(*********************************************************************************************************************************) (* NaturalDeductionCategory: *) (* *) (* Natural Deduction proofs form a category (under mild assumptions, see below) *) (* *) (*********************************************************************************************************************************) Generalizable All Variables. Require Import Preamble. Require Import General. Require Import NaturalDeduction. Require Import Algebras_ch4. Require Import Categories_ch1_3. Require Import Functors_ch1_4. Require Import Isomorphisms_ch1_5. Require Import ProductCategories_ch1_6_1. Require Import OppositeCategories_ch1_6_2. Require Import Enrichment_ch2_8. Require Import Subcategories_ch7_1. Require Import NaturalTransformations_ch7_4. Require Import NaturalIsomorphisms_ch7_5. Require Import MonoidalCategories_ch7_8. Require Import Coherence_ch7_8. Open Scope nd_scope. Open Scope pf_scope. (* proofs form a category, with judgment-trees as the objects *) Section Judgments_Category. Context {Judgment : Type}. Context {Rule : forall (hypotheses:Tree ??Judgment)(conclusion:Tree ??Judgment), Type}. Context (nd_eqv : @ND_Relation Judgment Rule). (* actually you can use any type as the objects, so long as you give a mapping from that type to judgments *) Context {Ob : Type}. Context (ob2judgment : Ob -> Judgment). Coercion ob2judgment : Ob >-> Judgment. Notation "pf1 === pf2" := (@ndr_eqv _ _ nd_eqv _ _ pf1 pf2). Instance Judgments_Category : Category (Tree ??Ob) (fun h c => (mapOptionTree ob2judgment h) /⋯⋯/ (mapOptionTree ob2judgment c)) := { id := fun h => nd_id _ ; comp := fun a b c f g => f ;; g ; eqv := fun a b f g => f === g }. intros; apply Build_Equivalence; [ unfold Reflexive; intros; reflexivity | unfold Symmetric; intros; symmetry; auto | unfold Transitive; intros; transitivity y; auto ]. unfold Proper; unfold respectful; intros; simpl; apply ndr_comp_respects; auto. intros; apply ndr_comp_left_identity. intros; apply ndr_comp_right_identity. intros; apply ndr_comp_associativity. Defined. Definition Judgments_Category_monoidal_endofunctor_fobj : Judgments_Category ×× Judgments_Category -> Judgments_Category := (fun xy => match xy with | pair_obj x y => T_Branch x y end). Definition Judgments_Category_monoidal_endofunctor_fmor : forall a b, (a~~{Judgments_Category ×× Judgments_Category}~~>b) -> ((Judgments_Category_monoidal_endofunctor_fobj a) ~~{Judgments_Category}~~> (Judgments_Category_monoidal_endofunctor_fobj b)). intros. destruct a. destruct b. destruct X. exact (h**h0). Defined. Definition Judgments_Category_monoidal_endofunctor : Functor (Judgments_Category ×× Judgments_Category) Judgments_Category Judgments_Category_monoidal_endofunctor_fobj. refine {| fmor := Judgments_Category_monoidal_endofunctor_fmor |}; intros; simpl. abstract (destruct a; destruct b; destruct f; destruct f'; auto; destruct H; simpl in *; apply ndr_prod_respects; auto). abstract (destruct a; simpl in *; reflexivity). abstract (destruct a; destruct b; destruct c; destruct f; destruct g; symmetry; simpl in *; apply ndr_prod_preserves_comp). Defined. Definition jud_assoc_iso (a b c:Judgments_Category) : @Isomorphic _ _ Judgments_Category ((a,,b),,c) (a,,(b,,c)). apply (@Build_Isomorphic _ _ Judgments_Category _ _ (@nd_assoc _ Rule (mapOptionTree ob2judgment a) (mapOptionTree ob2judgment b) (mapOptionTree ob2judgment c) : (a,, b),, c ~~{Judgments_Category}~~> a,, (b,, c)) (@nd_cossa _ Rule (mapOptionTree ob2judgment a) (mapOptionTree ob2judgment b) (mapOptionTree ob2judgment c) : a,, (b,, c) ~~{Judgments_Category}~~> (a,, b),, c)); simpl; auto. Defined. Definition jud_cancelr_iso (a:Judgments_Category) : @Isomorphic _ _ Judgments_Category (a,,[]) a. apply (@Build_Isomorphic _ _ Judgments_Category _ _ (@nd_cancelr _ Rule (mapOptionTree ob2judgment a) : a,,[] ~~{Judgments_Category}~~> a) (@nd_rlecnac _ Rule (mapOptionTree ob2judgment a) : a ~~{Judgments_Category}~~> a,,[])); simpl; auto. Defined. Definition jud_cancell_iso (a:Judgments_Category) : @Isomorphic _ _ Judgments_Category ([],,a) a. apply (@Build_Isomorphic _ _ Judgments_Category _ _ (@nd_cancell _ Rule (mapOptionTree ob2judgment a) : [],,a ~~{Judgments_Category}~~> a) (@nd_llecnac _ Rule (mapOptionTree ob2judgment a) : a ~~{Judgments_Category}~~> [],,a)); simpl; auto. Defined. Definition jud_mon_cancelr : (func_rlecnac [] >>>> Judgments_Category_monoidal_endofunctor) <~~~> functor_id Judgments_Category. refine {| ni_iso := fun x => jud_cancelr_iso x |}; intros; simpl. setoid_rewrite (ndr_prod_right_identity f). repeat setoid_rewrite ndr_comp_associativity. apply ndr_comp_respects; try reflexivity. symmetry. eapply transitivity; [ idtac | apply ndr_comp_right_identity ]. apply ndr_comp_respects; try reflexivity; simpl; auto. Defined. Definition jud_mon_cancell : (func_llecnac [] >>>> Judgments_Category_monoidal_endofunctor) <~~~> functor_id Judgments_Category. eapply Build_NaturalIsomorphism. instantiate (1:=fun x => jud_cancell_iso x). intros; simpl. setoid_rewrite (ndr_prod_left_identity f). repeat setoid_rewrite ndr_comp_associativity. apply ndr_comp_respects; try reflexivity. symmetry. eapply transitivity; [ idtac | apply ndr_comp_right_identity ]. apply ndr_comp_respects; try reflexivity; simpl; auto. Defined. Definition jud_mon_assoc_iso : forall X, (((Judgments_Category_monoidal_endofunctor **** (functor_id _)) >>>> Judgments_Category_monoidal_endofunctor) X) ≅ (func_cossa >>>> ((((functor_id _) **** Judgments_Category_monoidal_endofunctor) >>>> Judgments_Category_monoidal_endofunctor))) X. intros. destruct X as [a c]. destruct a as [a b]. apply (jud_assoc_iso a b c). Defined. Definition jud_mon_assoc : ((Judgments_Category_monoidal_endofunctor **** (functor_id _)) >>>> Judgments_Category_monoidal_endofunctor) <~~~> func_cossa >>>> ((((functor_id _) **** Judgments_Category_monoidal_endofunctor) >>>> Judgments_Category_monoidal_endofunctor)). refine {| ni_iso := jud_mon_assoc_iso |}. intros. destruct A as [a1 a3]. destruct a1 as [a1 a2]. destruct B as [b1 b3]. destruct b1 as [b1 b2]. destruct f as [f1 f3]. destruct f1 as [f1 f2]. simpl. setoid_rewrite ndr_prod_associativity. setoid_rewrite ndr_comp_associativity. setoid_rewrite ndr_comp_associativity. apply ndr_comp_respects; try reflexivity. symmetry. eapply transitivity; [ idtac | apply ndr_comp_right_identity ]. apply ndr_comp_respects; try reflexivity; simpl; auto. Defined. Instance Judgments_Category_monoidal : MonoidalCat _ _ Judgments_Category_monoidal_endofunctor [ ] := { mon_cancelr := jud_mon_cancelr ; mon_cancell := jud_mon_cancell ; mon_assoc := jud_mon_assoc }. apply Build_Pentagon; simpl; intros; apply ndr_structural_indistinguishable; auto. apply Build_Triangle; simpl; intros; apply ndr_structural_indistinguishable; auto. Defined. (* Given some mapping "rep" that turns a (Tree ??T) intoto Judgment, * this asserts that we have sensible structural rules with respect * to that mapping. Doing all of this "with respect to a mapping" * lets us avoid duplicating code for both the antecedent and * succedent of sequent deductions. *) Class TreeStructuralRules {T:Type}(rep:Tree ??T -> Judgment) := { tsr_eqv : @ND_Relation Judgment Rule where "pf1 === pf2" := (@ndr_eqv _ _ tsr_eqv _ _ pf1 pf2) ; tsr_ant_assoc : forall {a b c}, Rule [rep ((a,,b),,c)] [rep ((a,,(b,,c)))] ; tsr_ant_cossa : forall {a b c}, Rule [rep (a,,(b,,c))] [rep (((a,,b),,c))] ; tsr_ant_cancell : forall {a }, Rule [rep ( [],,a )] [rep ( a )] ; tsr_ant_cancelr : forall {a }, Rule [rep (a,,[] )] [rep ( a )] ; tsr_ant_llecnac : forall {a }, Rule [rep ( a )] [rep ( [],,a )] ; tsr_ant_rlecnac : forall {a }, Rule [rep ( a )] [rep ( a,,[] )] }. (* Structure ExpressionAlgebra (sig:Signature) := *) End Judgments_Category. Close Scope pf_scope. Close Scope nd_scope.