(*********************************************************************************************************************************) (* HaskProof: *) (* *) (* Natural Deduction proofs of the well-typedness of a Haskell term. Proofs use explicit structural rules (Gentzen-style) *) (* and are in System FC extended with modal types indexed by Taha-Nielsen environment classifiers (λ^α) *) (* *) (*********************************************************************************************************************************) Generalizable All Variables. Require Import Preamble. Require Import General. Require Import NaturalDeduction. Require Import Coq.Strings.String. Require Import Coq.Lists.List. Require Import HaskKinds. Require Import HaskCoreTypes. Require Import HaskCoreLiterals. Require Import HaskStrongTypes. (* A judgment consists of an environment shape (Γ and Δ) and a pair of trees of leveled types (the antecedent and succedent) valid * in any context of that shape. Notice that the succedent contains a tree of types rather than a single type; think * of [ T1 |- T2 ] as asserting that a letrec with branches having types corresponding to the leaves of T2 is well-typed * in environment T1. This subtle distinction starts to matter when we get into substructural (linear, affine, ordered, etc) * types *) Inductive Judg := mkJudg : forall Γ:TypeEnv, forall Δ:CoercionEnv Γ, Tree ??(LeveledHaskType Γ) -> Tree ??(LeveledHaskType Γ) -> Judg. Notation "Γ > Δ > a '|-' s" := (mkJudg Γ Δ a s) (at level 52, Δ at level 50, a at level 52, s at level 50). (* A Uniform Judgment (UJudg) has its environment as a type index; we'll use these to distinguish proofs that have a single, * uniform context throughout the whole proof. Such proofs are important because (1) we can do left and right context * expansion on them (see rules RLeft and RRight) and (2) they will form the fiber categories of our fibration later on *) Inductive UJudg (Γ:TypeEnv)(Δ:CoercionEnv Γ) := mkUJudg : Tree ??(LeveledHaskType Γ) -> Tree ??(LeveledHaskType Γ) -> UJudg Γ Δ. Notation "Γ >> Δ > a '|-' s" := (mkUJudg Γ Δ a s) (at level 52, Δ at level 50, a at level 52, s at level 50). Notation "'ext_tree_left'" := (fun ctx j => match j with mkUJudg t s => mkUJudg _ _ (ctx,,t) s end). Notation "'ext_tree_right'" := (fun ctx j => match j with mkUJudg t s => mkUJudg _ _ (t,,ctx) s end). (* we can turn a UJudg into a Judg by simply internalizing the index *) Definition UJudg2judg {Γ}{Δ}(ej:@UJudg Γ Δ) : Judg := match ej with mkUJudg t s => Γ > Δ > t |- s end. Coercion UJudg2judg : UJudg >-> Judg. (* information needed to define a case branch in a HaskProof *) Record ProofCaseBranch {tc:TyCon}{Γ}{Δ}{lev}{branchtype : HaskType Γ}{avars} := { pcb_scb : @StrongAltCon tc ; pcb_freevars : Tree ??(LeveledHaskType Γ) ; pcb_judg := sac_Γ pcb_scb Γ > sac_Δ pcb_scb Γ avars (map weakCK' Δ) > (mapOptionTree weakLT' pcb_freevars),,(unleaves (map (fun t => t@@weakL' lev) (vec2list (sac_types pcb_scb Γ avars)))) |- [weakLT' (branchtype @@ lev)] }. Coercion pcb_scb : ProofCaseBranch >-> StrongAltCon. Implicit Arguments ProofCaseBranch [ ]. (* Figure 3, production $\vdash_E$, Uniform rules *) Inductive URule {Γ}{Δ} : Tree ??(UJudg Γ Δ) -> Tree ??(UJudg Γ Δ) -> Type := | RCanL : ∀ t a , URule [Γ>>Δ> [],,a |- t ] [Γ>>Δ> a |- t ] | RCanR : ∀ t a , URule [Γ>>Δ> a,,[] |- t ] [Γ>>Δ> a |- t ] | RuCanL : ∀ t a , URule [Γ>>Δ> a |- t ] [Γ>>Δ> [],,a |- t ] | RuCanR : ∀ t a , URule [Γ>>Δ> a |- t ] [Γ>>Δ> a,,[] |- t ] | RAssoc : ∀ t a b c , URule [Γ>>Δ>a,,(b,,c) |- t ] [Γ>>Δ>(a,,b),,c |- t ] | RCossa : ∀ t a b c , URule [Γ>>Δ>(a,,b),,c |- t ] [Γ>>Δ> a,,(b,,c) |- t ] | RLeft : ∀ h c x , URule h c -> URule (mapOptionTree (ext_tree_left x) h) (mapOptionTree (ext_tree_left x) c) | RRight : ∀ h c x , URule h c -> URule (mapOptionTree (ext_tree_right x) h) (mapOptionTree (ext_tree_right x) c) | RExch : ∀ t a b , URule [Γ>>Δ> (b,,a) |- t ] [Γ>>Δ> (a,,b) |- t ] | RWeak : ∀ t a , URule [Γ>>Δ> [] |- t ] [Γ>>Δ> a |- t ] | RCont : ∀ t a , URule [Γ>>Δ> (a,,a) |- t ] [Γ>>Δ> a |- t ]. (* Figure 3, production $\vdash_E$, all rules *) Inductive Rule : Tree ??Judg -> Tree ??Judg -> Type := | RURule : ∀ Γ Δ h c, @URule Γ Δ h c -> Rule (mapOptionTree UJudg2judg h) (mapOptionTree UJudg2judg c) (* λ^α rules *) | RBrak : ∀ Γ Δ t v Σ l, Rule [Γ > Δ > Σ |- [t @@ (v::l) ]] [Γ > Δ > Σ |- [<[v|-t]> @@l]] | REsc : ∀ Γ Δ t v Σ l, Rule [Γ > Δ > Σ |- [<[v|-t]> @@ l]] [Γ > Δ > Σ |- [t @@ (v::l) ]] (* Part of GHC, but not explicitly in System FC *) | RNote : ∀ h c, Note -> Rule h [ c ] | RLit : ∀ Γ Δ v l, Rule [ ] [Γ > Δ > []|- [literalType v @@ l]] (* SystemFC rules *) | RVar : ∀ Γ Δ σ l, Rule [ ] [Γ>Δ> [σ@@l] |- [σ @@l]] | RLam : ∀ Γ Δ Σ tx te l, Γ ⊢ᴛy tx : ★ -> Rule [Γ>Δ> Σ,,[tx@@l]|- [te@@l] ] [Γ>Δ> Σ |- [tx--->te @@l]] | RCast : ∀ Γ Δ Σ σ τ γ l, Δ ⊢ᴄᴏ γ : σ ∼ τ -> Rule [Γ>Δ> Σ |- [σ@@l] ] [Γ>Δ> Σ |- [τ @@l]] | RBindingGroup : ∀ Γ Δ Σ₁ Σ₂ τ₁ τ₂ , Rule ([Γ > Δ > Σ₁ |- τ₁ ],,[Γ > Δ > Σ₂ |- τ₂ ]) [Γ>Δ> Σ₁,,Σ₂ |- τ₁,,τ₂ ] | RApp : ∀ Γ Δ Σ₁ Σ₂ tx te l, Rule ([Γ>Δ> Σ₁ |- [tx--->te @@l]],,[Γ>Δ> Σ₂ |- [tx@@l]]) [Γ>Δ> Σ₁,,Σ₂ |- [te @@l]] | RLet : ∀ Γ Δ Σ₁ Σ₂ σ₁ σ₂ l, Rule ([Γ>Δ> Σ₁,,[σ₂@@l] |- [σ₁@@l] ],,[Γ>Δ> Σ₂ |- [σ₂@@l]]) [Γ>Δ> Σ₁,,Σ₂ |- [σ₁ @@l]] | REmptyGroup : ∀ Γ Δ , Rule [] [Γ > Δ > [] |- [] ] | RAppT : ∀ Γ Δ Σ κ σ τ l, Γ ⊢ᴛy τ : κ -> Rule [Γ>Δ> Σ |- [HaskTAll κ σ @@l]] [Γ>Δ> Σ |- [substT σ τ @@l]] | RAbsT : ∀ Γ Δ Σ κ σ l, Rule [(κ::Γ)> (weakCE Δ) > mapOptionTree weakLT Σ |- [ HaskTApp (weakF σ) (FreshHaskTyVar _) @@ (weakL l)]] [Γ>Δ > Σ |- [HaskTAll κ σ @@ l]] | RAppCo : forall Γ Δ Σ σ₁ σ₂ σ γ l, Δ ⊢ᴄᴏ γ : σ₁∼σ₂ -> Rule [Γ>Δ> Σ |- [σ₁∼∼σ₂ ⇒ σ@@l]] [Γ>Δ> Σ |- [σ @@l]] | RAbsCo : ∀ Γ Δ Σ κ σ σ₁ σ₂ l, Γ ⊢ᴛy σ₁:κ -> Γ ⊢ᴛy σ₂:κ -> Rule [Γ > ((σ₁∼∼∼σ₂)::Δ) > Σ |- [σ @@ l]] [Γ > Δ > Σ |- [σ₁∼∼σ₂⇒ σ @@l]] | RLetRec : ∀ Γ Δ Σ₁ τ₁ τ₂, Rule [Γ > Δ > Σ₁,,τ₂ |- τ₁,,τ₂ ] [Γ > Δ > Σ₁ |- τ₁ ] | RCase : forall Γ Δ lev tc Σ avars tbranches (alts:Tree ??(@ProofCaseBranch tc Γ Δ lev tbranches avars)), Rule ((mapOptionTree pcb_judg alts),, [Γ > Δ > Σ |- [ caseType tc avars @@ lev ] ]) [Γ > Δ > (mapOptionTreeAndFlatten pcb_freevars alts),,Σ |- [ tbranches @@ lev ] ] . Coercion RURule : URule >-> Rule. (* A rule is considered "flat" if it is neither RBrak nor REsc *) Inductive Rule_Flat : forall {h}{c}, Rule h c -> Prop := | Flat_RURule : ∀ Γ Δ h c r , Rule_Flat (RURule Γ Δ h c r) | Flat_RNote : ∀ x y z , Rule_Flat (RNote x y z) | Flat_RVar : ∀ Γ Δ σ l, Rule_Flat (RVar Γ Δ σ l) | Flat_RLam : ∀ Γ Δ Σ tx te q l, Rule_Flat (RLam Γ Δ Σ tx te q l) | Flat_RCast : ∀ Γ Δ Σ σ τ γ q l, Rule_Flat (RCast Γ Δ Σ σ τ γ q l) | Flat_RAbsT : ∀ Γ Σ κ σ a q , Rule_Flat (RAbsT Γ Σ κ σ a q ) | Flat_RAppT : ∀ Γ Δ Σ κ σ τ q l, Rule_Flat (RAppT Γ Δ Σ κ σ τ q l) | Flat_RAppCo : ∀ Γ Δ Σ σ₁ σ₂ σ γ q l, Rule_Flat (RAppCo Γ Δ Σ σ₁ σ₂ σ γ q l) | Flat_RAbsCo : ∀ Γ Σ κ σ σ₁ σ₂ q1 q2 q3 x , Rule_Flat (RAbsCo Γ Σ κ σ σ₁ σ₂ q1 q2 q3 x ) | Flat_RApp : ∀ Γ Δ Σ tx te p l, Rule_Flat (RApp Γ Δ Σ tx te p l) | Flat_RLet : ∀ Γ Δ Σ σ₁ σ₂ p l, Rule_Flat (RLet Γ Δ Σ σ₁ σ₂ p l) | Flat_RBindingGroup : ∀ q a b c d e , Rule_Flat (RBindingGroup q a b c d e) | Flat_RCase : ∀ Σ Γ T κlen κ θ l x , Rule_Flat (RCase Σ Γ T κlen κ θ l x ). (* given a proof that uses only uniform rules, we can produce a general proof *) Definition UND_to_ND Γ Δ h c : ND (@URule Γ Δ) h c -> ND Rule (mapOptionTree UJudg2judg h) (mapOptionTree UJudg2judg c) := @nd_map' _ (@URule Γ Δ ) _ Rule (@UJudg2judg Γ Δ ) (fun h c r => nd_rule (RURule _ _ h c r)) h c. Lemma no_urules_with_empty_conclusion : forall Γ Δ c h, @URule Γ Δ c h -> h=[] -> False. intro. intro. induction 1; intros; inversion H. simpl in *; destruct c; try destruct o; simpl in *; try destruct u; inversion H; simpl in *; apply IHX; auto; inversion H1. simpl in *; destruct c; try destruct o; simpl in *; try destruct u; inversion H; simpl in *; apply IHX; auto; inversion H1. Qed. Lemma no_rules_with_empty_conclusion : forall c h, @Rule c h -> h=[] -> False. intros. destruct X; try destruct c; try destruct o; simpl in *; try inversion H. apply no_urules_with_empty_conclusion in u. apply u. auto. Qed. Lemma no_urules_with_multiple_conclusions : forall Γ Δ c h, @URule Γ Δ c h -> { h1:Tree ??(UJudg Γ Δ) & { h2:Tree ??(UJudg Γ Δ) & h=(h1,,h2) }} -> False. intro. intro. induction 1; intros. inversion X; inversion X0; inversion H; inversion X1; destruct c; try destruct o; inversion H2; apply IHX; exists c1;exists c2; auto. inversion X; inversion X0; inversion H; inversion X1; destruct c; try destruct o; inversion H2; apply IHX; exists c1;exists c2; auto. inversion X; inversion X0; inversion H; inversion X1; destruct c; try destruct o; inversion H2; apply IHX; exists c1;exists c2; auto. inversion X; inversion X0; inversion H; inversion X1; destruct c; try destruct o; inversion H2; apply IHX; exists c1;exists c2; auto. inversion X; inversion X0; inversion H; inversion X1; destruct c; try destruct o; inversion H2; apply IHX; exists c1;exists c2; auto. inversion X; inversion X0; inversion H; inversion X1; destruct c; try destruct o; inversion H2; apply IHX; exists c1;exists c2; auto. apply IHX. destruct X0. destruct s. destruct c; try destruct o; try destruct u; simpl in *. inversion e. inversion e. exists c1. exists c2. auto. apply IHX. destruct X0. destruct s. destruct c; try destruct o; try destruct u; simpl in *. inversion e. inversion e. exists c1. exists c2. auto. inversion X; inversion X0; inversion H; inversion X1; destruct c; try destruct o; inversion H2; apply IHX; exists c1;exists c2; auto. inversion X; inversion X0; inversion H; inversion X1; destruct c; try destruct o; inversion H2; apply IHX; exists c1;exists c2; auto. inversion X; inversion X0; inversion H; inversion X1; destruct c; try destruct o; inversion H2; apply IHX; exists c1;exists c2; auto. Qed. Lemma no_rules_with_multiple_conclusions : forall c h, Rule c h -> { h1:Tree ??Judg & { h2:Tree ??Judg & h=(h1,,h2) }} -> False. intros. destruct X; try destruct c; try destruct o; simpl in *; try inversion H; try apply no_urules_with_empty_conclusion in u; try apply u. destruct X0; destruct s; inversion e. auto. apply (no_urules_with_multiple_conclusions _ _ h (c1,,c2)) in u. inversion u. exists c1. exists c2. auto. destruct X0; destruct s; inversion e. destruct X0; destruct s; inversion e. destruct X0; destruct s; inversion e. destruct X0; destruct s; inversion e. destruct X0; destruct s; inversion e. destruct X0; destruct s; inversion e. destruct X0; destruct s; inversion e. destruct X0; destruct s; inversion e. destruct X0; destruct s; inversion e. destruct X0; destruct s; inversion e. destruct X0; destruct s; inversion e. destruct X0; destruct s; inversion e. destruct X0; destruct s; inversion e. destruct X0; destruct s; inversion e. destruct X0; destruct s; inversion e. destruct X0; destruct s; inversion e. destruct X0; destruct s; inversion e. Qed. Lemma systemfc_all_rules_one_conclusion : forall h c1 c2 (r:Rule h (c1,,c2)), False. intros. eapply no_rules_with_multiple_conclusions. apply r. exists c1. exists c2. auto. Qed.