(*********************************************************************************************************************************) (* ProgrammingLanguage *) (* *) (* Basic assumptions about programming languages . *) (* *) (*********************************************************************************************************************************) Generalizable All Variables. Require Import Preamble. Require Import General. Require Import Categories_ch1_3. Require Import InitialTerminal_ch2_2. Require Import Functors_ch1_4. Require Import Isomorphisms_ch1_5. Require Import ProductCategories_ch1_6_1. Require Import OppositeCategories_ch1_6_2. Require Import Enrichment_ch2_8. Require Import Subcategories_ch7_1. Require Import NaturalTransformations_ch7_4. Require Import NaturalIsomorphisms_ch7_5. Require Import MonoidalCategories_ch7_8. Require Import Coherence_ch7_8. Require Import Enrichment_ch2_8. Require Import RepresentableStructure_ch7_2. Require Import FunctorCategories_ch7_7. Require Import NaturalDeduction. Require Import NaturalDeductionCategory. Require Import FreydCategories. Require Import Reification. Require Import GeneralizedArrow. Require Import GeneralizedArrowFromReification. Require Import ReificationFromGeneralizedArrow. (* * Everything in the rest of this section is just groundwork meant to * build up to the definition of the ProgrammingLanguage class, which * appears at the end of the section. References to "the instance" * mean instances of that class. Think of this section as being one * big Class { ... } definition, except that we declare most of the * stuff outside the curly brackets in order to take advantage of * Coq's section mechanism. *) Section Programming_Language. Context {T : Type}. (* types of the language *) Context (Judg : Type). Context (sequent : Tree ??T -> Tree ??T -> Judg). Notation "cs |= ss" := (sequent cs ss) : pl_scope. (* Because of term irrelevance we need only store the *erased* (def * 4.4) trees; for this reason there is no Coq type directly * corresponding to productions $e$ and $x$ of 4.1.1, and TreeOT can * be used for productions $\Gamma$ and $\Sigma$ *) (* to do: sequent calculus equals natural deduction over sequents, theorem equals sequent with null antecedent, *) Context {Rule : Tree ??Judg -> Tree ??Judg -> Type}. Notation "H /⋯⋯/ C" := (ND Rule H C) : pl_scope. Open Scope pf_scope. Open Scope nd_scope. Open Scope pl_scope. (* * * Note that from this abstract interface, the terms (expressions) * in the proof are not accessible at all; they don't need to be -- * so long as we have access to the equivalence relation upon * proof-conclusions. Moreover, hiding the expressions actually * makes the encoding in CiC work out easier for two reasons: * * 1. Because the denotation function is provided a proof rather * than a term, it is a total function (the denotation function is * often undefined for ill-typed terms). * * 2. We can define arr_composition of proofs without having to know how * to compose expressions. The latter task is left up to the client * function which extracts an expression from a completed proof. * * This also means that we don't need an explicit proof obligation for 4.1.2. *) Class ProgrammingLanguage := { pl_eqv : @ND_Relation Judg Rule where "pf1 === pf2" := (@ndr_eqv _ _ pl_eqv _ _ pf1 pf2) ; pl_tsr :> @TreeStructuralRules Judg Rule T sequent ; pl_sc :> @SequentCalculus Judg Rule _ sequent ; pl_subst :> @CutRule Judg Rule _ sequent pl_eqv pl_sc ; pl_sequent_join :> @SequentExpansion Judg Rule T sequent pl_eqv pl_sc pl_subst }. Notation "pf1 === pf2" := (@ndr_eqv _ _ pl_eqv _ _ pf1 pf2) : temporary_scope3. Section LanguageCategory. Context (PL:ProgrammingLanguage). (* category of judgments in a fixed type/coercion context *) Definition Judgments_cartesian := @Judgments_Category_CartesianCat _ Rule pl_eqv. Definition JudgmentsL := Judgments_cartesian. Definition identityProof t : [] ~~{JudgmentsL}~~> [t |= t]. unfold hom; simpl. apply nd_seq_reflexive. Defined. Definition cutProof a b c : [a |= b],,[b |= c] ~~{JudgmentsL}~~> [a |= c]. unfold hom; simpl. apply pl_subst. Defined. Definition TypesL : ECategory JudgmentsL (Tree ??T) (fun x y => [x|=y]). refine {| eid := identityProof ; ecomp := cutProof |}; intros. apply MonoidalCat_all_central. apply MonoidalCat_all_central. unfold identityProof; unfold cutProof; simpl. apply nd_cut_left_identity. unfold identityProof; unfold cutProof; simpl. apply nd_cut_right_identity. unfold identityProof; unfold cutProof; simpl. symmetry. apply nd_cut_associativity. Defined. Definition Types_first c : EFunctor TypesL TypesL (fun x => x,,c ). refine {| efunc := fun x y => (nd_rule (@se_expand_right _ _ _ _ _ _ _ (@pl_sequent_join PL) c x y)) |}. intros; apply MonoidalCat_all_central. intros. unfold ehom. unfold hom. unfold identityProof. unfold eid. simpl. unfold identityProof. apply se_reflexive_right. intros. unfold ehom. unfold comp. simpl. unfold cutProof. rewrite <- (@ndr_prod_preserves_comp _ _ pl_eqv _ _ [#se_expand_right _ c#] _ _ (nd_id1 (b|=c0)) _ (nd_id1 (a,,c |= b,,c)) _ [#se_expand_right _ c#]). setoid_rewrite (@ndr_comp_right_identity _ _ pl_eqv _ [a,, c |= b,, c]). setoid_rewrite (@ndr_comp_left_identity _ _ pl_eqv [b |= c0]). apply se_cut_right. Defined. Definition Types_second c : EFunctor TypesL TypesL (fun x => c,,x). eapply Build_EFunctor. instantiate (1:=(fun x y => (nd_rule (@se_expand_left _ _ _ _ _ _ _ (@pl_sequent_join PL) c x y)))). intros; apply MonoidalCat_all_central. intros. unfold ehom. unfold hom. unfold identityProof. unfold eid. simpl. unfold identityProof. apply se_reflexive_left. intros. unfold ehom. unfold comp. simpl. unfold cutProof. rewrite <- (@ndr_prod_preserves_comp _ _ pl_eqv _ _ [#se_expand_left _ c#] _ _ (nd_id1 (b|=c0)) _ (nd_id1 (c,,a |= c,,b)) _ [#se_expand_left _ c#]). setoid_rewrite (@ndr_comp_right_identity _ _ pl_eqv _ [c,,a |= c,,b]). setoid_rewrite (@ndr_comp_left_identity _ _ pl_eqv [b |= c0]). apply se_cut_left. Defined. Definition Types_binoidal : BinoidalCat TypesL (@T_Branch _). refine {| bin_first := Types_first ; bin_second := Types_second |}. Defined. Definition Types_PreMonoidal : PreMonoidalCat Types_binoidal []. admit. Defined. Definition TypesEnrichedInJudgments : Enrichment. refine {| enr_c := TypesL |}. Defined. Structure HasProductTypes := { }. (* need to prove that if we have cartesian tuples we have cartesian contexts *) Definition LanguagesWithProductsAreSMME : HasProductTypes -> SurjectiveMonicMonoidalEnrichment TypesEnrichedInJudgments. admit. Defined. End LanguageCategory. Structure ProgrammingLanguageSMME := { plsmme_pl : ProgrammingLanguage ; plsmme_smme : SurjectiveMonicMonoidalEnrichment (TypesEnrichedInJudgments plsmme_pl) }. Coercion plsmme_pl : ProgrammingLanguageSMME >-> ProgrammingLanguage. Coercion plsmme_smme : ProgrammingLanguageSMME >-> SurjectiveMonicMonoidalEnrichment. Section ArrowInLanguage. Context (Host:ProgrammingLanguageSMME). Context `(CC:CartesianCat (me_mon Host)). Context `(K:@ECategory _ _ _ _ _ _ (@car_mn _ _ _ _ _ _ _ CC) C Kehom). Context `(pmc:PreMonoidalCat K bobj mobj (@one _ _ _ (cartesian_terminal C))). (* FIXME *) (* Definition ArrowInProgrammingLanguage := @FreydCategory _ _ _ _ _ _ (@car_mn _ _ _ _ _ _ _ CC) _ _ _ _ pmc. *) End ArrowInLanguage. Section GArrowInLanguage. Context (Guest:ProgrammingLanguageSMME). Context (Host :ProgrammingLanguageSMME). Definition GeneralizedArrowInLanguage := GeneralizedArrow Guest Host. (* FIXME Definition ArrowsAreGeneralizedArrows : ArrowInProgrammingLanguage -> GeneralizedArrowInLanguage. *) Definition TwoLevelLanguage := Reification Guest Host (me_i Host). Context (GuestHost:TwoLevelLanguage). Definition FlatObject (x:TypesL Host) := forall y1 y2, not ((reification_r_obj GuestHost y1 y2)=x). Definition FlatSubCategory := FullSubcategory (TypesL Host) FlatObject. Section Flattening. Context (F:Retraction (TypesL Host) FlatSubCategory). Definition FlatteningOfReification := garrow_from_reification Guest Host GuestHost >>>> F. Lemma FlatteningIsNotDestructive : FlatteningOfReification >>>> retraction_retraction F >>>> RepresentableFunctor _ (me_i Host) ~~~~ GuestHost. admit. Qed. End Flattening. End GArrowInLanguage. Inductive NLevelLanguage : nat -> ProgrammingLanguageSMME -> Type := | NLevelLanguage_zero : forall lang, NLevelLanguage O lang | NLevelLanguage_succ : forall (L1 L2:ProgrammingLanguageSMME) n, TwoLevelLanguage L1 L2 -> NLevelLanguage n L1 -> NLevelLanguage (S n) L2. Definition OmegaLevelLanguage : Type := { f : nat -> ProgrammingLanguageSMME & forall n, TwoLevelLanguage (f n) (f (S n)) }. Close Scope temporary_scope3. Close Scope pl_scope. Close Scope nd_scope. Close Scope pf_scope. End Programming_Language. Implicit Arguments ND [ Judgment ].