null) e2.t2 = this; else throw new Error("non-manifold surface"); - if (e3.t1 == null) e3.t1 = this; else if (e3.t2 == null) e3.t2 = this; else throw new Error("non-manifold surface"); - // FIXME: check that triangles we share an edge with agree on the direction of the normal vector - // FIXME: check for sealed/watertight surface once construction is complete (an infer normal(s)?) - } - public V norm() { - P p1 = e1.shared(e2); - P p2 = e2.shared(e3); - P p3 = e3.shared(e1); - return p2.minus(p1).cross(p3.minus(p1)).norm(); - } - public boolean hasE(E e) { return e1==e || e2==e || e3==e; } + E e2 = e1.next; + E e3 = e2.next; + if (e1==e2 || e1==e3) throw new Error(); + if (e3.next!=e1) throw new Error(); + if (e1.t!=null || e2.t!=null || e3.t!=null) + throw new Error("non-manifold surface or disagreeing normals"); + e1.t = this; + e1.next.t = this; + e1.next.next.t = this; + + // FIXME: check for sealed/watertight surface once construction is complete (and infer normal(s)?) + + int color = Math.abs(random.nextInt()); + while(true) { + color = color % 4; + if (e1().pair.t != null && color == e1().pair.t.color) { color++; continue; } + if (e2().pair.t != null && color == e2().pair.t.color) { color++; continue; } + if (e3().pair.t != null && color == e3().pair.t.color) { color++; continue; } + break; + } + + // FIXME unnecssary + ts.add(this); + p1().kdinsert(); + p2().kdinsert(); + p3().kdinsert(); + + this.color = color; + } + public V p1() { return e1.p1; } + public V p2() { return e1.p2; } + public V p3() { return e1.next.p2; } + public E e1() { return e1; } + public E e2() { return e1.next; } + public E e3() { return e1.prev; } + public Vec norm() { return p2().minus(p1()).cross(p3().minus(p1())).norm(); } + public boolean hasE(E e) { return e1==e || e1.next==e || e1.prev==e; } + public boolean has(P p) { return p1()==p || p2()==p || p3()==p; } + + public float area() { + return (float)Math.abs(0.5 * e1().length() * new Vec(p1(), p2()).norm().dot(new Vec(p2(), p3()))); + } + public void glVertices(GL gl) { p1().glVertex(gl); p2().glVertex(gl); p3().glVertex(gl); } - public P p1() { return e1.shared(e2); } - public P p2() { return e1.shared(e3); } - public P p3() { return e3.shared(e2); } + public P centroid() { return newP((p1().x+p2().x+p3().x)/3, (p1().y+p2().y+p3().y)/3, (p1().z+p2().z+p3().z)/3); } public float diameter() { // FIXME: what is this supposed to be? - return Math.max(Math.max(e1.length(), e2.length()), e3.length()) / 2; + return Math.max(Math.max(e1().length(), e2().length()), e3().length()) / 2; } - /** returns the next triangle walking clockwise around the vertex normal */ - public T nextT(P p) { return prevE(p).other(this); } - public T prevT(P p) { return nextE(p).other(this); } - /** edge "after" this point, moving clockwise around the normal */ - public E nextE(P p) { - if (p == e1.shared(e2)) return e1; - else if (p == e2.shared(e3)) return e2; - else if (p == e3.shared(e1)) return e3; - else throw new Error("triangle " + this + " does not own point " + p); - } + } + - /** edge "before" this point, moving clockwise around the normal */ - public E prevE(P p) { - if (p == e1.shared(e2)) return e2; - else if (p == e2.shared(e3)) return e3; - else if (p == e3.shared(e1)) return e1; - else throw new Error("triangle " + this + " does not own point " + p); + /** matrix */ + public class M { + // + // [ a b c d ] [ x ] + // [ e f g h ] [ y ] + // [ i j k l ] [ z ] + // [ 0 0 0 1 ] [ 1 ] + // + public final float a, b, c, d, e, f, g, h, i, j, k, l; + public M() { this(1); } + public M(float scale) { + a = f = k = scale; + l = h = d = e = b = i = c = j = g = 0; + } + public M(float scalex, float scaley, float scalez) { + a = scalex; + f = scaley; + k = scalez; + l = h = d = e = b = i = c = j = g = 0; + } + public M(Vec translate) { + d = translate.x; h = translate.y; l = translate.z; + a = f = k = 1; + b = c = e = g = i = j = 0; + } + public M(float a, float b, float c, float d, float e, float f, float g, float h, float i, float j, float k, float l) { + this.a = a; this.b = b; this.c = c; this.d = d; this.e = e; this.f = f; this.g = g; this.h = h; this.i = i; + this.j = j; this.k = k; this.l = l; + } + public M times(float x) { + return new M(a*x, b*x, c*x, d*x, e*x, f*x, g*x, h*x, i*x, j*x, k*x, l*x); + } + public M(Vec axis, float angle) { + double q = Math.cos(angle); + double s = Math.sin(angle); + double t = 1.0 - q; + a = (float)(q + axis.x*axis.x*t); + f = (float)(q + axis.y*axis.y*t); + k = (float)(q + axis.z*axis.z*t); + double tmp1 = axis.x*axis.y*t; + double tmp2 = axis.z*s; + e = (float)(tmp1 + tmp2); + b = (float)(tmp1 - tmp2); + tmp1 = axis.x*axis.z*t; + tmp2 = axis.y*s; + i = (float)(tmp1 - tmp2); + c = (float)(tmp1 + tmp2); + tmp1 = axis.y*axis.z*t; + tmp2 = axis.x*s; + j = (float)(tmp1 + tmp2); + g = (float)(tmp1 - tmp2); + d = h = l = 0; } + public P times(P p) { + return newP(a*p.x + b*p.y + c*p.z + d, + e*p.x + f*p.y + g*p.z + h, + i*p.x + j*p.y + k*p.z + l); + } + public P apply(P p) { return p; } + public Vec apply(Vec v) { return v; } + public M invert() { return this; } + public M times(M m) { return this; } + } - /** returns the angle at point p */ - public double angle(P p) { - V v1 = firstEdge(p).other(p).minus(p); - V v2 = secondEdge(p).other(p).minus(p); - return Math.acos(v1.norm().dot(v2.norm())); + public void unbind() { + + for(Geom.T t : this) { + t.p1().unbind(); + t.p2().unbind(); + t.p3().unbind(); } } - - /** matrix */ - public class M { + public void bind() { + for(Geom.T t : this) { + t.e1().dobind(); + t.e2().dobind(); + t.e3().dobind(); + } } - + public int numedges = 0; + public float avgedge = 0; }