X-Git-Url: http://git.megacz.com/?p=anneal.git;a=blobdiff_plain;f=src%2Fedu%2Fberkeley%2Fqfat%2FMesh.java;h=a93535799bb82953a400c69e76cd0e97d48d0c20;hp=94b4e73c68863adee3ca9b128d87333a800fb981;hb=4d3990172ccd3eae8c771780a7a0c3bc0d897f36;hpb=162b76f92f5adaf80b312bee2a6bcd5b7ba2eabd diff --git a/src/edu/berkeley/qfat/Mesh.java b/src/edu/berkeley/qfat/Mesh.java index 94b4e73..a935357 100644 --- a/src/edu/berkeley/qfat/Mesh.java +++ b/src/edu/berkeley/qfat/Mesh.java @@ -14,9 +14,10 @@ public class Mesh implements Iterable { public static final float EPSILON = (float)0.0001; public static final Random random = new Random(); - private PointSet pointset = new PointSet(); + private PointSet vertices = new PointSet(); - public Iterable vertices() { return pointset; } + public int size() { return vertices.size(); } + public Iterable vertices() { return vertices; } public Iterable edges() { return @@ -37,12 +38,18 @@ public class Mesh implements Iterable { } public Iterator iterator() { - for(Vert v : pointset) + /* + for(Vert v : vertices) if (v.e != null && v.e.t != null) return new FaceIterator(v); return new FaceIterator(); + */ + return ts.iterator(); } + public HashSet ts = new HashSet(); + public RTree tris = new RTree(); + public Mesh score_against = null; public double score = 0; public float score() { return (float)score; } @@ -50,15 +57,14 @@ public class Mesh implements Iterable { public int numedges = 0; public float avgedge = 0; - public void unbind() { + public void rebindPoints() { + // unbind all points for(Mesh.T t : this) { t.v1().unbind(); t.v2().unbind(); t.v3().unbind(); } - } - - public void bind() { + // ask edges to re-implement their bindings for(Mesh.T t : this) { t.e1().dobind(); t.e2().dobind(); @@ -66,7 +72,25 @@ public class Mesh implements Iterable { } } - public float rescore() { + public void unApplyQuadricToNeighborAll() { + HashSet done = new HashSet(); + for(T t : this) + for(Vert p : new Vert[] { t.v1(), t.v2(), t.v3() }) { + if (done.contains(p)) continue; + done.add(p); + p.unApplyQuadricToNeighbor(); + } + } + public void recomputeAllFundamentalQuadrics() { + HashSet done = new HashSet(); + for(T t : this) + for(Vert p : new Vert[] { t.v1(), t.v2(), t.v3() }) { + if (done.contains(p)) continue; + done.add(p); + p.recomputeFundamentalQuadric(); + } + } + public float applyQuadricToNeighborAll() { int num = 0; double dist = 0; HashSet done = new HashSet(); @@ -74,14 +98,15 @@ public class Mesh implements Iterable { for(Vert p : new Vert[] { t.v1(), t.v2(), t.v3() }) { if (done.contains(p)) continue; done.add(p); - p.rescore(); + p.applyQuadricToNeighbor(); + } return (float)(dist/num); } public void transform(Matrix m) { ArrayList set = new ArrayList(); - for (Vert v : pointset) + for (Vert v : vertices) set.add(v); for(Vert v : set) v.transform(m); } @@ -98,135 +123,267 @@ public class Mesh implements Iterable { return (float)total; } - public class BindingGroup { - public HashSet es = new HashSet(); - public BindingGroup() { } - public BindingGroup(E e) { - es.add(e); - } - public void add(E e) { - if (e.bg != null) { merge(e.bg); return; } - es.add(e); - e.bg = this; - } - public void merge(BindingGroup bg) { - for(E e : bg.es) { - e.bg = null; - add(e); - } - } - } - - public Vec diagonal() { return pointset.diagonal(); } - public Point centroid() { return pointset.centroid(); } - public Vert nearest(Point p) { return pointset.nearest(p); } + public void rebuild() { /*vertices.rebuild();*/ } + public Vec diagonal() { return vertices.diagonal(); } + public Point centroid() { return vertices.centroid(); } + public Vert nearest(Point p) { return vertices.nearest(p); } public final class Vert extends HasPoint { + public String toString() { return p.toString(); } public Point p; E e; // some edge *leaving* this point + /** the nearest vertex in the "score_against" mesh */ + Vert nearest_in_other_mesh; + /** the number of vertices in the other mesh for which this is the nearest_in_other_mesh */ + int quadric_count; + /** the total error quadric (contributions from all vertices in other mesh for which this is nearest) */ + Matrix quadric = Matrix.ZERO; + Vert bound_to = this; - int watch_count; - float watch_x; - float watch_y; - float watch_z; - Vert watch; - Matrix binding = new Matrix(); + Matrix binding = Matrix.ONE; float oldscore = 0; - boolean inserted = false; + boolean quadricStale = false; + public Matrix errorQuadric() { return quadric; } public Point getPoint() { return p; } + public float score() { return oldscore; } + + private Matrix fundamentalQuadric = null; + public Matrix fundamentalQuadric() { + if (fundamentalQuadric == null) recomputeFundamentalQuadric(); + return fundamentalQuadric; + } + private Vert(Point p) { this.p = p; - if (pointset.get(p) != null) throw new Error(); - pointset.add(this); + if (vertices.get(p) != null) throw new Error(); + vertices.add(this); } - public float score() { return oldscore; } - public void unscore() { - if (watch == null) return; - watch.watch_x -= p.x; - watch.watch_y -= p.y; - watch.watch_z -= p.z; - watch.watch_count--; - if (watch.watch_count==0) { - watch.watch_x = 0; - watch.watch_y = 0; - watch.watch_z = 0; - } - watch = null; + + private void glNormal(GL gl) { + Vec norm = norm(); + gl.glNormal3f(norm.x, norm.y, norm.z); + } + + public void recomputeFundamentalQuadric() { + //if (!quadricStale && fundamentalQuadric != null) return; + quadricStale = false; + unApplyQuadricToNeighbor(); + Matrix m = Matrix.ZERO; + E e = this.e; + int count = 0; + do { + T t = e.t; + m = m.plus(t.norm().fundamentalQuadric(t.centroid())); + count++; + e = e.pair.next; + } while(e != this.e); + fundamentalQuadric = m.times(1/(float)count); + applyQuadricToNeighbor(); } - public Vert partner() { return watch==null ? this : watch; } - public Point watchback() { return watch_count==0 ? partner().p : - new Point(watch_x/watch_count, watch_y/watch_count, watch_z/watch_count); } - public void rescore() { + + public void unApplyQuadricToNeighbor() { + if (nearest_in_other_mesh == null) return; + if (fundamentalQuadric == null) return; + nearest_in_other_mesh.unComputeError(); + nearest_in_other_mesh.quadric = nearest_in_other_mesh.quadric.minus(fundamentalQuadric); + nearest_in_other_mesh.quadric_count--; + if (nearest_in_other_mesh.quadric_count==0) + nearest_in_other_mesh.quadric = Matrix.ZERO; + nearest_in_other_mesh.computeError(); + nearest_in_other_mesh = null; + } + + public void applyQuadricToNeighbor() { if (score_against == null) return; - score -= oldscore; - oldscore = 0; + Vert new_nearest = score_against.nearest(p); + if (nearest_in_other_mesh != null && new_nearest == nearest_in_other_mesh) return; - if (watch != null) unscore(); - Vert po = this; - if (watch == null) { - watch = score_against.nearest(po.p); + if (nearest_in_other_mesh != null) unApplyQuadricToNeighbor(); + if (nearest_in_other_mesh != null) throw new Error(); - // don't attract to vertices that face the other way - if (watch.e == null || watch.norm().dot(norm()) < 0) { - watch = null; + nearest_in_other_mesh = new_nearest; + + // don't attract to vertices that face the other way + if (nearest_in_other_mesh.e == null || nearest_in_other_mesh.norm().dot(norm()) < 0) { + nearest_in_other_mesh = null; + } else { + nearest_in_other_mesh.unComputeError(); + nearest_in_other_mesh.quadric = nearest_in_other_mesh.quadric.plus(fundamentalQuadric()); + nearest_in_other_mesh.quadric_count++; + nearest_in_other_mesh.computeError(); + } + reComputeError(); + } + + public void reComputeErrorAround() { + reComputeError(); + if (nearest_in_other_mesh != null) nearest_in_other_mesh.reComputeError(); + E e = this.e; + do { + e.p2.reComputeError(); + e = e.pair.next; + } while (e != this.e); + } + public void reComputeError() { + unComputeError(); + computeError(); + } + public void unComputeError() { + score -= oldscore; + oldscore = 0; + } + public void computeError() { + if (quadric_count == 0) { + if (!tilemesh) { + } + else if (nearest_in_other_mesh == null) { + if (score_against != null) { + Vert ne = score_against.nearest(p); + oldscore = ne.fundamentalQuadric().preAndPostMultiply(p) * 100 * 10; + } else { + oldscore = 0; + } } else { - watch.watch_x += po.p.x; - watch.watch_y += po.p.y; - watch.watch_z += po.p.z; - watch.watch_count++; + oldscore = nearest_in_other_mesh.fundamentalQuadric().preAndPostMultiply(p) * 100 * 10; } + } else { + oldscore = (quadric.preAndPostMultiply(p) * 100) / quadric_count; } - double s1, s2; - if (watch_count==0) s1 = 0; - else s1 = p.distance(watch_x/watch_count, watch_y/watch_count, watch_z/watch_count); - s2 = watch==null ? 0 : po.p.distance(watch.p); - oldscore = (float)(s1 + s2); + oldscore = oldscore; + + int numaspects = 0; + float aspects = 0; + E e = this.e; + do { + //double ang = Math.abs(e.crossAngle()); + double ang = Math.abs(e.crossAngle()); + if (ang > Math.PI) throw new Error(); + /* + if (e.t != null) { + numaspects++; + aspects += e.t.aspect()*e.t.aspect(); + } + */ + + float minangle = (float)(Math.PI * 0.8); + if (ang > minangle) + oldscore += (ang - minangle); + + e = e.pair.next; + } while (e != this.e); + if (numaspects > 0) oldscore += (aspects / numaspects); + + //System.out.println(oldscore); + //oldscore = oldscore*oldscore; score += oldscore; } + private void removeTrianglesFromRTree() { + E e = this.e; + do { + if (e.t != null) e.t.removeFromRTree(); + e = e.pair.next; + } while(e != this.e); + } + private void addTrianglesToRTree() { + E e = this.e; + do { + if (e.t != null) e.t.addToRTree(); + e = e.pair.next; + } while(e != this.e); + } + /** does NOT update bound pairs! */ public boolean transform(Matrix m) { - unscore(); + unApplyQuadricToNeighbor(); + Point oldp = this.p; try { - if (pointset.get(this.p)==null) throw new Error(); - pointset.remove(this); + if (vertices.get(this.p)==null) throw new Error(); + vertices.remove(this); + removeTrianglesFromRTree(); float newx = m.a*p.x + m.b*p.y + m.c*p.z + m.d; float newy = m.e*p.x + m.f*p.y + m.g*p.z + m.h; float newz = m.i*p.x + m.j*p.y + m.k*p.z + m.l; this.p = new Point(newx, newy, newz); - pointset.add(this); + addTrianglesToRTree(); + vertices.add(this); } catch (Exception e) { throw new RuntimeException(e); } - rescore(); - boolean good = true; - /* - for(T t : this) { - for(E e = this.e; ;) { - if (e.intersects(t)) { good = false; break; } - e = e.pair.next; - if (e == this.e) break; + applyQuadricToNeighbor(); + + // FIXME: intersection test needed? + good = true; + + // should recompute fundamental quadrics of all vertices sharing a face, but we defer... + E e = this.e; + do { + /* + if (Math.abs(e.crossAngle()) > (Math.PI * 0.9) || + Math.abs(e.next.crossAngle()) > (Math.PI * 0.9)) { + good = false; } + if (e.t.aspect() < 0.1) { + good = false; + } + */ + e.p2.quadricStale = true; + e = e.pair.next; + } while(e != this.e); + + + if (!ignorecollision && good) { + + tris.range(new Segment(oldp, this.p), + new Visitor() { + public void visit(T t) { + if (!good) return; + E e = Vert.this.e; + do { + if (!t.has(e.p1) && !t.has(e.p2) && e.intersects(t)) { good = false; } + if (e.t != null) { + if (!e.t.has(t.e1().p1) && !e.t.has(t.e1().p2) && t.e1().intersects(e.t)) { good = false; } + if (!e.t.has(t.e2().p1) && !e.t.has(t.e2().p2) && t.e2().intersects(e.t)) { good = false; } + if (!e.t.has(t.e3().p1) && !e.t.has(t.e3().p2) && t.e3().intersects(e.t)) { good = false; } + } + e = e.pair.next; + } while(e != Vert.this.e); + } + }); + + /* + for(T t : Mesh.this) { + if (!good) break; + e = this.e; + do { + if (!t.has(e.p1) && !t.has(e.p2) && e.intersects(t)) { good = false; break; } + if (e.t != null) { + if (!e.t.has(t.e1().p1) && !e.t.has(t.e1().p2) && t.e1().intersects(e.t)) { good = false; break; } + if (!e.t.has(t.e2().p1) && !e.t.has(t.e2().p2) && t.e2().intersects(e.t)) { good = false; break; } + if (!e.t.has(t.e3().p1) && !e.t.has(t.e3().p2) && t.e3().intersects(e.t)) { good = false; break; } + } + e = e.pair.next; + } while(e != this.e); + } + */ } - */ - /* - if (t==this.t) continue; - if (this.intersects(t)) good = false; - } - */ + + + reComputeErrorAround(); return good; } + private boolean good; + public boolean move(Vec v) { - Matrix m = new Matrix(v); + Matrix m = Matrix.translate(v); Vert p = this; boolean good = true; do { good &= p.transform(m); - v = v.times(binding); // bleh wrong p = p.bound_to; } while (p != this); return good; @@ -236,7 +393,14 @@ public class Mesh implements Iterable { E ret = getFreeIncident(e, e); if (ret != null) return ret; ret = getFreeIncident(e.pair.next, e.pair.next); - if (ret == null) throw new Error("unable to find free incident to " + this); + if (ret == null) { + E ex = e; + do { + System.out.println(ex + " " + ex.t); + ex = ex.pair.next; + } while (ex != e); + throw new Error("unable to find free incident to " + this); + } return ret; } @@ -250,7 +414,7 @@ public class Mesh implements Iterable { } public E getE(Point p2) { - Vert v = pointset.get(p2); + Vert v = vertices.get(p2); if (v==null) return null; return getE(v); } @@ -264,6 +428,16 @@ public class Mesh implements Iterable { return null; } + public Vec norm() { + Vec norm = new Vec(0, 0, 0); + E e = this.e; + do { + if (e.t != null) norm = norm.plus(e.t.norm().times((float)e.prev.angle())); + e = e.pair.next; + } while(e != this.e); + return norm.norm(); + } + public boolean isBoundTo(Vert p) { Vert px = p; do { @@ -272,9 +446,8 @@ public class Mesh implements Iterable { } while(px != p); return false; } - - public void unbind() { bound_to = this; binding = new Matrix(); } - public void bind(Vert p) { bind(p, new Matrix()); } + public void unbind() { bound_to = this; binding = Matrix.ONE; } + public void bind(Vert p) { bind(p, Matrix.ONE); } public void bind(Vert p, Matrix binding) { if (isBoundTo(p)) return; Vert temp_bound_to = p.bound_to; @@ -284,14 +457,45 @@ public class Mesh implements Iterable { this.bound_to = temp_bound_to; this.binding = temp_binding.times(temp_binding); // FIXME: may have order wrong here } - public Vec norm() { - Vec norm = new Vec(0, 0, 0); - E e = this.e; - do { - if (e.t != null) norm = norm.plus(e.t.norm().times((float)e.prev.angle())); - e = e.pair.next; - } while(e != this.e); - return norm.norm(); + } + + public class BindingGroup { + private HashSet set = new HashSet(); + public BindingGroup bind_others; + public BindingGroup other() { return bind_others; } + public BindingGroup(BindingGroup bind_others) { this.bind_others = bind_others; } + public BindingGroup() { this.bind_others = new BindingGroup(this); } + public BindingGroup(E e) { this(); set.add(e); } + public void add(E e) { + if (set.contains(e)) return; + set.add(e); + BindingGroup e_bind_peers = e.bind_peers; + BindingGroup e_bind_to = e.bind_to; + e.bind_peers = this; + e.bind_to = bind_others; + for (E epeer : e_bind_peers.set) add(epeer); + for (E eother : e_bind_to.set) bind_others.add(eother); + + for(E eother : bind_others.set) { + if (e.next.bind_to.set.contains(eother.prev)) { + e.next.next.bindEdge(eother.prev.prev); + } + if (e.prev.bind_to.set.contains(eother.next)) { + e.prev.prev.bindEdge(eother.next.next); + } + } + + } + public void dobind(E e) { + for(E ebound : set) { + e.p1.bind(ebound.p2); + e.p2.bind(ebound.p1); + } + } + public void shatter(BindingGroup bg1, BindingGroup bg2) { + for(E e : set) { + e.shatter(e.midpoint(), bg1, bg2); + } } } @@ -303,40 +507,53 @@ public class Mesh implements Iterable { E prev; // previous half-edge E next; // next half-edge E pair; // partner half-edge - public BindingGroup bg = new BindingGroup(this); + public BindingGroup bind_peers = new BindingGroup(this); + public BindingGroup bind_to = bind_peers.other(); boolean shattered = false; - public int compareTo(E e) { return e.length() > length() ? 1 : -1; } - - public void bind(E e) { bind(e, new Matrix()); } - public void bind(E e, Matrix m) { e.bg.add(this); } - - public void dobind() { - if (bg==null) return; - for(E ex : bg.es) { - if (ex==this) continue; - p1.bind(ex.p1); - p2.bind(ex.p2); - } + public float comparator() { + Vert nearest = score_against.nearest(midpoint()); + //if (t==null) return length(); + /* + double ang = Math.abs(crossAngle()); + float minangle = (float)(Math.PI * 0.9); + if (ang > minangle) + return 300; + */ + /* + if ((length() * length()) / t.area() > 10) + return (float)(length()*Math.sqrt(t.area())); + return length()*t.area(); + */ + return (float)Math.max(length(), midpoint().distance(nearest.p)); + //return length(); } + public int compareTo(E e) { + return e.comparator() > comparator() ? 1 : -1; + } + public void bindEdge(E e) { bind_to.add(e); } + public void dobind() { bind_to.dobind(this); } public Point shatter() { return shatter(midpoint(), null, null); } public Point shatter(Point mid, BindingGroup bg1, BindingGroup bg2) { - if (shattered) return mid; + if (shattered || destroyed) return mid; shattered = true; Vert r = next.p2; E next = this.next; E prev = this.prev; + int old_colorclass = t==null ? 0 : t.colorclass; if (bg1==null) bg1 = new BindingGroup(); if (bg2==null) bg2 = new BindingGroup(); - for(E e : bg.es) e.shatter(e.midpoint(), bg1, bg2); + BindingGroup old_bind_to = bind_to; + bind_peers.shatter(bg1, bg2); + old_bind_to.shatter(bg2.other(), bg1.other()); pair.shatter(); destroy(); - newT(r.p, p1.p, mid, null); - newT(r.p, mid, p2.p, null); + newT(r.p, p1.p, mid, null, old_colorclass); + newT(r.p, mid, p2.p, null, old_colorclass); bg1.add(p1.getE(mid)); bg2.add(p2.getE(mid).pair); return mid; @@ -347,14 +564,27 @@ public class Mesh implements Iterable { if (destroyed) return; destroyed = true; pair.destroyed = true; + + if (t != null) t.destroy(); + t = null; + + if (pair.t != null) pair.t.destroy(); + pair.t = null; + if (next.t != null) next.t.destroy(); if (prev.t != null) prev.t.destroy(); next.t = null; prev.t = null; + + if (pair.next.t != null) pair.next.t.destroy(); + if (pair.prev.t != null) pair.next.t.destroy(); pair.next.t = null; pair.prev.t = null; - this.bg = null; - pair.bg = null; + + this.bind_to = null; + pair.bind_to = null; + this.bind_peers = null; + pair.bind_peers = null; pair.prev.next = next; next.prev = pair.prev; prev.next = pair.next; @@ -371,6 +601,7 @@ public class Mesh implements Iterable { this.prev.next = this; this.next.prev = this; this.pair.pair = this; + bind_peers.add(this); if (this.next.p1 != p2) throw new Error(); if (this.prev.p2 != p1) throw new Error(); if (this.p1.e == null) this.p1.e = this; @@ -382,7 +613,13 @@ public class Mesh implements Iterable { } private boolean added = false; - public T makeT() { return t==null ? (t = new T(this)) : t; } + public T makeT(int colorclass) { return t==null ? (t = new T(this, colorclass)) : t; } + + public double crossAngle() { + Vec v1 = t.norm().times(-1); + Vec v2 = pair.t.norm().times(-1); + return Math.acos(v1.norm().dot(v2.norm())); + } /** angle between this half-edge and the next */ public double angle() { @@ -413,8 +650,8 @@ public class Mesh implements Iterable { /** creates an isolated edge out in the middle of space */ public E(Point p1, Point p2) { - if (pointset.get(p1) != null) throw new Error(); - if (pointset.get(p2) != null) throw new Error(); + if (vertices.get(p1) != null) throw new Error(); + if (vertices.get(p2) != null) throw new Error(); this.p1 = new Vert(p1); this.p2 = new Vert(p2); this.prev = this.next = this.pair = new E(this, this, this); @@ -426,7 +663,7 @@ public class Mesh implements Iterable { /** adds a new half-edge from prev.p2 to p2 */ public E(E prev, Point p) { Vert p2; - p2 = pointset.get(p); + p2 = vertices.get(p); if (p2 == null) p2 = new Vert(p); this.p1 = prev.p2; this.p2 = p2; @@ -532,8 +769,8 @@ public class Mesh implements Iterable { } public E makeE(Point p1, Point p2) { - Vert v1 = pointset.get(p1); - Vert v2 = pointset.get(p2); + Vert v1 = vertices.get(p1); + Vert v2 = vertices.get(p2); if (v1 != null && v2 != null) { E e = v1.getE(v2); if (e != null) return e; @@ -544,7 +781,7 @@ public class Mesh implements Iterable { if (v2 != null) return new E(v2.getFreeIncident(), p1).pair; return new E(p1, p2); } - public T newT(Point p1, Point p2, Point p3, Vec norm) { + public T newT(Point p1, Point p2, Point p3, Vec norm, int colorclass) { if (norm != null) { Vec norm2 = p3.minus(p1).cross(p2.minus(p1)); float dot = norm.dot(norm2); @@ -559,7 +796,7 @@ public class Mesh implements Iterable { e23.makeAdjacent(e31); e31.makeAdjacent(e12); } - T ret = e12.makeT(); + T ret = e12.makeT(colorclass); if (e12.t == null) throw new Error(); if (e23.t == null) throw new Error(); if (e31.t == null) throw new Error(); @@ -592,11 +829,17 @@ public class Mesh implements Iterable { public final class T extends Triangle { public final E e1; public final int color; + public final int colorclass; + + public void removeFromRTree() { tris.remove(this); } + public void addToRTree() { tris.insert(this); } public void destroy() { + tris.remove(this); + ts.remove(this); } - T(E e1) { + T(E e1, int colorclass) { this.e1 = e1; E e2 = e1.next; E e3 = e2.next; @@ -618,6 +861,9 @@ public class Mesh implements Iterable { break; } this.color = color; + this.colorclass = colorclass; + ts.add(this); + tris.add(this); } public E e1() { return e1; } public E e2() { return e1.next; } @@ -630,6 +876,19 @@ public class Mesh implements Iterable { public Point p3() { return e1.next.p2.p; } public boolean hasE(E e) { return e1==e || e1.next==e || e1.prev==e; } public boolean has(Vert v) { return v1()==v || v2()==v || v3()==v; } - } + public void glVertices(GL gl) { + + if (e1().bind_to.set.size() == 0) return; + if (e2().bind_to.set.size() == 0) return; + if (e3().bind_to.set.size() == 0) return; + + norm().glNormal(gl); + p1().glVertex(gl); + p2().glVertex(gl); + p3().glVertex(gl); + } + } + public boolean tilemesh = false; + public boolean ignorecollision = false; }