(*********************************************************************************************************************************) (* ProgrammingLanguage *) (* *) (* Basic assumptions about programming languages. *) (* *) (*********************************************************************************************************************************) Generalizable All Variables. Require Import Preamble. Require Import General. Require Import Categories_ch1_3. Require Import InitialTerminal_ch2_2. Require Import Functors_ch1_4. Require Import Isomorphisms_ch1_5. Require Import ProductCategories_ch1_6_1. Require Import OppositeCategories_ch1_6_2. Require Import Enrichment_ch2_8. Require Import Subcategories_ch7_1. Require Import NaturalTransformations_ch7_4. Require Import NaturalIsomorphisms_ch7_5. Require Import MonoidalCategories_ch7_8. Require Import Coherence_ch7_8. Require Import Enrichment_ch2_8. Require Import RepresentableStructure_ch7_2. Require Import FunctorCategories_ch7_7. Require Import NaturalDeduction. Require Import NaturalDeductionCategory. Section Programming_Language. Context {T : Type}. (* types of the language *) Context (Judg : Type). Context (sequent : Tree ??T -> Tree ??T -> Judg). Notation "cs |= ss" := (sequent cs ss) : pl_scope. Context {Rule : Tree ??Judg -> Tree ??Judg -> Type}. Notation "H /⋯⋯/ C" := (ND Rule H C) : pl_scope. Open Scope pf_scope. Open Scope nd_scope. Open Scope pl_scope. Class ProgrammingLanguage := { pl_eqv : @ND_Relation Judg Rule where "pf1 === pf2" := (@ndr_eqv _ _ pl_eqv _ _ pf1 pf2) ; pl_tsr :> @TreeStructuralRules Judg Rule T sequent ; pl_sc :> @SequentCalculus Judg Rule _ sequent ; pl_subst :> @CutRule Judg Rule _ sequent pl_eqv pl_sc ; pl_sequent_join :> @SequentExpansion Judg Rule T sequent pl_eqv pl_sc pl_subst }. Notation "pf1 === pf2" := (@ndr_eqv _ _ pl_eqv _ _ pf1 pf2) : temporary_scope3. Section LanguageCategory. Context (PL:ProgrammingLanguage). (* category of judgments in a fixed type/coercion context *) Definition Judgments_cartesian := @Judgments_Category_CartesianCat _ Rule pl_eqv. Definition JudgmentsL := Judgments_cartesian. Definition identityProof t : [] ~~{JudgmentsL}~~> [t |= t]. unfold hom; simpl. apply nd_seq_reflexive. Defined. Definition cutProof a b c : [a |= b],,[b |= c] ~~{JudgmentsL}~~> [a |= c]. unfold hom; simpl. apply pl_subst. Defined. Definition TypesL : ECategory JudgmentsL (Tree ??T) (fun x y => [x|=y]). refine {| eid := identityProof ; ecomp := cutProof |}; intros. apply MonoidalCat_all_central. apply MonoidalCat_all_central. unfold identityProof; unfold cutProof; simpl. apply nd_cut_left_identity. unfold identityProof; unfold cutProof; simpl. apply nd_cut_right_identity. unfold identityProof; unfold cutProof; simpl. symmetry. apply nd_cut_associativity. Defined. Definition Types_first c : EFunctor TypesL TypesL (fun x => x,,c ). refine {| efunc := fun x y => (@se_expand_right _ _ _ _ _ _ _ (@pl_sequent_join PL) c x y) |}. intros; apply MonoidalCat_all_central. intros. unfold ehom. unfold hom. unfold identityProof. unfold eid. simpl. unfold identityProof. apply se_reflexive_right. intros. unfold ehom. unfold comp. simpl. unfold cutProof. rewrite <- (@ndr_prod_preserves_comp _ _ pl_eqv _ _ (se_expand_right _ c) _ _ (nd_id1 (b|=c0)) _ (nd_id1 (a,,c |= b,,c)) _ (se_expand_right _ c)). setoid_rewrite (@ndr_comp_right_identity _ _ pl_eqv _ [a,, c |= b,, c]). setoid_rewrite (@ndr_comp_left_identity _ _ pl_eqv [b |= c0]). apply se_cut_right. Defined. Definition Types_second c : EFunctor TypesL TypesL (fun x => c,,x). eapply Build_EFunctor. instantiate (1:=(fun x y => ((@se_expand_left _ _ _ _ _ _ _ (@pl_sequent_join PL) c x y)))). intros; apply MonoidalCat_all_central. intros. unfold ehom. unfold hom. unfold identityProof. unfold eid. simpl. unfold identityProof. apply se_reflexive_left. intros. unfold ehom. unfold comp. simpl. unfold cutProof. rewrite <- (@ndr_prod_preserves_comp _ _ pl_eqv _ _ (se_expand_left _ c) _ _ (nd_id1 (b|=c0)) _ (nd_id1 (c,,a |= c,,b)) _ (se_expand_left _ c)). setoid_rewrite (@ndr_comp_right_identity _ _ pl_eqv _ [c,,a |= c,,b]). setoid_rewrite (@ndr_comp_left_identity _ _ pl_eqv [b |= c0]). apply se_cut_left. Defined. Definition Types_binoidal : BinoidalCat TypesL (@T_Branch _). refine {| bin_first := Types_first ; bin_second := Types_second |}. Defined. Definition Types_assoc a b : Types_second a >>>> Types_first b <~~~> Types_first b >>>> Types_second a. admit. Defined. Definition Types_cancelr : Types_first [] <~~~> functor_id _. admit. Defined. Definition Types_cancell : Types_second [] <~~~> functor_id _. admit. Defined. Definition Types_assoc_ll a b : Types_second (a,,b) <~~~> Types_second b >>>> Types_second a. admit. Defined. Definition Types_assoc_rr a b : Types_first (a,,b) <~~~> Types_first a >>>> Types_first b. admit. Defined. Instance Types_PreMonoidal : PreMonoidalCat Types_binoidal [] := { pmon_assoc := Types_assoc ; pmon_cancell := Types_cancell ; pmon_cancelr := Types_cancelr ; pmon_assoc_rr := Types_assoc_rr ; pmon_assoc_ll := Types_assoc_ll }. admit. (* pentagon law *) admit. (* triangle law *) admit. (* assoc_rr/assoc coherence *) admit. (* assoc_ll/assoc coherence *) Defined. Definition TypesEnrichedInJudgments : Enrichment. refine {| enr_c := TypesL |}. Defined. Structure HasProductTypes := { }. Lemma CartesianEnrMonoidal (e:Enrichment) `(C:CartesianCat(Ob:= _)(Hom:= _)(C:=Underlying (enr_c e))) : MonoidalEnrichment e. admit. Defined. (* need to prove that if we have cartesian tuples we have cartesian contexts *) Definition LanguagesWithProductsAreSMME : HasProductTypes -> SurjectiveMonicMonoidalEnrichment TypesEnrichedInJudgments. admit. Defined. End LanguageCategory. End Programming_Language. Structure ProgrammingLanguageSMME := { plsmme_t : Type ; plsmme_judg : Type ; plsmme_sequent : Tree ??plsmme_t -> Tree ??plsmme_t -> plsmme_judg ; plsmme_rule : Tree ??plsmme_judg -> Tree ??plsmme_judg -> Type ; plsmme_pl : @ProgrammingLanguage plsmme_t plsmme_judg plsmme_sequent plsmme_rule ; plsmme_smme : SurjectiveMonicMonoidalEnrichment (TypesEnrichedInJudgments _ _ plsmme_pl) }. Coercion plsmme_pl : ProgrammingLanguageSMME >-> ProgrammingLanguage. Coercion plsmme_smme : ProgrammingLanguageSMME >-> SurjectiveMonicMonoidalEnrichment. Implicit Arguments ND [ Judgment ].