X-Git-Url: http://git.megacz.com/?p=anneal.git;a=blobdiff_plain;f=src%2Fedu%2Fberkeley%2Fqfat%2FMesh.java;h=eecaad8d10832b7bfb5024dd4371701223cde035;hp=08d89e7a5d16f2993d7b092368e6177e3fafb089;hb=23a414f776b1e1a4761e61d159e93476fc168371;hpb=35b9db0def4913851f7515f2525cffb01a940578 diff --git a/src/edu/berkeley/qfat/Mesh.java b/src/edu/berkeley/qfat/Mesh.java index 08d89e7..eecaad8 100644 --- a/src/edu/berkeley/qfat/Mesh.java +++ b/src/edu/berkeley/qfat/Mesh.java @@ -50,15 +50,14 @@ public class Mesh implements Iterable { public int numedges = 0; public float avgedge = 0; - public void unbind() { + public void rebindPoints() { + // unbind all points for(Mesh.T t : this) { t.v1().unbind(); t.v2().unbind(); t.v3().unbind(); } - } - - public void bind() { + // ask edges to re-implement their bindings for(Mesh.T t : this) { t.e1().dobind(); t.e2().dobind(); @@ -66,6 +65,24 @@ public class Mesh implements Iterable { } } + public void unscore() { + HashSet done = new HashSet(); + for(T t : this) + for(Vert p : new Vert[] { t.v1(), t.v2(), t.v3() }) { + if (done.contains(p)) continue; + done.add(p); + p.unscore(); + } + } + public void fundamental() { + HashSet done = new HashSet(); + for(T t : this) + for(Vert p : new Vert[] { t.v1(), t.v2(), t.v3() }) { + if (done.contains(p)) continue; + done.add(p); + p.recomputeFundamentalQuadric(); + } + } public float rescore() { int num = 0; double dist = 0; @@ -75,6 +92,7 @@ public class Mesh implements Iterable { if (done.contains(p)) continue; done.add(p); p.rescore(); + } return (float)(dist/num); } @@ -125,77 +143,76 @@ public class Mesh implements Iterable { public Point p; E e; // some edge *leaving* this point + /** the nearest vertex in the "score_against" mesh */ + Vert nearest_in_other_mesh; + /** the number of vertices in the other mesh for which this is the nearest_in_other_mesh */ + int quadric_count; + /** the total error quadric (contributions from all vertices in other mesh for which this is nearest) */ + Matrix quadric = Matrix.ZERO; + Vert bound_to = this; - int watch_count; - float watch_x; - float watch_y; - float watch_z; - Vert watch; Matrix binding = new Matrix(); float oldscore = 0; - boolean inserted = false; - public Matrix quadric() { - Matrix m = new Matrix(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0); + public Matrix errorQuadric() { return quadric; } + public Point getPoint() { return p; } + public float score() { return oldscore; } + + private Matrix fundamentalQuadric = null; + public Matrix fundamentalQuadric() { + if (fundamentalQuadric == null) recomputeFundamentalQuadric(); + return fundamentalQuadric; + } + + private Vert(Point p) { + this.p = p; + if (pointset.get(p) != null) throw new Error(); + pointset.add(this); + } + + public void recomputeFundamentalQuadric() { + unscore(); + Matrix m = Matrix.ZERO; E e = this.e; do { T t = e.t; m = m.plus(t.norm().fundamentalQuadric(t.centroid())); e = e.pair.next; } while(e != this.e); - return m; + fundamentalQuadric = m; + rescore(); } - public Point getPoint() { return p; } - private Vert(Point p) { - this.p = p; - if (pointset.get(p) != null) throw new Error(); - pointset.add(this); - } - public float score() { return oldscore; } public void unscore() { - if (watch == null) return; - watch.watch_x -= p.x; - watch.watch_y -= p.y; - watch.watch_z -= p.z; - watch.watch_count--; - if (watch.watch_count==0) { - watch.watch_x = 0; - watch.watch_y = 0; - watch.watch_z = 0; - } - watch = null; + if (nearest_in_other_mesh == null) return; + if (fundamentalQuadric == null) return; + nearest_in_other_mesh.quadric = nearest_in_other_mesh.quadric.minus(fundamentalQuadric); + nearest_in_other_mesh.quadric_count--; + if (nearest_in_other_mesh.quadric_count==0) + nearest_in_other_mesh.quadric = Matrix.ZERO; + nearest_in_other_mesh = null; } - public Vert partner() { return watch==null ? this : watch; } - public Point watchback() { return watch_count==0 ? partner().p : - new Point(watch_x/watch_count, watch_y/watch_count, watch_z/watch_count); } + public void rescore() { if (score_against == null) return; score -= oldscore; oldscore = 0; - if (watch != null) unscore(); - Vert po = this; - if (watch == null) { - watch = score_against.nearest(po.p); + if (nearest_in_other_mesh != null) unscore(); + if (nearest_in_other_mesh == null) { + nearest_in_other_mesh = score_against.nearest(p); // don't attract to vertices that face the other way - if (watch.e == null || watch.norm().dot(norm()) < 0) { - watch = null; + if (nearest_in_other_mesh.e == null || nearest_in_other_mesh.norm().dot(norm()) < 0) { + nearest_in_other_mesh = null; } else { - watch.watch_x += po.p.x; - watch.watch_y += po.p.y; - watch.watch_z += po.p.z; - watch.watch_count++; + nearest_in_other_mesh.quadric = nearest_in_other_mesh.quadric.plus(fundamentalQuadric()); + nearest_in_other_mesh.quadric_count++; } } - double s1, s2; - if (watch_count==0) s1 = 0; - else s1 = p.distance(watch_x/watch_count, watch_y/watch_count, watch_z/watch_count); - s2 = watch==null ? 0 : po.p.distance(watch.p); - oldscore = (float)(s1 + s2); + oldscore = quadric_count == 0 ? 0 : (quadric.preAndPostMultiply(p) / quadric_count); score += oldscore; } @@ -214,30 +231,18 @@ public class Mesh implements Iterable { throw new RuntimeException(e); } rescore(); - boolean good = true; - /* - for(T t : this) { - for(E e = this.e; ;) { - if (e.intersects(t)) { good = false; break; } - e = e.pair.next; - if (e == this.e) break; - } - } - */ - /* - if (t==this.t) continue; - if (this.intersects(t)) good = false; - } - */ - return good; + + // should recompute fundamental quadrics of all vertices sharing a face, but we defer... + // FIXME: intersection test needed? + return true; } + public boolean move(Vec v) { Matrix m = new Matrix(v); Vert p = this; boolean good = true; do { good &= p.transform(m); - v = v.times(binding); // bleh wrong p = p.bound_to; } while (p != this); return good; @@ -275,6 +280,16 @@ public class Mesh implements Iterable { return null; } + public Vec norm() { + Vec norm = new Vec(0, 0, 0); + E e = this.e; + do { + if (e.t != null) norm = norm.plus(e.t.norm().times((float)e.prev.angle())); + e = e.pair.next; + } while(e != this.e); + return norm.norm(); + } + public boolean isBoundTo(Vert p) { Vert px = p; do { @@ -283,7 +298,6 @@ public class Mesh implements Iterable { } while(px != p); return false; } - public void unbind() { bound_to = this; binding = new Matrix(); } public void bind(Vert p) { bind(p, new Matrix()); } public void bind(Vert p, Matrix binding) { @@ -295,15 +309,6 @@ public class Mesh implements Iterable { this.bound_to = temp_bound_to; this.binding = temp_binding.times(temp_binding); // FIXME: may have order wrong here } - public Vec norm() { - Vec norm = new Vec(0, 0, 0); - E e = this.e; - do { - if (e.t != null) norm = norm.plus(e.t.norm().times((float)e.prev.angle())); - e = e.pair.next; - } while(e != this.e); - return norm.norm(); - } } /** [UNIQUE] an edge */