X-Git-Url: http://git.megacz.com/?p=anneal.git;a=blobdiff_plain;f=src%2Fedu%2Fberkeley%2Fqfat%2FMesh.java;h=62498f84c59f4d977843edb2fb09d3cadd0125e3;hp=ff48f424e3c324493150646b4ebcfafb1349adef;hb=db91e356d433030537508cacbf91bce9dd82f38f;hpb=827bd30d02ef944697b7abc044c2782ab87f41ef diff --git a/src/edu/berkeley/qfat/Mesh.java b/src/edu/berkeley/qfat/Mesh.java index ff48f42..62498f8 100644 --- a/src/edu/berkeley/qfat/Mesh.java +++ b/src/edu/berkeley/qfat/Mesh.java @@ -6,29 +6,31 @@ import javax.swing.*; import javax.media.opengl.*; import javax.media.opengl.glu.*; import edu.berkeley.qfat.geom.*; +import edu.berkeley.qfat.geom.HasBindingGroup; import edu.wlu.cs.levy.CG.KDTree; import edu.berkeley.qfat.geom.Point; +import com.infomatiq.jsi.IntProcedure; public class Mesh implements Iterable { public static final float EPSILON = (float)0.0001; public static final Random random = new Random(); - private RTree tris = new RTree(); - private PointSet vertices = new PointSet(); + private RTree triangles = new RTree(); + private PointSet vertices = new PointSet(); - public boolean tilemesh = false; - public boolean ignorecollision = false; - public Mesh score_against = null; - public double score = 0; - public float score() { return (float)score; } + public boolean immutableVertices; + public Mesh error_against = null; + public double error = 0; - public int size() { return vertices.size(); } - public Iterable vertices() { return vertices; } + public Mesh(boolean immutableVertices) { this.immutableVertices = immutableVertices; } - public Iterator iterator() { - return tris.iterator(); - } + public void makeVerticesImmutable() { this.immutableVertices = true; } + public float error() { return (float)error; } + + public int size() { return vertices.size(); } + public Iterable vertices() { return vertices; } + public Iterator iterator() { return triangles.iterator(); } public void rebindPoints() { // unbind all points @@ -43,47 +45,21 @@ public class Mesh implements Iterable { t.e2().dobind(); t.e3().dobind(); } - } - - public void unApplyQuadricToNeighborAll() { - HashSet done = new HashSet(); - for(T t : this) - for(Vert p : new Vert[] { t.v1(), t.v2(), t.v3() }) { - if (done.contains(p)) continue; - done.add(p); - p.unApplyQuadricToNeighbor(); - } - } - public void recomputeAllFundamentalQuadrics() { - HashSet done = new HashSet(); - for(T t : this) - for(Vert p : new Vert[] { t.v1(), t.v2(), t.v3() }) { - if (done.contains(p)) continue; - done.add(p); - p.recomputeFundamentalQuadric(); - } - } - public float applyQuadricToNeighborAll() { - int num = 0; - double dist = 0; - HashSet done = new HashSet(); - for(T t : this) - for(Vert p : new Vert[] { t.v1(), t.v2(), t.v3() }) { - if (done.contains(p)) continue; - done.add(p); - p.applyQuadricToNeighbor(); - - } - return (float)(dist/num); + System.out.println("rebound!"); } public void transform(Matrix m) { - ArrayList set = new ArrayList(); - for (Vert v : vertices) - set.add(v); - for(Vert v : set) v.transform(m); + ArrayList set = new ArrayList(); + for(Vertex v : vertices) set.add(v); + for(Vertex v : set) v.transform(m.times(v.p), true); } + public void rebuild() { /*vertices.rebuild();*/ } + public Vec diagonal() { return vertices.diagonal(); } + public Point centroid() { return vertices.centroid(); } + public Vertex nearest(Point p) { return vertices.nearest(p); } + + /** compute the volume of the mesh */ public float volume() { double total = 0; for(T t : this) { @@ -96,340 +72,204 @@ public class Mesh implements Iterable { return (float)total; } - public void rebuild() { /*vertices.rebuild();*/ } - public Vec diagonal() { return vertices.diagonal(); } - public Point centroid() { return vertices.centroid(); } - public Vert nearest(Point p) { return vertices.nearest(p); } - public final class Vert extends HasPoint { - public String toString() { return p.toString(); } - public Point p; - E e; // some edge *leaving* this point + // Vertexices ////////////////////////////////////////////////////////////////////////////// - /** the nearest vertex in the "score_against" mesh */ - Vert nearest_in_other_mesh; - /** the number of vertices in the other mesh for which this is the nearest_in_other_mesh */ - int quadric_count; - /** the total error quadric (contributions from all vertices in other mesh for which this is nearest) */ - Matrix quadric = Matrix.ZERO; + /** a vertex in the mesh */ + public final class Vertex extends HasQuadric implements Visitor { + public Point p, oldp, goodp; + E e; // some edge *leaving* this point - Vert bound_to = this; - Matrix binding = Matrix.ONE; - float oldscore = 0; - boolean quadricStale = false; + private boolean illegal = false; - public Matrix errorQuadric() { return quadric; } public Point getPoint() { return p; } - public float score() { return oldscore; } - - private Matrix fundamentalQuadric = null; - public Matrix fundamentalQuadric() { - if (fundamentalQuadric == null) recomputeFundamentalQuadric(); - return fundamentalQuadric; - } + public float error() { return olderror; } - private Vert(Point p) { + private Vertex(Point p) { this.p = p; + this.goodp = p; if (vertices.get(p) != null) throw new Error(); vertices.add(this); } - private void glNormal(GL gl) { - Vec norm = norm(); - gl.glNormal3f(norm.x, norm.y, norm.z); + public void reinsert() { + vertices.remove(this); + vertices.add(this); + for(E e = this.e; e!=null; e=e.pair.next==this.e?null:e.pair.next) e.t.reinsert(); } - public void recomputeFundamentalQuadric() { - //if (!quadricStale && fundamentalQuadric != null) return; - quadricStale = false; - unApplyQuadricToNeighbor(); - Matrix m = Matrix.ZERO; - E e = this.e; + public float olderror = 0; + public void setError(float nerror) { + error -= olderror; + olderror = nerror; + error += olderror; + } + + public float averageTriangleArea() { int count = 0; - do { - T t = e.t; - m = m.plus(t.norm().fundamentalQuadric(t.centroid())); + float ret = 0; + for(E e = this.e; e!=null; e=e.pair.next==this.e?null:e.pair.next) { + ret += e.t.area(); count++; - e = e.pair.next; - } while(e != this.e); - fundamentalQuadric = m.times(1/(float)count); - applyQuadricToNeighbor(); + } + return ret/count; } - - public void unApplyQuadricToNeighbor() { - if (nearest_in_other_mesh == null) return; - if (fundamentalQuadric == null) return; - nearest_in_other_mesh.unComputeError(); - nearest_in_other_mesh.quadric = nearest_in_other_mesh.quadric.minus(fundamentalQuadric); - nearest_in_other_mesh.quadric_count--; - if (nearest_in_other_mesh.quadric_count==0) - nearest_in_other_mesh.quadric = Matrix.ZERO; - nearest_in_other_mesh.computeError(); - nearest_in_other_mesh = null; + public float averageEdgeLength() { + int count = 0; + float ret = 0; + for(E e = this.e; e!=null; e=e.pair.next==this.e?null:e.pair.next) { + ret += e.length(); + count++; + } + return ret/count; } - public void applyQuadricToNeighbor() { - if (score_against == null) return; - - Vert new_nearest = score_against.nearest(p); - if (nearest_in_other_mesh != null && new_nearest == nearest_in_other_mesh) return; - - if (nearest_in_other_mesh != null) unApplyQuadricToNeighbor(); - if (nearest_in_other_mesh != null) throw new Error(); - - nearest_in_other_mesh = new_nearest; - - // don't attract to vertices that face the other way - if (nearest_in_other_mesh.e == null || nearest_in_other_mesh.norm().dot(norm()) < 0) { - nearest_in_other_mesh = null; - } else { - nearest_in_other_mesh.unComputeError(); - nearest_in_other_mesh.quadric = nearest_in_other_mesh.quadric.plus(fundamentalQuadric()); - nearest_in_other_mesh.quadric_count++; - nearest_in_other_mesh.computeError(); + public Matrix _recomputeFundamentalQuadric() { + Matrix m = Matrix.ZERO; + int count = 0; + for(E e = this.e; e!=null; e=e.pair.next==this.e?null:e.pair.next) { + m = m.plus(e.t.norm().fundamentalQuadric(e.t.centroid())); + count++; } - reComputeError(); + return m.times(1/(float)count); } - public void reComputeErrorAround() { - reComputeError(); - if (nearest_in_other_mesh != null) nearest_in_other_mesh.reComputeError(); - E e = this.e; - do { - e.p2.reComputeError(); - e = e.pair.next; - } while (e != this.e); - } - public void reComputeError() { - unComputeError(); - computeError(); - } - public void unComputeError() { - score -= oldscore; - oldscore = 0; - } + public HasQuadric nearest() { return error_against==null ? null : error_against.vertices.nearest(p, this); } public void computeError() { - if (quadric_count == 0) { - if (!tilemesh) { - } - else if (nearest_in_other_mesh == null) { - if (score_against != null) { - Vert ne = score_against.nearest(p); - oldscore = ne.fundamentalQuadric().preAndPostMultiply(p) * 100 * 10; - } else { - oldscore = 0; - } - } else { - oldscore = nearest_in_other_mesh.fundamentalQuadric().preAndPostMultiply(p) * 100 * 10; - } - } else { - oldscore = (quadric.preAndPostMultiply(p) * 100) / quadric_count; - } - - oldscore = oldscore; - - int numaspects = 0; - float aspects = 0; - E e = this.e; - do { - //double ang = Math.abs(e.crossAngle()); - double ang = Math.abs(e.crossAngle()); + if (error_against==null) return; + float nerror = + nearest_in_other_mesh != null + ? nearest_in_other_mesh.fundamentalQuadric().preAndPostMultiply(p) + : nearest().fundamentalQuadric().preAndPostMultiply(p); + if (quadric_count != 0) + nerror = (nerror + quadric.preAndPostMultiply(p))/(quadric_count+1); + + for(E e = this.e; e!=null; e=e.pair.next==this.e?null:e.pair.next) { + double ang = Math.abs(e.dihedralAngle()); if (ang > Math.PI) throw new Error(); + float minangle = (float)(Math.PI * 0.8); + if (ang > minangle) nerror += (ang - minangle); /* - if (e.t != null) { - numaspects++; - aspects += e.t.aspect()*e.t.aspect(); + if (e.t.aspect() < 0.2) { + nerror += (0.2-e.t.aspect()) * 10; } */ + } - float minangle = (float)(Math.PI * 0.8); - if (ang > minangle) - oldscore += (ang - minangle); + setError(nerror); + } - e = e.pair.next; - } while (e != this.e); - if (numaspects > 0) oldscore += (aspects / numaspects); + public boolean move(Matrix m, boolean ignoreProblems) { + boolean good = true; - //System.out.println(oldscore); - //oldscore = oldscore*oldscore; - score += oldscore; - } + // t1' = M * t1 + // t2' = t2.getMatrix(t1) * t1' + // t2' = t2.getMatrix(t1) * M * t1 + // t1 = t1.getMatrix(t2) * t2 + // M * t1 = M * t1.getMatrix(t2) * t2 + for(Vertex v : (Iterable)getBoundPeers()) + good &= v.transform(v.getBindingMatrix(this).times(m).times(this.p), + ignoreProblems); - private void removeTrianglesFromRTree() { - E e = this.e; - do { - if (e.t != null) e.t.removeFromRTree(); - e = e.pair.next; - } while(e != this.e); - } - private void addTrianglesToRTree() { - E e = this.e; - do { - if (e.t != null) e.t.addToRTree(); - e = e.pair.next; - } while(e != this.e); + for(Vertex v : (Iterable)getBoundPeers()) + if (good || ignoreProblems) v.reComputeErrorAround(); + else v.transform(v.oldp, true); + + return good; } /** does NOT update bound pairs! */ - public boolean transform(Matrix m) { + private boolean transform(Point newp, boolean ignoreProblems) { + this.oldp = this.p; + if (immutableVertices) throw new Error(); + unApplyQuadricToNeighbor(); - Point oldp = this.p; - try { - if (vertices.get(this.p)==null) throw new Error(); - vertices.remove(this); - removeTrianglesFromRTree(); - float newx = m.a*p.x + m.b*p.y + m.c*p.z + m.d; - float newy = m.e*p.x + m.f*p.y + m.g*p.z + m.h; - float newz = m.i*p.x + m.j*p.y + m.k*p.z + m.l; - this.p = new Point(newx, newy, newz); - addTrianglesToRTree(); - vertices.add(this); - } catch (Exception e) { - throw new RuntimeException(e); - } + this.p = newp; + reinsert(); applyQuadricToNeighbor(); - // FIXME: intersection test needed? - good = true; - - // should recompute fundamental quadrics of all vertices sharing a face, but we defer... - E e = this.e; - do { - /* - if (Math.abs(e.crossAngle()) > (Math.PI * 0.9) || - Math.abs(e.next.crossAngle()) > (Math.PI * 0.9)) { - good = false; - } - if (e.t.aspect() < 0.1) { - good = false; - } - */ - e.p2.quadricStale = true; - e = e.pair.next; - } while(e != this.e); - - - if (!ignorecollision && good) { - - tris.range(new Segment(oldp, this.p), - new Visitor() { - public void visit(T t) { - if (!good) return; - E e = Vert.this.e; - do { - if (!t.has(e.p1) && !t.has(e.p2) && e.intersects(t)) { good = false; } - if (e.t != null) { - if (!e.t.has(t.e1().p1) && !e.t.has(t.e1().p2) && t.e1().intersects(e.t)) { good = false; } - if (!e.t.has(t.e2().p1) && !e.t.has(t.e2().p2) && t.e2().intersects(e.t)) { good = false; } - if (!e.t.has(t.e3().p1) && !e.t.has(t.e3().p2) && t.e3().intersects(e.t)) { good = false; } - } - e = e.pair.next; - } while(e != Vert.this.e); - } - }); - - /* - for(T t : Mesh.this) { - if (!good) break; - e = this.e; - do { - if (!t.has(e.p1) && !t.has(e.p2) && e.intersects(t)) { good = false; break; } - if (e.t != null) { - if (!e.t.has(t.e1().p1) && !e.t.has(t.e1().p2) && t.e1().intersects(e.t)) { good = false; break; } - if (!e.t.has(t.e2().p1) && !e.t.has(t.e2().p2) && t.e2().intersects(e.t)) { good = false; break; } - if (!e.t.has(t.e3().p1) && !e.t.has(t.e3().p2) && t.e3().intersects(e.t)) { good = false; break; } - } - e = e.pair.next; - } while(e != this.e); - } - */ + if (!ignoreProblems) { + illegal = false; + checkLegality(); } + for(E e = this.e; e!=null; e=e.pair.next==this.e?null:e.pair.next) e.p2.quadricStale = true; + return !illegal; + } + public void checkLegality() { + /* + for(E e = this.e; e!=null; e=e.pair.next==this.e?null:e.pair.next) { + if (Math.abs(e.dihedralAngle()) > (Math.PI * 0.9) || + Math.abs(e.next.dihedralAngle()) > (Math.PI * 0.9)) illegal = true; + if (e.t.aspect() < 0.1) illegal = true; + } + */ + if (!illegal) triangles.range(oldp, this.p, (Visitor)this); + } - reComputeErrorAround(); - return good; + public void reComputeErrorAround() { + reComputeError(); + if (nearest_in_other_mesh != null) + nearest_in_other_mesh.reComputeError(); + for(E e = this.e; e!=null; e=e.pair.next==this.e?null:e.pair.next) + e.p2.reComputeError(); } - private boolean good; - public boolean move(Vec v) { - Matrix m = Matrix.translate(v); - Vert p = this; - boolean good = true; - do { - good &= p.transform(m); - p = p.bound_to; - } while (p != this); - return good; + public boolean visit(Object o) { + if (o instanceof Vertex) + return ((Vertex)o).e != null && ((Vertex)o).norm().dot(Vertex.this.norm()) >= 0; + T t = (T)o; + if (illegal) return false; + for(E e = Vertex.this.e; e!=null; e=e.pair.next==Vertex.this.e?null:e.pair.next) { + if (!t.has(e.p1) && !t.has(e.p2) && e.intersects(t)) { illegal = true; } + if (e.t != null) { + if (!e.t.has(t.e1().p1) && !e.t.has(t.e1().p2) && t.e1().intersects(e.t)) { illegal = true; } + if (!e.t.has(t.e2().p1) && !e.t.has(t.e2().p2) && t.e2().intersects(e.t)) { illegal = true; } + if (!e.t.has(t.e3().p1) && !e.t.has(t.e3().p2) && t.e3().intersects(e.t)) { illegal = true; } + } + } + return !illegal; } public E getFreeIncident() { E ret = getFreeIncident(e, e); if (ret != null) return ret; - ret = getFreeIncident(e.pair.next, e.pair.next); - if (ret == null) { - E ex = e; - do { - System.out.println(ex + " " + ex.t); - ex = ex.pair.next; - } while (ex != e); - throw new Error("unable to find free incident to " + this); - } - return ret; + for(E e = this.e; e!=null; e=e.pair.next==this.e?null:e.pair.next) + System.out.println(e + " " + e.t); + throw new Error("unable to find free incident to " + this); } public E getFreeIncident(E start, E before) { - E e = start; - do { - if (e.pair.p2 == this && e.pair.t == null && e.pair.next.t == null) return e.pair; - e = e.pair.next; - } while(e != before); + for(E e = start; e!=null; e=e.pair.next==before?null:e.pair.next) + if (e.pair.p2 == this && e.pair.t == null && e.pair.next.t == null) + return e.pair; return null; } public E getE(Point p2) { - Vert v = vertices.get(p2); + Vertex v = vertices.get(p2); if (v==null) return null; return getE(v); } - public E getE(Vert p2) { - E e = this.e; - do { - if (e==null) return null; + public E getE(Vertex p2) { + for(E e = this.e; e!=null; e=e.pair.next==this.e?null:e.pair.next) if (e.p1 == this && e.p2 == p2) return e; - e = e.pair.next; - } while (e!=this.e); return null; } + private void glNormal(GL gl) { + Vec norm = norm(); + gl.glNormal3f(norm.x, norm.y, norm.z); + } public Vec norm() { Vec norm = new Vec(0, 0, 0); - E e = this.e; - do { - if (e.t != null) norm = norm.plus(e.t.norm().times((float)e.prev.angle())); - e = e.pair.next; - } while(e != this.e); + for(E e = this.e; e!=null; e=e.pair.next==this.e?null:e.pair.next) + if (e.t != null) + norm = norm.plus(e.t.norm().times((float)e.prev.angle())); return norm.norm(); } - public boolean isBoundTo(Vert p) { - Vert px = p; - do { - if (px==this) return true; - px = px.bound_to; - } while(px != p); - return false; - } - public void unbind() { bound_to = this; binding = Matrix.ONE; } - public void bind(Vert p) { bind(p, Matrix.ONE); } - public void bind(Vert p, Matrix binding) { - if (isBoundTo(p)) return; - Vert temp_bound_to = p.bound_to; - Matrix temp_binding = p.binding; - p.bound_to = this.bound_to; - p.binding = binding.times(this.binding); // FIXME: may have order wrong here - this.bound_to = temp_bound_to; - this.binding = temp_binding.times(temp_binding); // FIXME: may have order wrong here - } + public void bindTo(Vertex p) { bindTo(Matrix.ONE, p); } } public class BindingGroup { @@ -448,7 +288,7 @@ public class Mesh implements Iterable { e.bind_to = bind_others; for (E epeer : e_bind_peers.set) add(epeer); for (E eother : e_bind_to.set) bind_others.add(eother); - + /* for(E eother : bind_others.set) { if (e.next.bind_to.set.contains(eother.prev)) { e.next.next.bindEdge(eother.prev.prev); @@ -457,25 +297,20 @@ public class Mesh implements Iterable { e.prev.prev.bindEdge(eother.next.next); } } - + */ } public void dobind(E e) { for(E ebound : set) { - e.p1.bind(ebound.p2); - e.p2.bind(ebound.p1); - } - } - public void shatter(BindingGroup bg1, BindingGroup bg2) { - for(E e : set) { - e.shatter(e.midpoint(), bg1, bg2); + e.p1.bindTo(Matrix.ONE, ebound.p2); + e.p2.bindTo(Matrix.ONE, ebound.p1); } } } /** [UNIQUE] an edge */ - public final class E implements Comparable { + public final class E extends HasBindingGroup implements Comparable { - public final Vert p1, p2; + public final Vertex p1, p2; T t; // triangle to our "left" E prev; // previous half-edge E next; // next half-edge @@ -485,52 +320,119 @@ public class Mesh implements Iterable { boolean shattered = false; public boolean intersects(T t) { return t.intersects(p1.p, p2.p); } + + public void bindingGroupChanged(edu.berkeley.qfat.geom.BindingGroup newBindingGroup_) { + + edu.berkeley.qfat.geom.BindingGroup newBindingGroup = + (edu.berkeley.qfat.geom.BindingGroup)newBindingGroup_; + if (newBindingGroup==null) return; + if (this==newBindingGroup.getMaster()) return; + for(E eother : (Iterable)newBindingGroup) { + if (next==null || prev==null) continue; + if (eother.next==null || eother.prev==null) continue; + if (next.isBoundTo(eother.pair.prev.pair) && !prev.isBoundTo(eother.pair.next.pair)) + prev.bindTo(next.getBindingMatrix(eother.pair.prev.pair), eother.pair.next.pair); + if (!next.isBoundTo(eother.pair.prev.pair) && prev.isBoundTo(eother.pair.next.pair)) + next.bindTo(prev.getBindingMatrix(eother.pair.next.pair), eother.pair.prev.pair); + } + + } + + public float stretchRatio() { + Vertex nearest = error_against.nearest(midpoint()); + float nearest_distance = midpoint().distance(nearest.p); + float other_distance = + (p1.p.distance(error_against.nearest(p1.p).p)+ + p2.p.distance(error_against.nearest(p2.p).p))/2; + return nearest_distance/other_distance; + } public float comparator() { - Vert nearest = score_against.nearest(midpoint()); - //if (t==null) return length(); - /* - double ang = Math.abs(crossAngle()); - float minangle = (float)(Math.PI * 0.9); - if (ang > minangle) - return 300; - */ - /* - if ((length() * length()) / t.area() > 10) - return (float)(length()*Math.sqrt(t.area())); - return length()*t.area(); - */ - return (float)Math.max(length(), midpoint().distance(nearest.p)); - //return length(); + return length(); + //return t==null?0:(1/t.aspect()); } public int compareTo(E e) { return e.comparator() > comparator() ? 1 : -1; } - public void bindEdge(E e) { bind_to.add(e); } - public void dobind() { bind_to.dobind(this); } - - public Point shatter() { return shatter(midpoint(), null, null); } - public Point shatter(Point mid, BindingGroup bg1, BindingGroup bg2) { - if (shattered || destroyed) return mid; - shattered = true; - - Vert r = next.p2; - E next = this.next; - E prev = this.prev; + public void bindEdge(E e, Matrix m) { + _bindEdge(e, m); + pair._bindEdge(e.pair, m); + } + public void _bindEdge(E e, Matrix m) { + //bind_to.add(e); - int old_colorclass = t==null ? 0 : t.colorclass; - if (bg1==null) bg1 = new BindingGroup(); - if (bg2==null) bg2 = new BindingGroup(); - BindingGroup old_bind_to = bind_to; - bind_peers.shatter(bg1, bg2); - old_bind_to.shatter(bg2.other(), bg1.other()); - pair.shatter(); - destroy(); + e = e.pair; + /* + //assumes edges are identical length at binding time + Vec reflectionPlaneNormal = e.p2.p.minus(e.p1.p).norm(); + float a = reflectionPlaneNormal.x; + float b = reflectionPlaneNormal.y; + float c = reflectionPlaneNormal.z; + Matrix reflectionMatrix = + new Matrix( 1-2*a*a, -2*a*b, -2*a*c, 0, + -2*a*b, 1-2*b*b, -2*b*c, 0, + -2*a*c, -2*b*c, 1-2*c*c, 0, + 0, 0, 0, 1); + m = m.times(Matrix.translate(e.midpoint().minus(Point.ORIGIN)) + .times(reflectionMatrix) + .times(Matrix.translate(Point.ORIGIN.minus(e.midpoint())))); + System.out.println(reflectionPlaneNormal); + System.out.println(" " + p1.p + " " + m.times(e.p1.p)); + System.out.println(" " + p2.p + " " + m.times(e.p2.p)); + */ + if (m.times(e.p1.p).minus(p1.p).mag() > EPSILON) throw new Error(); + if (m.times(e.p2.p).minus(p2.p).mag() > EPSILON) throw new Error(); + this.bindTo(m, e); + } + + public void dobind() { + //bind_to.dobind(this); + for(E e : (Iterable)getBoundPeers()) { + if (e==this) continue; + p1.bindTo(getBindingMatrix(e), e.p1); + p2.bindTo(getBindingMatrix(e), e.p2); + } + } - newT(r.p, p1.p, mid, null, old_colorclass); - newT(r.p, mid, p2.p, null, old_colorclass); - bg1.add(p1.getE(mid)); - bg2.add(p2.getE(mid).pair); - return mid; + public Point shatter() { + if (shattered || destroyed) return null; + shattered = true; + E first = null; + E firste = null; + E firstx = null; + E firstq = null; + for(E e : (Iterable)getBoundPeers()) { + E enext = e.next; + E eprev = e.prev; + E pnext = e.pair.next; + E pprev = e.pair.prev; + Point mid = e.midpoint(); + Vertex r = e.next.p2; + Vertex l = e.pair.next.p2; + e.destroy(); + e.pair.destroy(); + newT(r.p, e.p1.p, mid, null, 0); + newT(r.p, mid, e.p2.p, null, 0); + newT(l.p, mid, e.p1.p, null, 0); + newT(l.p, e.p2.p, mid, null, 0); + /* + */ + } + for(E e : (Iterable)getBoundPeers()) { + Point mid = e.midpoint(); + if (first==null) { + first = e.p1.getE(mid); + firste = e; + firstx = e.pair; + firstq = e.p2.getE(mid).pair; + continue; + } + e.p1.getE(mid). bindTo(e.getBindingMatrix(firste), first); + e.p1.getE(mid).pair. bindTo(e.getBindingMatrix(firste), first.pair); + e.p2.getE(mid).pair. bindTo(e.getBindingMatrix(firste), firstq); + e.p2.getE(mid).pair.pair.bindTo(e.getBindingMatrix(firste), firstq.pair); + //e.p1.getE(mid).pair.prev.bindTo(e.pair.getBindingMatrix(firstx), first.pair.prev); + } + return null; } public boolean destroyed = false; @@ -581,7 +483,7 @@ public class Mesh implements Iterable { public T makeT(int colorclass) { return t==null ? (t = new T(this, colorclass)) : t; } - public double crossAngle() { + public double dihedralAngle() { Vec v1 = t.norm().times(-1); Vec v2 = pair.t.norm().times(-1); return Math.acos(v1.norm().dot(v2.norm())); @@ -618,8 +520,8 @@ public class Mesh implements Iterable { public E(Point p1, Point p2) { if (vertices.get(p1) != null) throw new Error(); if (vertices.get(p2) != null) throw new Error(); - this.p1 = new Vert(p1); - this.p2 = new Vert(p2); + this.p1 = new Vertex(p1); + this.p2 = new Vertex(p2); this.prev = this.next = this.pair = new E(this, this, this); this.p1.e = this; this.p2.e = this.pair; @@ -628,9 +530,9 @@ public class Mesh implements Iterable { /** adds a new half-edge from prev.p2 to p2 */ public E(E prev, Point p) { - Vert p2; + Vertex p2; p2 = vertices.get(p); - if (p2 == null) p2 = new Vert(p); + if (p2 == null) p2 = new Vertex(p); this.p1 = prev.p2; this.p2 = p2; this.prev = prev; @@ -659,15 +561,15 @@ public class Mesh implements Iterable { sync(); } public Point midpoint() { return new Point((p1.p.x+p2.p.x)/2, (p1.p.y+p2.p.y)/2, (p1.p.z+p2.p.z)/2); } - public boolean has(Vert v) { return v==p1 || v==p2; } + public boolean has(Vertex v) { return v==p1 || v==p2; } public float length() { return p1.p.minus(p2.p).mag(); } public String toString() { return p1+"->"+p2; } } public E makeE(Point p1, Point p2) { - Vert v1 = vertices.get(p1); - Vert v2 = vertices.get(p2); + Vertex v1 = vertices.get(p1); + Vertex v2 = vertices.get(p2); if (v1 != null && v2 != null) { E e = v1.getE(v2); if (e != null) return e; @@ -700,18 +602,12 @@ public class Mesh implements Iterable { return ret; } - /** [UNIQUE] a triangle (face) */ public final class T extends Triangle { public final E e1; public final int color; public final int colorclass; - public void removeFromRTree() { tris.remove(this); } - public void addToRTree() { tris.insert(this); } - - public void destroy() { tris.remove(this); } - T(E e1, int colorclass) { this.e1 = e1; E e2 = e1.next; @@ -735,26 +631,45 @@ public class Mesh implements Iterable { } this.color = color; this.colorclass = colorclass; - tris.add(this); + triangles.add(this); } public E e1() { return e1; } public E e2() { return e1.next; } public E e3() { return e1.prev; } - public Vert v1() { return e1.p1; } - public Vert v2() { return e1.p2; } - public Vert v3() { return e1.next.p2; } + public Vertex v1() { return e1.p1; } + public Vertex v2() { return e1.p2; } + public Vertex v3() { return e1.next.p2; } public Point p1() { return e1.p1.p; } public Point p2() { return e1.p2.p; } public Point p3() { return e1.next.p2.p; } public boolean hasE(E e) { return e1==e || e1.next==e || e1.prev==e; } - public boolean has(Vert v) { return v1()==v || v2()==v || v3()==v; } + public boolean has(Vertex v) { return v1()==v || v2()==v || v3()==v; } + + public void removeFromRTree() { triangles.remove(this); } + public void addToRTree() { triangles.insert(this); } + public void destroy() { triangles.remove(this); } + public void reinsert() { triangles.remove(this); triangles.add(this); } public boolean shouldBeDrawn() { - if (e1().bind_to.set.size() == 0) return false; - if (e2().bind_to.set.size() == 0) return false; - if (e3().bind_to.set.size() == 0) return false; + /* + if (e1().bindingGroupSize() <= 1) return false; + if (e2().bindingGroupSize() <= 1) return false; + if (e3().bindingGroupSize() <= 1) return false; + */ return true; } + /** issue gl.glVertex() for each of the triangle's points */ + public void glVertices(GL gl) { + if (!shouldBeDrawn()) return; + norm().glNormal(gl); + Point p1 = v1().goodp; + Point p2 = v2().goodp; + Point p3 = v3().goodp; + p1.glVertex(gl); + p2.glVertex(gl); + p3.glVertex(gl); + } + } }