X-Git-Url: http://git.megacz.com/?p=anneal.git;a=blobdiff_plain;f=src%2Fedu%2Fberkeley%2Fqfat%2FMesh.java;h=cd696b0703cab3b5276f259710c0775049e0e22e;hp=264e379d1e01ce2b2befa23ebe07f55a71dc03a1;hb=40b6b99bd4b0bd6041b8ab94a22201faab23ed90;hpb=20989b5562ed9a4b438db2da8a4c2c3b9a05801d diff --git a/src/edu/berkeley/qfat/Mesh.java b/src/edu/berkeley/qfat/Mesh.java index 264e379..cd696b0 100644 --- a/src/edu/berkeley/qfat/Mesh.java +++ b/src/edu/berkeley/qfat/Mesh.java @@ -15,7 +15,7 @@ public class Mesh implements Iterable { public static final Random random = new Random(); private PointSet pointset = new PointSet(); - + public int size() { return pointset.size(); } public Iterable vertices() { return pointset; } public Iterable edges() { @@ -45,7 +45,9 @@ public class Mesh implements Iterable { */ return ts.iterator(); } + public HashSet ts = new HashSet(); + public RTree tris = new RTree(); public Mesh score_against = null; public double score = 0; @@ -138,7 +140,7 @@ public class Mesh implements Iterable { Matrix quadric = Matrix.ZERO; Vert bound_to = this; - Matrix binding = new Matrix(); + Matrix binding = Matrix.ONE; float oldscore = 0; boolean quadricStale = false; @@ -265,11 +267,11 @@ public class Mesh implements Iterable { aspects += e.t.aspect()*e.t.aspect(); } */ - /* - float minangle = (float)(Math.PI * 0.9); + + float minangle = (float)(Math.PI * 0.8); if (ang > minangle) oldscore += (ang - minangle); - */ + e = e.pair.next; } while (e != this.e); if (numaspects > 0) oldscore += (aspects / numaspects); @@ -279,50 +281,101 @@ public class Mesh implements Iterable { score += oldscore; } + private void removeTrianglesFromRTree() { + E e = this.e; + do { + if (e.t != null) e.t.removeFromRTree(); + e = e.pair.next; + } while(e != this.e); + } + private void addTrianglesToRTree() { + E e = this.e; + do { + if (e.t != null) e.t.addToRTree(); + e = e.pair.next; + } while(e != this.e); + } + /** does NOT update bound pairs! */ public boolean transform(Matrix m) { unApplyQuadricToNeighbor(); + Point oldp = this.p; try { if (pointset.get(this.p)==null) throw new Error(); pointset.remove(this); + removeTrianglesFromRTree(); float newx = m.a*p.x + m.b*p.y + m.c*p.z + m.d; float newy = m.e*p.x + m.f*p.y + m.g*p.z + m.h; float newz = m.i*p.x + m.j*p.y + m.k*p.z + m.l; this.p = new Point(newx, newy, newz); + addTrianglesToRTree(); pointset.add(this); } catch (Exception e) { throw new RuntimeException(e); } applyQuadricToNeighbor(); + // FIXME: intersection test needed? + good = true; + // should recompute fundamental quadrics of all vertices sharing a face, but we defer... E e = this.e; do { + /* + if (Math.abs(e.crossAngle()) > (Math.PI * 0.9) || + Math.abs(e.next.crossAngle()) > (Math.PI * 0.9)) { + good = false; + } + if (e.t.aspect() < 0.1) { + good = false; + } + */ e.p2.quadricStale = true; e = e.pair.next; } while(e != this.e); - // FIXME: intersection test needed? - boolean good = true; - if (!ignorecollision) - for(T t : Mesh.this) { - if (!good) break; - e = this.e; - do { - if (!t.has(e.p1) && !t.has(e.p2) && e.intersects(t)) { good = false; break; } - if (e.t != null) { - //if (!e.t.has(t.e1().p1) && !e.t.has(t.e1().p2) && t.e1().intersects(e.t)) { good = false; break; } - //if (!e.t.has(t.e2().p1) && !e.t.has(t.e2().p2) && t.e2().intersects(e.t)) { good = false; break; } - //if (!e.t.has(t.e3().p1) && !e.t.has(t.e3().p2) && t.e3().intersects(e.t)) { good = false; break; } - } - e = e.pair.next; - } while(e != this.e); + if (!ignorecollision && good) { + + tris.range(new Segment(oldp, this.p), + new Visitor() { + public void visit(T t) { + if (!good) return; + E e = Vert.this.e; + do { + if (!t.has(e.p1) && !t.has(e.p2) && e.intersects(t)) { good = false; } + if (e.t != null) { + if (!e.t.has(t.e1().p1) && !e.t.has(t.e1().p2) && t.e1().intersects(e.t)) { good = false; } + if (!e.t.has(t.e2().p1) && !e.t.has(t.e2().p2) && t.e2().intersects(e.t)) { good = false; } + if (!e.t.has(t.e3().p1) && !e.t.has(t.e3().p2) && t.e3().intersects(e.t)) { good = false; } + } + e = e.pair.next; + } while(e != Vert.this.e); + } + }); + + /* + for(T t : Mesh.this) { + if (!good) break; + e = this.e; + do { + if (!t.has(e.p1) && !t.has(e.p2) && e.intersects(t)) { good = false; break; } + if (e.t != null) { + if (!e.t.has(t.e1().p1) && !e.t.has(t.e1().p2) && t.e1().intersects(e.t)) { good = false; break; } + if (!e.t.has(t.e2().p1) && !e.t.has(t.e2().p2) && t.e2().intersects(e.t)) { good = false; break; } + if (!e.t.has(t.e3().p1) && !e.t.has(t.e3().p2) && t.e3().intersects(e.t)) { good = false; break; } + } + e = e.pair.next; + } while(e != this.e); + } + */ } + reComputeErrorAround(); return good; } + private boolean good; public boolean move(Vec v) { Matrix m = new Matrix(v); @@ -392,8 +445,8 @@ public class Mesh implements Iterable { } while(px != p); return false; } - public void unbind() { bound_to = this; binding = new Matrix(); } - public void bind(Vert p) { bind(p, new Matrix()); } + public void unbind() { bound_to = this; binding = Matrix.ONE; } + public void bind(Vert p) { bind(p, Matrix.ONE); } public void bind(Vert p, Matrix binding) { if (isBoundTo(p)) return; Vert temp_bound_to = p.bound_to; @@ -472,6 +525,7 @@ public class Mesh implements Iterable { return length()*t.area(); */ return (float)Math.max(length(), midpoint().distance(nearest.p)); + //return length(); } public int compareTo(E e) { return e.comparator() > comparator() ? 1 : -1; @@ -776,7 +830,11 @@ public class Mesh implements Iterable { public final int color; public final int colorclass; + public void removeFromRTree() { tris.remove(this); } + public void addToRTree() { tris.insert(this); } + public void destroy() { + tris.remove(this); ts.remove(this); } @@ -804,6 +862,7 @@ public class Mesh implements Iterable { this.color = color; this.colorclass = colorclass; ts.add(this); + tris.add(this); } public E e1() { return e1; } public E e2() { return e1.next; }