let RCut take a left environment as well
[coq-hetmet.git] / src / HaskFlattener.v
index 35ab0d5..c42842a 100644 (file)
@@ -1,5 +1,5 @@
 (*********************************************************************************************************************************)
-(* HaskFlattener:                                                                                                           *)
+(* HaskFlattener:                                                                                                                *)
 (*                                                                                                                               *)
 (*    The Flattening Functor.                                                                                                    *)
 (*                                                                                                                               *)
@@ -9,42 +9,32 @@ Generalizable All Variables.
 Require Import Preamble.
 Require Import General.
 Require Import NaturalDeduction.
+Require Import NaturalDeductionContext.
 Require Import Coq.Strings.String.
 Require Import Coq.Lists.List.
 
 Require Import HaskKinds.
 Require Import HaskCoreTypes.
-Require Import HaskLiteralsAndTyCons.
+Require Import HaskCoreVars.
+Require Import HaskWeakTypes.
+Require Import HaskWeakVars.
+Require Import HaskLiterals.
+Require Import HaskTyCons.
 Require Import HaskStrongTypes.
 Require Import HaskProof.
 Require Import NaturalDeduction.
-Require Import NaturalDeductionCategory.
-
-Require Import Algebras_ch4.
-Require Import Categories_ch1_3.
-Require Import Functors_ch1_4.
-Require Import Isomorphisms_ch1_5.
-Require Import ProductCategories_ch1_6_1.
-Require Import OppositeCategories_ch1_6_2.
-Require Import Enrichment_ch2_8.
-Require Import Subcategories_ch7_1.
-Require Import NaturalTransformations_ch7_4.
-Require Import NaturalIsomorphisms_ch7_5.
-Require Import BinoidalCategories.
-Require Import PreMonoidalCategories.
-Require Import MonoidalCategories_ch7_8.
-Require Import Coherence_ch7_8.
 
 Require Import HaskStrongTypes.
 Require Import HaskStrong.
 Require Import HaskProof.
 Require Import HaskStrongToProof.
 Require Import HaskProofToStrong.
-Require Import ProgrammingLanguage.
-Require Import HaskProgrammingLanguage.
-Require Import PCF.
+Require Import HaskWeakToStrong.
+
+Require Import HaskSkolemizer.
 
 Open Scope nd_scope.
+Set Printing Width 130.
 
 (*
  *  The flattening transformation.  Currently only TWO-level languages are
@@ -56,347 +46,1322 @@ Open Scope nd_scope.
  *)
 Section HaskFlattener.
 
-  Context {Γ:TypeEnv}.
-  Context {Δ:CoercionEnv Γ}.
-  Context {ec:HaskTyVar Γ ★}.
 
-  Lemma unlev_lemma : forall (x:Tree ??(HaskType Γ ★)) lev, x = mapOptionTree unlev (x @@@ lev).
-    intros.
-    rewrite <- mapOptionTree_compose.
+  Ltac eqd_dec_refl' :=
+    match goal with
+      | [ |- context[@eqd_dec ?T ?V ?X ?X] ] =>
+        destruct (@eqd_dec T V X X) as [eqd_dec1 | eqd_dec2];
+          [ clear eqd_dec1 | set (eqd_dec2 (refl_equal _)) as eqd_dec2'; inversion eqd_dec2' ]
+  end.
+
+  Definition v2t {Γ}(ec:HaskTyVar Γ ECKind) : HaskType Γ ECKind := fun TV ite => TVar (ec TV ite).
+
+  Definition levelMatch {Γ}(lev:HaskLevel Γ) : LeveledHaskType Γ ★ -> bool :=
+    fun t => match t with ttype@@tlev => if eqd_dec tlev lev then true else false end.
+
+  (* In a tree of types, replace any type at depth "lev" or greater None *)
+  Definition mkDropFlags {Γ}(lev:HaskLevel Γ)(tt:Tree ??(LeveledHaskType Γ ★)) : TreeFlags tt :=
+    mkFlags (liftBoolFunc false (levelMatch lev)) tt.
+
+  Definition drop_lev {Γ}(lev:HaskLevel Γ)(tt:Tree ??(LeveledHaskType Γ ★)) : Tree ??(LeveledHaskType Γ ★) :=
+    dropT (mkDropFlags lev tt).
+
+  (* The opposite: replace any type which is NOT at level "lev" with None *)
+  Definition mkTakeFlags {Γ}(lev:HaskLevel Γ)(tt:Tree ??(LeveledHaskType Γ ★)) : TreeFlags tt :=
+    mkFlags (liftBoolFunc true (bnot ○ levelMatch lev)) tt.
+
+  Definition take_lev {Γ}(lev:HaskLevel Γ)(tt:Tree ??(LeveledHaskType Γ ★)) : Tree ??(LeveledHaskType Γ ★) :=
+    dropT (mkTakeFlags lev tt).
+(*
+    mapOptionTree (fun x => flatten_type (unlev x))
+    (maybeTree (takeT tt (mkFlags (
+      fun t => match t with
+                 | Some (ttype @@ tlev) => if eqd_dec tlev lev then true else false
+                 | _                    => true
+               end
+    ) tt))).
+
+  Definition maybeTree {T}(t:??(Tree ??T)) : Tree ??T :=
+    match t with
+      | None   => []
+      | Some x => x
+    end.
+*)
+
+  Lemma drop_lev_lemma : forall Γ (lev:HaskLevel Γ) x, drop_lev lev [x @@  lev] = [].
+    intros; simpl.
+    Opaque eqd_dec.
+    unfold drop_lev.
     simpl.
-    induction x.
-    destruct a; simpl; auto.
+    unfold mkDropFlags.
     simpl.
-    rewrite IHx1 at 1.
-    rewrite IHx2 at 1.
-    reflexivity.
+    Transparent eqd_dec.
+    eqd_dec_refl'.
+    auto.
     Qed.
 
-  Context (ga_rep      : Tree ??(HaskType Γ ★) -> HaskType Γ ★ ).
-  Context (ga_type     : HaskType Γ ★ -> HaskType Γ ★ -> HaskType Γ ★).
+  Lemma drop_lev_lemma_s : forall Γ (lev:HaskLevel Γ) ec x, drop_lev (ec::lev) [x @@  (ec :: lev)] = [].
+    intros; simpl.
+    Opaque eqd_dec.
+    unfold drop_lev.
+    unfold mkDropFlags.
+    simpl.
+    Transparent eqd_dec.
+    eqd_dec_refl'.
+    auto.
+    Qed.
 
-  (*Notation "a ~~~~> b" := (ND Rule [] [ Γ > Δ > a |- b ]) (at level 20).*)
-  Notation "a ~~~~> b" := (ND (OrgR Γ Δ) [] [ (a , b) ]) (at level 20).
+  Lemma take_lemma : forall Γ (lev:HaskLevel Γ) x, take_lev lev [x @@  lev] = [x @@ lev].
+    intros; simpl.
+    Opaque eqd_dec.
+    unfold take_lev.
+    unfold mkTakeFlags.
+    simpl.
+    Transparent eqd_dec.
+    eqd_dec_refl'.
+    auto.
+    Qed.
 
-  Lemma magic : forall a b c,
-    ([]                   ~~~~> [ga_type a b @@ nil]) ->
-    ([ga_type b c @@ nil] ~~~~> [ga_type a c @@ nil]).
-    admit.
+  Lemma take_lemma' : forall Γ (lev:HaskLevel Γ) x, take_lev lev (x @@@ lev) = x @@@ lev.
+    intros.
+    induction x.
+    destruct a; simpl; try reflexivity.
+    apply take_lemma.
+    simpl.
+    rewrite <- IHx1 at 2.
+    rewrite <- IHx2 at 2.
+    reflexivity.
     Qed.
 
-  Context (ga_lit      : ∀ lit, [] ~~~~> [ga_type (ga_rep   []   )      (ga_rep [literalType lit])@@ nil]).
-  Context (ga_id       : ∀ σ,   [] ~~~~> [ga_type (ga_rep   σ    )      (ga_rep σ                )@@ nil]).
-  Context (ga_cancell  : ∀ c  , [] ~~~~> [ga_type (ga_rep ([],,c))      (ga_rep c                )@@ nil]).
-  Context (ga_cancelr  : ∀ c  , [] ~~~~> [ga_type (ga_rep (c,,[]))      (ga_rep c                )@@ nil]).
-  Context (ga_uncancell: ∀ c  , [] ~~~~> [ga_type (ga_rep  c     )      (ga_rep ([],,c)          )@@ nil]).
-  Context (ga_uncancelr: ∀ c  , [] ~~~~> [ga_type (ga_rep  c     )      (ga_rep (c,,[])          )@@ nil]).
-  Context (ga_assoc    : ∀ a b c,[] ~~~~> [ga_type (ga_rep ((a,,b),,c))  (ga_rep (a,,(b,,c))      )@@ nil]).
-  Context (ga_unassoc  : ∀ a b c,[] ~~~~> [ga_type (ga_rep ( a,,(b,,c))) (ga_rep ((a,,b),,c))      @@ nil]).
-  Context (ga_swap     : ∀ a b, [] ~~~~> [ga_type (ga_rep (a,,b) )      (ga_rep (b,,a)           )@@ nil]).
-  Context (ga_copy     : ∀ a  , [] ~~~~> [ga_type (ga_rep  a     )      (ga_rep (a,,a)           )@@ nil]).
-  Context (ga_drop     : ∀ a  , [] ~~~~> [ga_type (ga_rep  a     )      (ga_rep []               )@@ nil]).
-  Context (ga_first    : ∀ a b c,
-    [ga_type (ga_rep a) (ga_rep b) @@nil] ~~~~> [ga_type (ga_rep (a,,c)) (ga_rep (b,,c)) @@nil]).
-  Context (ga_second   : ∀ a b c,
-    [ga_type (ga_rep a) (ga_rep b) @@nil] ~~~~> [ga_type (ga_rep (c,,a)) (ga_rep (c,,b)) @@nil]).
-  Context (ga_comp     : ∀ a b c,
-    ([ga_type (ga_rep a) (ga_rep b) @@nil],,[ga_type (ga_rep b) (ga_rep c) @@nil])
-    ~~~~>
-    [ga_type (ga_rep a) (ga_rep c) @@nil]).
-
-  Definition guestJudgmentAsGArrowType (lt:PCFJudg Γ ec) : HaskType Γ ★ :=
-    match lt with
-      (x,y) => (ga_type (ga_rep x) (ga_rep y)) 
+  Ltac drop_simplify :=
+    match goal with
+      | [ |- context[@drop_lev ?G ?L [ ?X @@ ?L ] ] ] =>
+        rewrite (drop_lev_lemma G L X)
+      | [ |- context[@drop_lev ?G (?E :: ?L) [ ?X @@ (?E :: ?L) ] ] ] =>
+        rewrite (drop_lev_lemma_s G L E X)
+      | [ |- context[@drop_lev ?G ?N (?A,,?B)] ] =>
+      change (@drop_lev G N (A,,B)) with ((@drop_lev G N A),,(@drop_lev G N B))
+      | [ |- context[@drop_lev ?G ?N (T_Leaf None)] ] =>
+      change (@drop_lev G N (T_Leaf (@None (LeveledHaskType G ★)))) with (T_Leaf (@None (LeveledHaskType G ★)))
     end.
 
-  Definition obact (X:Tree ??(PCFJudg Γ ec)) : Tree ??(LeveledHaskType Γ ★) :=
-    mapOptionTree guestJudgmentAsGArrowType X @@@ nil.
+  Ltac take_simplify :=
+    match goal with
+      | [ |- context[@take_lev ?G ?L [ ?X @@ ?L ] ] ] =>
+        rewrite (take_lemma G L X)
+      | [ |- context[@take_lev ?G ?L [ ?X @@@ ?L ] ] ] =>
+        rewrite (take_lemma' G L X)
+      | [ |- context[@take_lev ?G ?N (?A,,?B)] ] =>
+      change (@take_lev G N (A,,B)) with ((@take_lev G N A),,(@take_lev G N B))
+      | [ |- context[@take_lev ?G ?N (T_Leaf None)] ] =>
+      change (@take_lev G N (T_Leaf (@None (LeveledHaskType G ★)))) with (T_Leaf (@None (LeveledHaskType G ★)))
+    end.
 
-  Hint Constructors Rule_Flat.
-  Context {ndr:@ND_Relation _ Rule}.
+
+  (*******************************************************************************)
+
+
+  Context (hetmet_flatten : WeakExprVar).
+  Context (hetmet_unflatten : WeakExprVar).
+  Context (hetmet_id      : WeakExprVar).
+  Context {unitTy : forall TV, RawHaskType TV ECKind  -> RawHaskType TV ★                                          }.
+  Context {prodTy : forall TV, RawHaskType TV ECKind  -> RawHaskType TV ★  -> RawHaskType TV ★ -> RawHaskType TV ★ }.
+  Context {gaTy   : forall TV, RawHaskType TV ECKind  -> RawHaskType TV ★ -> RawHaskType TV ★  -> RawHaskType TV ★ }.
+
+  Definition ga_mk_tree' {TV}(ec:RawHaskType TV ECKind)(tr:Tree ??(RawHaskType TV ★)) : RawHaskType TV ★ :=
+    reduceTree (unitTy TV ec) (prodTy TV ec) tr.
+
+  Definition ga_mk_tree {Γ}(ec:HaskType Γ ECKind)(tr:Tree ??(HaskType Γ ★)) : HaskType Γ ★ :=
+    fun TV ite => ga_mk_tree' (ec TV ite) (mapOptionTree (fun x => x TV ite) tr).
+
+  Definition ga_mk_raw {TV}(ec:RawHaskType TV ECKind)(ant suc:Tree ??(RawHaskType TV ★)) : RawHaskType TV ★ :=
+    gaTy TV ec
+    (ga_mk_tree' ec ant)
+    (ga_mk_tree' ec suc).
+
+  Definition ga_mk {Γ}(ec:HaskType Γ ECKind)(ant suc:Tree ??(HaskType Γ ★)) : HaskType Γ ★ :=
+    fun TV ite => gaTy TV (ec TV ite) (ga_mk_tree ec ant TV ite) (ga_mk_tree ec suc TV ite).
 
   (*
-   * Here it is, what you've all been waiting for!  When reading this,
-   * it might help to have the definition for "Inductive ND" (see
-   * NaturalDeduction.v) handy as a cross-reference.
+   *  The story:
+   *    - code types <[t]>@c                                                become garrows  c () t 
+   *    - free variables of type t at a level lev deeper than the succedent become garrows  c () t
+   *    - free variables at the level of the succedent become 
    *)
-  Hint Constructors Rule_Flat.
-  Definition FlatteningFunctor_fmor
-    : forall h c,
-      (ND (PCFRule Γ Δ ec) h c) ->
-      ((obact h)~~~~>(obact c)).
+  Fixpoint flatten_rawtype {TV}{κ}(exp: RawHaskType TV κ) : RawHaskType TV κ :=
+    match exp with
+    | TVar    _  x          => TVar x
+    | TAll     _ y          => TAll   _  (fun v => flatten_rawtype (y v))
+    | TApp   _ _ x y        => TApp      (flatten_rawtype x) (flatten_rawtype y)
+    | TCon       tc         => TCon      tc
+    | TCoerc _ t1 t2 t      => TCoerc    (flatten_rawtype t1) (flatten_rawtype t2) (flatten_rawtype t)
+    | TArrow                => TArrow
+    | TCode     ec e        => let e' := flatten_rawtype e
+                               in  ga_mk_raw ec (unleaves_ (take_arg_types e')) [drop_arg_types e']
+    | TyFunApp  tfc kl k lt => TyFunApp tfc kl k (flatten_rawtype_list _ lt)
+    end
+    with flatten_rawtype_list {TV}(lk:list Kind)(exp:@RawHaskTypeList TV lk) : @RawHaskTypeList TV lk :=
+    match exp in @RawHaskTypeList _ LK return @RawHaskTypeList TV LK with
+    | TyFunApp_nil               => TyFunApp_nil
+    | TyFunApp_cons  κ kl t rest => TyFunApp_cons _ _ (flatten_rawtype t) (flatten_rawtype_list _ rest)
+    end.
 
-    set (@nil (HaskTyVar Γ ★)) as lev.
+  Definition flatten_type {Γ}{κ}(ht:HaskType Γ κ) : HaskType Γ κ :=
+    fun TV ite => flatten_rawtype (ht TV ite).
 
-    unfold hom; unfold ob; unfold ehom; simpl; unfold pmon_I; unfold obact; intros.
+  Fixpoint levels_to_tcode {Γ}(ht:HaskType Γ ★)(lev:HaskLevel Γ) : HaskType Γ ★ :=
+    match lev with
+      | nil      => flatten_type ht
+      | ec::lev' => @ga_mk _ (v2t ec) [] [levels_to_tcode ht lev']
+    end.
+
+  Definition flatten_leveled_type {Γ}(ht:LeveledHaskType Γ ★) : LeveledHaskType Γ ★ :=
+    levels_to_tcode (unlev ht) (getlev ht) @@ nil.
+
+  (* AXIOMS *)
+
+  Axiom literal_types_unchanged : forall Γ l, flatten_type (literalType l) = literalType(Γ:=Γ) l.
+
+  Axiom flatten_coercion : forall Γ Δ κ (σ τ:HaskType Γ κ) (γ:HaskCoercion Γ Δ (σ ∼∼∼ τ)),
+    HaskCoercion Γ Δ (flatten_type σ ∼∼∼ flatten_type τ).
 
-    induction X; simpl.
+  Axiom flatten_commutes_with_substT :
+    forall  κ Γ (Δ:CoercionEnv Γ) (σ:∀ TV, InstantiatedTypeEnv TV Γ → TV κ → RawHaskType TV ★) (τ:HaskType Γ κ),
+    flatten_type  (substT σ τ) = substT (fun TV ite v => flatten_rawtype  (σ TV ite v))
+      (flatten_type  τ).
 
-    (* the proof from no hypotheses of no conclusions (nd_id0) becomes RVoid *)
-    apply nd_rule; apply (org_fc Γ Δ [] [(_,_)] (RVoid _ _)). apply Flat_RVoid.
+  Axiom flatten_commutes_with_HaskTAll :
+    forall  κ Γ (Δ:CoercionEnv Γ) (σ:∀ TV, InstantiatedTypeEnv TV Γ → TV κ → RawHaskType TV ★),
+    flatten_type  (HaskTAll κ σ) = HaskTAll κ (fun TV ite v => flatten_rawtype (σ TV ite v)).
 
-    (* the proof from hypothesis X of conclusion X (nd_id1) becomes RVar *)
-    apply nd_rule; apply (org_fc _ _ [] [(_,_)] (RVar _ _ _ _)). apply Flat_RVar.
+  Axiom flatten_commutes_with_HaskTApp :
+    forall  κ Γ (Δ:CoercionEnv Γ) (σ:∀ TV, InstantiatedTypeEnv TV Γ → TV κ → RawHaskType TV ★),
+    flatten_type  (HaskTApp (weakF σ) (FreshHaskTyVar κ)) =
+    HaskTApp (weakF (fun TV ite v => flatten_rawtype  (σ TV ite v))) (FreshHaskTyVar κ).
+
+  Axiom flatten_commutes_with_weakLT : forall (Γ:TypeEnv) κ  t,
+    flatten_leveled_type  (weakLT(Γ:=Γ)(κ:=κ) t) = weakLT(Γ:=Γ)(κ:=κ) (flatten_leveled_type  t).
+
+  Axiom globals_do_not_have_code_types : forall (Γ:TypeEnv) (g:Global Γ) v,
+    flatten_type (g v) = g v.
+
+  (* "n" is the maximum depth remaining AFTER flattening *)
+  Definition flatten_judgment (j:Judg) :=
+    match j as J return Judg with
+      | Γ > Δ > ant |- suc @ nil        => Γ > Δ > mapOptionTree flatten_leveled_type ant
+                                                |- mapOptionTree flatten_type suc @ nil
+      | Γ > Δ > ant |- suc @ (ec::lev') => Γ > Δ > mapOptionTree flatten_leveled_type (drop_lev (ec::lev') ant)
+                                                |- [ga_mk (v2t ec)
+                                                  (mapOptionTree (flatten_type ○ unlev) (take_lev (ec::lev') ant))
+                                                  (mapOptionTree  flatten_type                               suc )
+                                                  ] @ nil
+    end.
 
-    (* the proof from hypothesis X of no conclusions (nd_weak) becomes RWeak;;RVoid *)
-    eapply nd_comp;
-      [ idtac
-      | eapply nd_rule
-      ; eapply (org_fc  _ _ [(_,_)] [(_,_)] (RArrange _ _ _ _ _ (RWeak _)))
-      ; auto ].
+  Class garrow :=
+  { ga_id        : ∀ Γ Δ ec l a    , ND Rule [] [Γ > Δ >                          [] |- [@ga_mk Γ ec a a ]@l ]
+  ; ga_cancelr   : ∀ Γ Δ ec l a    , ND Rule [] [Γ > Δ >                          [] |- [@ga_mk Γ ec (a,,[]) a ]@l ]
+  ; ga_cancell   : ∀ Γ Δ ec l a    , ND Rule [] [Γ > Δ >                          [] |- [@ga_mk Γ ec ([],,a) a ]@l ]
+  ; ga_uncancelr : ∀ Γ Δ ec l a    , ND Rule [] [Γ > Δ >                          [] |- [@ga_mk Γ ec a (a,,[]) ]@l ]
+  ; ga_uncancell : ∀ Γ Δ ec l a    , ND Rule [] [Γ > Δ >                          [] |- [@ga_mk Γ ec a ([],,a) ]@l ]
+  ; ga_assoc     : ∀ Γ Δ ec l a b c, ND Rule [] [Γ > Δ >                          [] |- [@ga_mk Γ ec ((a,,b),,c) (a,,(b,,c)) ]@l ]
+  ; ga_unassoc   : ∀ Γ Δ ec l a b c, ND Rule [] [Γ > Δ >                          [] |- [@ga_mk Γ ec (a,,(b,,c)) ((a,,b),,c) ]@l ]
+  ; ga_swap      : ∀ Γ Δ ec l a b  , ND Rule [] [Γ > Δ >                          [] |- [@ga_mk Γ ec (a,,b) (b,,a) ]@l ]
+  ; ga_drop      : ∀ Γ Δ ec l a    , ND Rule [] [Γ > Δ >                          [] |- [@ga_mk Γ ec a [] ]@l ]
+  ; ga_copy      : ∀ Γ Δ ec l a    , ND Rule [] [Γ > Δ >                          [] |- [@ga_mk Γ ec a (a,,a) ]@l ]
+  ; ga_first     : ∀ Γ Δ ec l a b x, ND Rule [] [Γ > Δ >      [@ga_mk Γ ec a b @@l] |- [@ga_mk Γ ec (a,,x) (b,,x) ]@l ]
+  ; ga_second    : ∀ Γ Δ ec l a b x, ND Rule [] [Γ > Δ >      [@ga_mk Γ ec a b @@l] |- [@ga_mk Γ ec (x,,a) (x,,b) ]@l ]
+  ; ga_lit       : ∀ Γ Δ ec l lit  , ND Rule [] [Γ > Δ >                          [] |- [@ga_mk Γ ec [] [literalType lit] ]@l ]
+  ; ga_curry     : ∀ Γ Δ ec l a b c, ND Rule [] [Γ > Δ > [@ga_mk Γ ec (a,,[b]) [c] @@ l] |- [@ga_mk Γ ec a [b ---> c] ]@ l ]
+  ; ga_comp      : ∀ Γ Δ ec l a b c, ND Rule [] [Γ > Δ > [@ga_mk Γ ec a b @@ l],,[@ga_mk Γ ec b c @@ l] |- [@ga_mk Γ ec a c ]@l ] 
+  ; ga_apply     : ∀ Γ Δ ec l a a' b c,
+                 ND Rule [] [Γ > Δ > [@ga_mk Γ ec a [b ---> c] @@ l],,[@ga_mk Γ ec a' [b] @@ l] |- [@ga_mk Γ ec (a,,a') [c] ]@l ]
+  ; ga_kappa     : ∀ Γ Δ ec l a b Σ, ND Rule
+  [Γ > Δ > Σ,,[@ga_mk Γ ec [] a @@ l] |- [@ga_mk Γ ec [] b ]@l ]
+  [Γ > Δ > Σ          |- [@ga_mk Γ ec a  b ]@l ]
+  }.
+  Context `(gar:garrow).
+
+  Notation "a ~~~~> b" := (@ga_mk _ _ a b) (at level 20).
+
+  Definition boost : forall Γ Δ ant x y {lev},
+    ND Rule []                         [ Γ > Δ > [x@@lev] |- [y]@lev ] ->
+    ND Rule [ Γ > Δ > ant |- [x]@lev ] [ Γ > Δ > ant      |- [y]@lev ].
+    intros.
+    eapply nd_comp; [ idtac | eapply nd_rule; eapply RArrange; eapply ACanR ].
+    eapply nd_comp; [ idtac | eapply nd_rule; apply RLet ].
+    eapply nd_comp; [ apply nd_rlecnac | idtac ].
+    apply nd_prod.
+    apply nd_id.
+    eapply nd_comp.
+      apply X.
       eapply nd_rule.
-      eapply (org_fc _ _ [] [(_,_)] (RVoid _ _)); auto. apply Flat_RVoid.
-      apply Flat_RArrange.
+      eapply RArrange.
+      apply AuCanR.
+    Defined.
 
-    (* the proof from hypothesis X of two identical conclusions X,,X (nd_copy) becomes RVar;;RJoin;;RCont *)
-    eapply nd_comp; [ idtac | eapply nd_rule; eapply (org_fc _ _ [(_,_)] [(_,_)] (RArrange _ _ _ _ _ (RCont _))) ].
-      eapply nd_comp; [ apply nd_llecnac | idtac ].
-      set (snd_initial(SequentND:=pl_snd(ProgrammingLanguage:=SystemFCa Γ Δ))
-        (mapOptionTree (guestJudgmentAsGArrowType) h @@@ lev)) as q.
-      eapply nd_comp.
-      eapply nd_prod.
-      apply q.
-      apply q.
-      apply nd_rule. 
-      eapply (org_fc _ _ ([(_,_)],,[(_,_)]) [(_,_)] (RJoin _ _ _ _ _ _ )).
-      destruct h; simpl.
-      destruct o.
-      simpl.
-      apply Flat_RJoin.
-      apply Flat_RJoin.
-      apply Flat_RJoin.
-      apply Flat_RArrange.
+  Definition precompose Γ Δ ec : forall a x y z lev,
+    ND Rule
+      [ Γ > Δ > a                           |- [@ga_mk _ ec y z ]@lev ]
+      [ Γ > Δ > a,,[@ga_mk _ ec x y @@ lev] |- [@ga_mk _ ec x z ]@lev ].
+    intros.
+    eapply nd_comp; [ idtac | eapply nd_rule; eapply RLet ].
+    eapply nd_comp; [ apply nd_rlecnac | idtac ].
+    apply nd_prod.
+    apply nd_id.
+    eapply nd_comp; [ idtac | eapply nd_rule; eapply RArrange; eapply AExch ].
+    apply ga_comp.
+    Defined.
+
+  Definition precompose' Γ Δ ec : forall a b x y z lev,
+    ND Rule
+      [ Γ > Δ > a,,b                             |- [@ga_mk _ ec y z ]@lev ]
+      [ Γ > Δ > a,,([@ga_mk _ ec x y @@ lev],,b) |- [@ga_mk _ ec x z ]@lev ].
+    intros.
+    eapply nd_comp; [ idtac | eapply nd_rule; eapply RArrange; eapply ALeft; eapply AExch ].
+    eapply nd_comp; [ idtac | eapply nd_rule; eapply RArrange; eapply AuAssoc ].
+    apply precompose.
+    Defined.
+
+  Definition postcompose_ Γ Δ ec : forall a x y z lev,
+    ND Rule
+      [ Γ > Δ > a                           |- [@ga_mk _ ec x y ]@lev ]
+      [ Γ > Δ > a,,[@ga_mk _ ec y z @@ lev] |- [@ga_mk _ ec x z ]@lev ].
+    intros.
+    eapply nd_comp; [ idtac | eapply nd_rule; eapply RLet ].
+    eapply nd_comp; [ apply nd_rlecnac | idtac ].
+    apply nd_prod.
+    apply nd_id.
+    apply ga_comp.
+    Defined.
+
+  Definition postcompose  Γ Δ ec : forall x y z lev,
+    ND Rule [] [ Γ > Δ > []                       |- [@ga_mk _ ec x y ]@lev ] ->
+    ND Rule [] [ Γ > Δ > [@ga_mk _ ec y z @@ lev] |- [@ga_mk _ ec x z ]@lev ].
+    intros.
+    eapply nd_comp; [ idtac | eapply nd_rule; eapply RArrange; eapply ACanL ].
+    eapply nd_comp; [ idtac | eapply postcompose_ ].
+    apply X.
+    Defined.
+
+  Definition first_nd : ∀ Γ Δ ec lev a b c Σ,
+    ND Rule [ Γ > Δ > Σ                    |- [@ga_mk Γ ec a b ]@lev ]
+            [ Γ > Δ > Σ                    |- [@ga_mk Γ ec (a,,c) (b,,c) ]@lev ].
+    intros.
+    eapply nd_comp; [ idtac | eapply nd_rule; eapply RArrange; eapply ACanR ].
+    eapply nd_comp; [ idtac | eapply nd_rule; apply RLet ].
+    eapply nd_comp; [ apply nd_rlecnac | idtac ].
+    apply nd_prod.
+    apply nd_id.
+    eapply nd_comp; [ idtac | eapply nd_rule; eapply RArrange; eapply AuCanR ].
+    apply ga_first.
+    Defined.
+
+  Definition firstify : ∀ Γ Δ ec lev a b c Σ,
+    ND Rule [] [ Γ > Δ > Σ                    |- [@ga_mk Γ ec a b ]@lev ] ->
+    ND Rule [] [ Γ > Δ > Σ                    |- [@ga_mk Γ ec (a,,c) (b,,c) ]@lev ].
+    intros.
+    eapply nd_comp.
+    apply X.
+    apply first_nd.
+    Defined.
 
-    (* nd_prod becomes nd_llecnac;;nd_prod;;RJoin *)
+  Definition second_nd : ∀ Γ Δ ec lev a b c Σ,
+     ND Rule
+     [ Γ > Δ > Σ                    |- [@ga_mk Γ ec a b ]@lev ]
+     [ Γ > Δ > Σ                    |- [@ga_mk Γ ec (c,,a) (c,,b) ]@lev ].
+    intros.
+    eapply nd_comp; [ idtac | eapply nd_rule; eapply RArrange; eapply ACanR ].
+    eapply nd_comp; [ idtac | eapply nd_rule; apply RLet ].
+    eapply nd_comp; [ apply nd_rlecnac | idtac ].
+    apply nd_prod.
+    apply nd_id.
+    eapply nd_comp; [ idtac | eapply nd_rule; eapply RArrange; eapply AuCanR ].
+    apply ga_second.
+    Defined.
+
+  Definition secondify : ∀ Γ Δ ec lev a b c Σ,
+     ND Rule [] [ Γ > Δ > Σ                    |- [@ga_mk Γ ec a b ]@lev ] ->
+     ND Rule [] [ Γ > Δ > Σ                    |- [@ga_mk Γ ec (c,,a) (c,,b) ]@lev ].
+    intros.
     eapply nd_comp.
-      apply (nd_llecnac ;; nd_prod IHX1 IHX2).
+    apply X.
+    apply second_nd.
+    Defined.
+
+   Lemma ga_unkappa     : ∀ Γ Δ ec l a b Σ x,
+     ND Rule
+     [Γ > Δ > Σ                          |- [@ga_mk Γ ec (a,,x)  b ]@l ] 
+     [Γ > Δ > Σ,,[@ga_mk Γ ec [] a @@ l] |- [@ga_mk Γ ec x       b ]@l ].
+     intros.
+     eapply nd_comp; [ idtac | eapply nd_rule; eapply RArrange; eapply AExch ].
+     eapply nd_comp; [ idtac | eapply nd_rule; eapply RLet ].
+     eapply nd_comp; [ apply nd_llecnac | idtac ].
+     apply nd_prod.
+     apply ga_first.
+
+     eapply nd_comp; [ idtac | eapply nd_rule; eapply RLet ].
+     eapply nd_comp; [ apply nd_llecnac | idtac ].
+     apply nd_prod.
+     apply postcompose.
+     apply ga_uncancell.
+     eapply nd_comp; [ idtac | eapply nd_rule; eapply RArrange; eapply AExch ].
+     apply precompose.
+     Defined.
+
+  (* useful for cutting down on the pretty-printed noise
+  
+  Notation "`  x" := (take_lev _ x) (at level 20).
+  Notation "`` x" := (mapOptionTree unlev x) (at level 20).
+  Notation "``` x" := (drop_lev _ x) (at level 20).
+  *)
+  Definition flatten_arrangement' :
+    forall Γ (Δ:CoercionEnv Γ)
+      (ec:HaskTyVar Γ ECKind) (lev:HaskLevel Γ) (ant1 ant2:Tree ??(LeveledHaskType Γ ★)) (r:Arrange ant1 ant2),
+      ND Rule [] [Γ > Δ > [] |- [@ga_mk _ (v2t ec) (mapOptionTree (flatten_type ○ unlev) (take_lev (ec :: lev) ant2))
+        (mapOptionTree (flatten_type ○ unlev) (take_lev (ec :: lev) ant1)) ]@nil ].
+
+      intros Γ Δ ec lev.
+      refine (fix flatten ant1 ant2 (r:Arrange ant1 ant2):
+           ND Rule [] [Γ > Δ > [] |- [@ga_mk _ (v2t ec)
+             (mapOptionTree (flatten_type ○ unlev) (take_lev (ec :: lev) ant2))
+             (mapOptionTree (flatten_type ○ unlev) (take_lev (ec :: lev) ant1)) ]@nil] :=
+        match r as R in Arrange A B return
+          ND Rule [] [Γ > Δ > [] |- [@ga_mk _ (v2t ec)
+            (mapOptionTree (flatten_type ○ unlev) (take_lev (ec :: lev) B))
+            (mapOptionTree (flatten_type ○ unlev) (take_lev (ec :: lev) A)) ]@nil]
+          with
+          | AId  a               => let case_AId := tt    in ga_id _ _ _ _ _
+          | ACanL  a             => let case_ACanL := tt  in ga_uncancell _ _ _ _ _
+          | ACanR  a             => let case_ACanR := tt  in ga_uncancelr _ _ _ _ _
+          | AuCanL a             => let case_AuCanL := tt in ga_cancell _ _ _ _ _
+          | AuCanR a             => let case_AuCanR := tt in ga_cancelr _ _ _ _ _
+          | AAssoc a b c         => let case_AAssoc := tt in ga_assoc _ _ _ _ _ _ _
+          | AuAssoc a b c         => let case_AuAssoc := tt in ga_unassoc _ _ _ _ _ _ _
+          | AExch  a b           => let case_AExch := tt  in ga_swap  _ _ _ _ _ _
+          | AWeak  a             => let case_AWeak := tt  in ga_drop _ _ _ _ _ 
+          | ACont  a             => let case_ACont := tt  in ga_copy  _ _ _ _ _ 
+          | ALeft  a b c r'      => let case_ALeft := tt  in flatten _ _ r' ;; boost _ _ _ _ _ (ga_second _ _ _ _ _ _ _)
+          | ARight a b c r'      => let case_ARight := tt in flatten _ _ r' ;; boost _ _ _ _ _ (ga_first  _ _ _ _ _ _ _)
+          | AComp  c b a r1 r2   => let case_AComp := tt  in (fun r1' r2' => _) (flatten _ _ r1) (flatten _ _ r2)
+        end); clear flatten; repeat take_simplify; repeat drop_simplify; intros.
+
+        destruct case_AComp.
+          set (mapOptionTree (flatten_type ○ unlev) (take_lev (ec :: lev) a)) as a' in *.
+          set (mapOptionTree (flatten_type ○ unlev) (take_lev (ec :: lev) b)) as b' in *.
+          set (mapOptionTree (flatten_type ○ unlev) (take_lev (ec :: lev) c)) as c' in *.
+          eapply nd_comp; [ idtac | eapply nd_rule; eapply RArrange; apply ACanL ].
+          eapply nd_comp; [ idtac | eapply nd_rule; apply
+             (@RLet Γ Δ [] [] (@ga_mk _ (v2t ec) a' b') (@ga_mk _ (v2t ec) a' c')) ].
+          eapply nd_comp; [ apply nd_llecnac | idtac ].
+          apply nd_prod.
+          apply r2'.
+          eapply nd_comp; [ idtac | eapply nd_rule; eapply RArrange; apply AuCanR ].
+          eapply nd_comp; [ idtac | eapply nd_rule; eapply RArrange; apply ACanL ].
+          eapply nd_comp; [ idtac | eapply nd_rule;  apply RLet ].
+          eapply nd_comp; [ apply nd_llecnac | idtac ].
+          eapply nd_prod.
+          apply r1'.
+          eapply nd_comp; [ idtac | eapply nd_rule; eapply RArrange; eapply AExch ].
+          apply ga_comp.
+          Defined.
+
+  Definition flatten_arrangement :
+    forall Γ (Δ:CoercionEnv Γ) n
+      (ec:HaskTyVar Γ ECKind) (lev:HaskLevel Γ) (ant1 ant2:Tree ??(LeveledHaskType Γ ★)) (r:Arrange ant1 ant2) succ,
+      ND Rule
+      [Γ > Δ > mapOptionTree (flatten_leveled_type ) (drop_lev n ant1)
+        |- [@ga_mk _ (v2t ec)
+          (mapOptionTree (flatten_type ○ unlev) (take_lev (ec :: lev) ant1))
+          (mapOptionTree (flatten_type ) succ) ]@nil]
+      [Γ > Δ > mapOptionTree (flatten_leveled_type ) (drop_lev n ant2)
+        |- [@ga_mk _ (v2t ec)
+          (mapOptionTree (flatten_type ○ unlev) (take_lev (ec :: lev) ant2))
+          (mapOptionTree (flatten_type ) succ) ]@nil].
+      intros.
+      refine ( _ ;; (boost _ _ _ _ _ (postcompose _ _ _ _ _ _ _ (flatten_arrangement' Γ Δ ec lev ant1 ant2 r)))).
+      apply nd_rule.
+      apply RArrange.
+      refine ((fix flatten ant1 ant2 (r:Arrange ant1 ant2) :=
+        match r as R in Arrange A B return
+          Arrange (mapOptionTree (flatten_leveled_type ) (drop_lev _ A))
+          (mapOptionTree (flatten_leveled_type ) (drop_lev _ B)) with
+          | AId  a               => let case_AId := tt  in AId _
+          | ACanL  a             => let case_ACanL := tt  in ACanL _
+          | ACanR  a             => let case_ACanR := tt  in ACanR _
+          | AuCanL a             => let case_AuCanL := tt in AuCanL _
+          | AuCanR a             => let case_AuCanR := tt in AuCanR _
+          | AAssoc a b c         => let case_AAssoc := tt in AAssoc _ _ _
+          | AuAssoc a b c         => let case_AuAssoc := tt in AuAssoc _ _ _
+          | AExch  a b           => let case_AExch := tt  in AExch _ _
+          | AWeak  a             => let case_AWeak := tt  in AWeak _
+          | ACont  a             => let case_ACont := tt  in ACont _
+          | ALeft  a b c r'      => let case_ALeft := tt  in ALeft  _ (flatten _ _ r')
+          | ARight a b c r'      => let case_ARight := tt in ARight _ (flatten _ _ r')
+          | AComp  a b c r1 r2   => let case_AComp := tt  in AComp    (flatten _ _ r1) (flatten _ _ r2)
+        end) ant1 ant2 r); clear flatten; repeat take_simplify; repeat drop_simplify; intros.
+        Defined.
+
+  Definition flatten_arrangement'' :
+    forall  Γ Δ ant1 ant2 succ l (r:Arrange ant1 ant2),
+      ND Rule (mapOptionTree (flatten_judgment ) [Γ > Δ > ant1 |- succ @ l])
+      (mapOptionTree (flatten_judgment ) [Γ > Δ > ant2 |- succ @ l]).
+    intros.
+    simpl.
+    destruct l.
       apply nd_rule.
-      eapply (org_fc _ _ ([(_,_)],,[(_,_)]) [(_,_)] (RJoin _ _ _ _ _ _ )).
-      apply (Flat_RJoin Γ Δ (mapOptionTree guestJudgmentAsGArrowType h1 @@@ nil)
-       (mapOptionTree guestJudgmentAsGArrowType h2 @@@ nil)
-       (mapOptionTree guestJudgmentAsGArrowType c1 @@@ nil)
-       (mapOptionTree guestJudgmentAsGArrowType c2 @@@ nil)).
+      apply RArrange.
+      induction r; simpl.
+        apply AId.
+        apply ACanL.
+        apply ACanR.
+        apply AuCanL.
+        apply AuCanR.
+        apply AAssoc.
+        apply AuAssoc.
+        apply AExch.    (* TO DO: check for all-leaf trees here *)
+        apply AWeak.
+        apply ACont.
+        apply ALeft; auto.
+        apply ARight; auto.
+        eapply AComp; [ apply IHr1 | apply IHr2 ].
+
+      apply flatten_arrangement.
+        apply r.
+        Defined.
+
+  Definition ga_join Γ Δ Σ₁ Σ₂ a b ec :
+    ND Rule [] [Γ > Δ > Σ₁     |- [@ga_mk _ ec [] a      ]@nil] ->
+    ND Rule [] [Γ > Δ > Σ₂     |- [@ga_mk _ ec [] b      ]@nil] ->
+    ND Rule [] [Γ > Δ > Σ₁,,Σ₂ |- [@ga_mk _ ec [] (a,,b) ]@nil].
+    intro pfa.
+    intro pfb.
+    apply secondify with (c:=a)  in pfb.
+    apply firstify  with (c:=[])  in pfa.
+    eapply nd_comp; [ idtac | eapply nd_rule; eapply RLet ].
+    eapply nd_comp; [ eapply nd_llecnac | idtac ].
+    apply nd_prod.
+    apply pfa.
+    clear pfa.
+
+    eapply nd_comp; [ idtac | eapply nd_rule; eapply RLet ].
+    eapply nd_comp; [ apply nd_llecnac | idtac ].
+    apply nd_prod.
+    eapply nd_comp; [ idtac | eapply nd_rule; eapply RArrange; eapply ACanL ].
+    eapply nd_comp; [ idtac | eapply postcompose_ ].
+    apply ga_uncancelr.
+
+    eapply nd_comp; [ idtac | eapply nd_rule; eapply RArrange; eapply AExch ].
+    eapply nd_comp; [ idtac | eapply precompose ].
+    apply pfb.
+    Defined.
+
+  Definition arrange_brak : forall Γ Δ ec succ t,
+   ND Rule
+     [Γ > Δ > 
+      [(@ga_mk _ (v2t ec) [] (mapOptionTree (flatten_type ○ unlev) (take_lev (ec :: nil) succ))) @@  nil],,
+      mapOptionTree (flatten_leveled_type ) (drop_lev (ec :: nil) succ) |- [t]@nil]
+     [Γ > Δ > mapOptionTree (flatten_leveled_type ) succ |- [t]@nil].
 
-    (* nd_comp becomes pl_subst (aka nd_cut) *)
+    intros.
+    unfold drop_lev.
+    set (@arrangeUnPartition _ succ (levelMatch (ec::nil))) as q.
+    set (arrangeMap _ _ flatten_leveled_type q) as y.
     eapply nd_comp.
-      apply (nd_llecnac ;; nd_prod IHX1 IHX2).
-      clear IHX1 IHX2 X1 X2.
-      apply (@snd_cut _ _ _ _ (pl_snd(ProgrammingLanguage:=SystemFCa Γ Δ))). 
-
-    (* nd_cancell becomes RVar;;RuCanL *)
-    eapply nd_comp;
-      [ idtac | eapply nd_rule; apply (org_fc _ _ [(_,_)] [(_,_)] (RArrange _ _ _ _ _ (RuCanL _))) ].
-      apply (snd_initial(SequentND:=pl_cnd(ProgrammingLanguage:=(SystemFCa Γ Δ)))).
-      apply Flat_RArrange.
-
-    (* nd_cancelr becomes RVar;;RuCanR *)
-    eapply nd_comp;
-      [ idtac | eapply nd_rule; apply (org_fc _ _ [(_,_)] [(_,_)] (RArrange _ _ _ _ _ (RuCanR _))) ].
-      apply (snd_initial(SequentND:=pl_cnd(ProgrammingLanguage:=(SystemFCa Γ Δ)))).
-      apply Flat_RArrange.
-
-    (* nd_llecnac becomes RVar;;RCanL *)
-    eapply nd_comp;
-      [ idtac | eapply nd_rule; apply (org_fc _ _ [(_,_)] [(_,_)] (RArrange _ _ _ _ _ (RCanL _))) ].
-      apply (snd_initial(SequentND:=pl_cnd(ProgrammingLanguage:=(SystemFCa Γ Δ)))).
-      apply Flat_RArrange.
-
-    (* nd_rlecnac becomes RVar;;RCanR *)
-    eapply nd_comp;
-      [ idtac | eapply nd_rule; apply (org_fc _ _ [(_,_)] [(_,_)] (RArrange _ _ _ _ _ (RCanR _))) ].
-      apply (snd_initial(SequentND:=pl_cnd(ProgrammingLanguage:=(SystemFCa Γ Δ)))).
-      apply Flat_RArrange.
-
-    (* nd_assoc becomes RVar;;RAssoc *)
-    eapply nd_comp;
-      [ idtac | eapply nd_rule; apply (org_fc _ _ [(_,_)] [(_,_)] (RArrange _ _ _ _ _ (RAssoc _ _ _))) ].
-      apply (snd_initial(SequentND:=pl_cnd(ProgrammingLanguage:=(SystemFCa Γ Δ)))).
-      apply Flat_RArrange.
-
-    (* nd_cossa becomes RVar;;RCossa *)
-    eapply nd_comp;
-      [ idtac | eapply nd_rule; apply (org_fc _ _ [(_,_)] [(_,_)] (RArrange _ _ _ _ _ (RCossa _ _ _))) ].
-      apply (snd_initial(SequentND:=pl_cnd(ProgrammingLanguage:=(SystemFCa Γ Δ)))).
-      apply Flat_RArrange.
-
-      destruct r as [r rp].
-      rename h into h'.
-      rename c into c'.
-      rename r into r'.
-
-      refine (match rp as R in @Rule_PCF _ _ _ H C _
-                return
-                ND (OrgR Γ Δ) []
-                [sequent (mapOptionTree guestJudgmentAsGArrowType H @@@ nil)
-                  (mapOptionTree guestJudgmentAsGArrowType C @@@ nil)]
-                with
-                | PCF_RArrange         h c r q          => let case_RURule        := tt in _
-                | PCF_RLit             lit              => let case_RLit          := tt in _
-                | PCF_RNote            Σ τ   n          => let case_RNote         := tt in _
-                | PCF_RVar             σ                => let case_RVar          := tt in _
-                | PCF_RLam             Σ tx te          => let case_RLam          := tt in _
-                | PCF_RApp             Σ tx te   p      => let case_RApp          := tt in _
-                | PCF_RLet             Σ σ₁ σ₂   p      => let case_RLet          := tt in _
-                | PCF_RJoin    b c d e          => let case_RJoin := tt in _
-                | PCF_RVoid                       => let case_RVoid   := tt in _
-              (*| PCF_RCase            T κlen κ θ l x   => let case_RCase         := tt in _*)
-              (*| PCF_RLetRec          Σ₁ τ₁ τ₂ lev     => let case_RLetRec       := tt in _*)
-              end); simpl in *.
-      clear rp h' c' r'.
-
-      rewrite (unlev_lemma h (ec::nil)).
-      rewrite (unlev_lemma c (ec::nil)).
-      destruct case_RURule.
-        refine (match q as Q in Arrange H C
-                return
-                H=(h @@@ (ec :: nil)) ->
-                C=(c @@@ (ec :: nil)) ->
-                ND (OrgR Γ Δ) []
-                [sequent
-                  [ga_type (ga_rep (mapOptionTree unlev H)) (ga_rep r) @@ nil ]
-                  [ga_type (ga_rep (mapOptionTree unlev C)) (ga_rep r) @@ nil ] ]
-                  with
-          | RLeft   a b c r => let case_RLeft  := tt in _
-          | RRight  a b c r => let case_RRight := tt in _
-          | RCanL     b     => let case_RCanL  := tt in _
-          | RCanR     b     => let case_RCanR  := tt in _
-          | RuCanL    b     => let case_RuCanL := tt in _
-          | RuCanR    b     => let case_RuCanR := tt in _
-          | RAssoc    b c d => let case_RAssoc := tt in _
-          | RCossa    b c d => let case_RCossa := tt in _
-          | RExch     b c   => let case_RExch  := tt in _
-          | RWeak     b     => let case_RWeak  := tt in _
-          | RCont     b     => let case_RCont  := tt in _
-          | RComp a b c f g => let case_RComp  := tt in _
-        end (refl_equal _) (refl_equal _));
-        intros; simpl in *;
-        subst;
-        try rewrite <- unlev_lemma in *.
-
-      destruct case_RCanL.
-        apply magic.
-        apply ga_uncancell.
-        
-      destruct case_RCanR.
-        apply magic.
-        apply ga_uncancelr.
+    Focus 2.
+    eapply nd_rule.
+    eapply RArrange.
+    apply y.
+    idtac.
+    clear y q.
+    eapply nd_comp; [ idtac | eapply nd_rule; eapply RArrange; eapply AExch ].
+    simpl.
+    eapply nd_comp; [ apply nd_llecnac | idtac ].
+    eapply nd_comp; [ idtac | eapply nd_rule; eapply RLet ].
+    apply nd_prod.
+    Focus 2.
+    apply nd_id.
+    idtac.
+    induction succ; try destruct a; simpl.
+    unfold take_lev.
+    unfold mkTakeFlags.
+    unfold mkFlags.
+    unfold bnot.
+    simpl.
+    destruct l as [t' lev'].
+    destruct lev' as [|ec' lev'].
+    simpl.
+    apply ga_id.
+    unfold levelMatch.
+    set (@eqd_dec (HaskLevel Γ) (haskLevelEqDecidable Γ) (ec' :: lev') (ec :: nil)) as q.
+    destruct q.
+    inversion e; subst.
+    simpl.
+    apply nd_rule.
+    unfold flatten_leveled_type.
+    simpl.
+    unfold flatten_type.
+    simpl.
+    unfold ga_mk.
+    simpl.
+    apply RVar.
+    simpl.
+    apply ga_id.
+    apply ga_id.
+    unfold take_lev.
+    simpl.
+    apply ga_join.
+      apply IHsucc1.
+      apply IHsucc2.
+    Defined.
 
-      destruct case_RuCanL.
-        apply magic.
-        apply ga_cancell.
+  Definition arrange_esc : forall Γ Δ ec succ t,
+   ND Rule
+     [Γ > Δ > mapOptionTree (flatten_leveled_type ) succ |- [t]@nil]
+     [Γ > Δ > 
+      [(@ga_mk _ (v2t ec) [] (mapOptionTree (flatten_type ○ unlev) (take_lev (ec :: nil) succ))) @@  nil],,
+      mapOptionTree (flatten_leveled_type ) (drop_lev (ec :: nil) succ)  |- [t]@nil].
+    intros.
+    set (@arrangePartition _ succ (levelMatch (ec::nil))) as q.
+    set (@drop_lev Γ (ec::nil) succ) as q'.
+    assert (@drop_lev Γ (ec::nil) succ=q') as H.
+      reflexivity.
+    unfold drop_lev in H.
+    unfold mkDropFlags in H.
+    rewrite H in q.
+    clear H.
+    set (arrangeMap _ _ flatten_leveled_type q) as y.
+    eapply nd_comp.
+    eapply nd_rule.
+    eapply RArrange.
+    apply y.
+    clear y q.
 
-      destruct case_RuCanR.
-        apply magic.
-        apply ga_cancelr.
+    set (mapOptionTree flatten_leveled_type (dropT (mkFlags (liftBoolFunc false (bnot ○ levelMatch (ec :: nil))) succ))) as q.
+    destruct (decide_tree_empty q); [ idtac | apply (Prelude_error "escapifying open code not yet supported") ].
+    destruct s.
 
-      destruct case_RAssoc.
-        apply magic.
-        apply ga_assoc.
-        
-      destruct case_RCossa.
-        apply magic.
-        apply ga_unassoc.
+    simpl.
+    eapply nd_comp; [ idtac | eapply nd_rule; eapply RArrange; apply AExch ].
+    set (fun z z' => @RLet Γ Δ z (mapOptionTree flatten_leveled_type q') t z' nil) as q''.
+    eapply nd_comp; [ idtac | eapply nd_rule; apply RLet ].
+    clear q''.
+    eapply nd_comp; [ apply nd_rlecnac | idtac ].
+    apply nd_prod.
+    apply nd_rule.
+    apply RArrange.
+    eapply AComp; [ idtac | apply ACanR ].
+    apply ALeft.
+    apply (@arrangeCancelEmptyTree _ _ _ _ e).
+   
+    eapply nd_comp.
+      eapply nd_rule.
+      eapply (@RVar Γ Δ t nil).
+    apply nd_rule.
+      apply RArrange.
+      eapply AComp.
+      apply AuCanR.
+      apply ALeft.
+      apply AWeak.
+(*
+    eapply decide_tree_empty.
 
-      destruct case_RExch.
-        apply magic.
-        apply ga_swap.
-        
-      destruct case_RWeak.
-        apply magic.
-        apply ga_drop.
-        
-      destruct case_RCont.
-        apply magic.
-        apply ga_copy.
-        
-      destruct case_RLeft.
-        apply magic.
-        (*apply ga_second.*)
-        admit.
-        
-      destruct case_RRight.
-        apply magic.
-        (*apply ga_first.*)
-        admit.
+    simpl.
+    set (dropT (mkFlags (liftBoolFunc false (bnot ○ levelMatch (ec :: nil))) succ)) as escapified.
+    destruct (decide_tree_empty escapified).
+
+    induction succ.
+    destruct a.
+      unfold drop_lev.
+      destruct l.
+      simpl.
+      unfold mkDropFlags; simpl.
+      unfold take_lev.
+      unfold mkTakeFlags.
+      simpl.
+      destruct (General.list_eq_dec h0 (ec :: nil)).
+        simpl.
+        rewrite e.
+        apply nd_id.
+        simpl.
+        apply nd_rule.
+        apply RArrange.
+        apply ALeft.
+        apply AWeak.
+      simpl.
+        apply nd_rule.
+        unfold take_lev.
+        simpl.
+        apply RArrange.
+        apply ALeft.
+        apply AWeak.
+      apply (Prelude_error "escapifying code with multi-leaf antecedents is not supported").
+*)
+      Defined.
+
+  Lemma unlev_relev : forall {Γ}(t:Tree ??(HaskType Γ ★)) lev, mapOptionTree unlev (t @@@ lev) = t.
+    intros.
+    induction t.
+    destruct a; reflexivity.
+    rewrite <- IHt1 at 2.
+    rewrite <- IHt2 at 2.
+    reflexivity.
+    Qed.
+
+  Lemma tree_of_nothing : forall Γ ec t,
+    Arrange (mapOptionTree flatten_leveled_type (drop_lev(Γ:=Γ) (ec :: nil) (t @@@ (ec :: nil)))) [].
+    intros.
+    induction t; try destruct o; try destruct a.
+    simpl.
+    drop_simplify.
+    simpl.
+    apply AId.
+    simpl.
+    apply AId.
+    eapply AComp; [ idtac | apply ACanL ].
+    eapply AComp; [ idtac | eapply ALeft; apply IHt2 ].
+    Opaque drop_lev.
+    simpl.
+    Transparent drop_lev.
+    idtac.
+    drop_simplify.
+    apply ARight.
+    apply IHt1.
+    Defined.
+
+  Lemma tree_of_nothing' : forall Γ ec t,
+    Arrange [] (mapOptionTree flatten_leveled_type (drop_lev(Γ:=Γ) (ec :: nil) (t @@@ (ec :: nil)))).
+    intros.
+    induction t; try destruct o; try destruct a.
+    simpl.
+    drop_simplify.
+    simpl.
+    apply AId.
+    simpl.
+    apply AId.
+    eapply AComp; [ apply AuCanL | idtac ].
+    eapply AComp; [ eapply ARight; apply IHt1 | idtac ].
+    Opaque drop_lev.
+    simpl.
+    Transparent drop_lev.
+    idtac.
+    drop_simplify.
+    apply ALeft.
+    apply IHt2.
+    Defined.
+
+  Lemma krunk : forall Γ (ec:HaskTyVar Γ ECKind) t,
+    flatten_type (<[ ec |- t ]>)
+    = @ga_mk Γ (v2t ec)
+    (mapOptionTree flatten_type (take_arg_types_as_tree t))
+    [ flatten_type (drop_arg_types_as_tree   t)].
+    intros.
+    unfold flatten_type at 1.
+    simpl.
+    unfold ga_mk.
+    apply phoas_extensionality.
+    intros.
+    unfold v2t.
+    unfold ga_mk_raw.
+    unfold ga_mk_tree.
+    rewrite <- mapOptionTree_compose.
+    unfold take_arg_types_as_tree.
+    simpl.
+    replace (flatten_type (drop_arg_types_as_tree t) tv ite)
+      with (drop_arg_types (flatten_rawtype (t tv ite))).
+    replace (unleaves_ (take_arg_types (flatten_rawtype (t tv ite))))
+      with ((mapOptionTree (fun x : HaskType Γ ★ => flatten_type x tv ite)
+           (unleaves_
+              (take_trustme (count_arg_types (t (fun _ : Kind => unit) (ite_unit Γ)))
+                 (fun TV : Kind → Type => take_arg_types ○ t TV))))).
+    reflexivity.
+    unfold flatten_type.
+    clear hetmet_flatten.
+    clear hetmet_unflatten.
+    clear hetmet_id.
+    clear gar.
+    set (t tv ite) as x.
+    admit.
+    admit.
+    Qed.
+
+  Lemma drop_to_nothing : forall (Γ:TypeEnv) Σ (lev:HaskLevel Γ),
+    drop_lev lev (Σ @@@ lev) = mapTree (fun _ => None) (mapTree (fun _ => tt) Σ).
+    intros.
+    induction Σ.
+    destruct a; simpl.
+    drop_simplify.
+    auto.
+    drop_simplify.
+    auto.
+    simpl.
+    rewrite <- IHΣ1.
+    rewrite <- IHΣ2.
+    reflexivity.
+    Qed.
+
+  Definition flatten_skolemized_proof :
+    forall  {h}{c},
+      ND SRule h c ->
+      ND  Rule (mapOptionTree (flatten_judgment ) h) (mapOptionTree (flatten_judgment ) c).
+    intros.
+    eapply nd_map'; [ idtac | apply X ].
+    clear h c X.
+    intros.
+    simpl in *.
 
-      destruct case_RComp.
-        apply magic.
-        (*apply ga_comp.*)
-        admit.
+    refine 
+      (match X as R in SRule H C with
+      | SBrak    Γ Δ t ec succ lev           => let case_SBrak := tt         in _
+      | SEsc     Γ Δ t ec succ lev           => let case_SEsc := tt          in _
+      | SFlat    h c r                       => let case_SFlat := tt         in _
+      end).
 
-      destruct case_RLit.
+    destruct case_SFlat.
+    refine (match r as R in Rule H C with
+      | RArrange Γ Δ a b x l d         => let case_RArrange := tt      in _
+      | RNote    Γ Δ Σ τ l n           => let case_RNote := tt         in _
+      | RLit     Γ Δ l     _           => let case_RLit := tt          in _
+      | RVar     Γ Δ σ           lev   => let case_RVar := tt          in _
+      | RGlobal  Γ Δ σ l wev           => let case_RGlobal := tt       in _
+      | RLam     Γ Δ Σ tx te     lev   => let case_RLam := tt          in _
+      | RCast    Γ Δ Σ σ τ lev γ       => let case_RCast := tt         in _
+      | RAbsT    Γ Δ Σ κ σ lev         => let case_RAbsT := tt         in _
+      | RAppT    Γ Δ Σ κ σ τ     lev   => let case_RAppT := tt         in _
+      | RAppCo   Γ Δ Σ κ σ₁ σ₂ γ σ lev => let case_RAppCo := tt        in _
+      | RAbsCo   Γ Δ Σ κ σ  σ₁ σ₂  lev => let case_RAbsCo := tt        in _
+      | RApp     Γ Δ Σ₁ Σ₂ tx te lev   => let case_RApp := tt          in _
+      | RLet     Γ Δ Σ₁ Σ₂ σ₁ σ₂ lev   => let case_RLet := tt          in _
+      | RCut     Γ Δ Σ Σ₁ Σ₁₂ Σ₂ Σ₃ l  => let case_RCut := tt          in _
+      | RLeft    Γ Δ Σ₁ Σ₂  Σ     l    => let case_RLeft := tt in _
+      | RRight   Γ Δ Σ₁ Σ₂  Σ     l    => let case_RRight := tt in _
+      | RWhere   Γ Δ Σ₁ Σ₂ Σ₃ σ₁ σ₂ lev   => let case_RWhere := tt          in _
+      | RVoid    _ _       l           => let case_RVoid := tt   in _
+      | RBrak    Γ Δ t ec succ lev           => let case_RBrak := tt         in _
+      | REsc     Γ Δ t ec succ lev           => let case_REsc := tt          in _
+      | RCase    Γ Δ lev tc Σ avars tbranches alts => let case_RCase := tt         in _
+      | RLetRec  Γ Δ lri x y t         => let case_RLetRec := tt       in _
+      end); clear X h c.
+
+    destruct case_RArrange.
+      apply (flatten_arrangement''  Γ Δ a b x _ d).
+
+    destruct case_RBrak.
+      apply (Prelude_error "found unskolemized Brak rule; this shouldn't happen").
+
+    destruct case_REsc.
+      apply (Prelude_error "found unskolemized Esc rule; this shouldn't happen").
+      
+    destruct case_RNote.
+      simpl.
+      destruct l; simpl.
+        apply nd_rule; apply RNote; auto.
+        apply nd_rule; apply RNote; auto.
+
+    destruct case_RLit.
+      simpl.
+      destruct l0; simpl.
+        unfold flatten_leveled_type.
+        simpl.
+        rewrite literal_types_unchanged.
+          apply nd_rule; apply RLit.
+        unfold take_lev; simpl.
+        unfold drop_lev; simpl.
+        simpl.
+        rewrite literal_types_unchanged.
         apply ga_lit.
 
-      (* hey cool, I figured out how to pass CoreNote's through... *)
-      destruct case_RNote.
+    destruct case_RVar.
+      Opaque flatten_judgment.
+      simpl.
+      Transparent flatten_judgment.
+      idtac.
+      unfold flatten_judgment.
+      destruct lev.
+      apply nd_rule. apply RVar.
+      repeat drop_simplify.      
+      repeat take_simplify.
+      simpl.
+      apply ga_id.      
+
+    destruct case_RGlobal.
+      simpl.
+      rename l into g.
+      rename σ into l.
+      destruct l as [|ec lev]; simpl. 
+        destruct (eqd_dec (g:CoreVar) (hetmet_flatten:CoreVar)).
+          set (flatten_type (g wev)) as t.
+          set (RGlobal _ Δ nil (mkGlobal Γ t hetmet_id)) as q.
+          simpl in q.
+          apply nd_rule.
+          apply q.
+          apply INil.
+        destruct (eqd_dec (g:CoreVar) (hetmet_unflatten:CoreVar)).
+          set (flatten_type (g wev)) as t.
+          set (RGlobal _ Δ nil (mkGlobal Γ t hetmet_id)) as q.
+          simpl in q.
+          apply nd_rule.
+          apply q.
+          apply INil.
+        unfold flatten_leveled_type. simpl.
+          apply nd_rule; rewrite globals_do_not_have_code_types.
+          apply RGlobal.
+      apply (Prelude_error "found RGlobal at depth >0; globals should never appear inside code brackets unless escaped").
+
+    destruct case_RLam.
+      Opaque drop_lev.
+      Opaque take_lev.
+      simpl.
+      destruct lev as [|ec lev]; simpl; [ apply nd_rule; apply RLam; auto | idtac ].
+      repeat drop_simplify.
+      repeat take_simplify.
+      eapply nd_comp.
+        eapply nd_rule.
+        eapply RArrange.
+        simpl.
+        apply ACanR.
+      apply boost.
+      simpl.
+      apply ga_curry.
+
+    destruct case_RCast.
+      simpl.
+      destruct lev as [|ec lev]; simpl; [ apply nd_rule; apply RCast; auto | idtac ].
+      simpl.
+      apply flatten_coercion; auto.
+      apply (Prelude_error "RCast at level >0; casting inside of code brackets is currently not supported").
+
+    destruct case_RApp.
+      simpl.
+
+      destruct lev as [|ec lev].
+        unfold flatten_type at 1.
+        simpl.
+        apply nd_rule.
+        apply RApp.
+
+        repeat drop_simplify.
+          repeat take_simplify.
+          rewrite mapOptionTree_distributes.
+          set (mapOptionTree (flatten_leveled_type ) (drop_lev (ec :: lev) Σ₁)) as Σ₁'.
+          set (mapOptionTree (flatten_leveled_type ) (drop_lev (ec :: lev) Σ₂)) as Σ₂'.
+          set (take_lev (ec :: lev) Σ₁) as Σ₁''.
+          set (take_lev (ec :: lev) Σ₂) as Σ₂''.
+          replace (flatten_type  (tx ---> te)) with ((flatten_type  tx) ---> (flatten_type  te)).
+          apply (Prelude_error "FIXME: ga_apply").
+          reflexivity.
+
+(*
+  Notation "`  x" := (take_lev _ x).
+  Notation "`` x" := (mapOptionTree unlev x) (at level 20).
+  Notation "``` x" := ((drop_lev _ x)) (at level 20).
+  Notation "!<[]> x" := (flatten_type _ x) (at level 1).
+  Notation "!<[@]> x" := (mapOptionTree flatten_leveled_type x) (at level 1).
+*)
+
+    destruct case_RLet.
+      simpl.
+      destruct lev as [|ec lev]; simpl; [ apply nd_rule; apply RLet; auto | idtac ].
+      repeat drop_simplify.
+      repeat take_simplify.
+      simpl.
+
+      set (mapOptionTree (flatten_type ○ unlev) (take_lev (ec :: lev) Σ₁)) as Σ₁'.
+      set (mapOptionTree (flatten_type ○ unlev) (take_lev (ec :: lev) Σ₂)) as Σ₂'.
+      set (mapOptionTree flatten_leveled_type (drop_lev (ec :: lev) Σ₁)) as Σ₁''.
+      set (mapOptionTree flatten_leveled_type (drop_lev (ec :: lev) Σ₂)) as Σ₂''.
+
+      eapply nd_comp.
+      eapply nd_prod; [ idtac | apply nd_id ].
+      eapply boost.
+      apply (ga_first _ _ _ _ _ _ Σ₂').
+
+      eapply nd_comp; [ idtac | eapply nd_rule; eapply RLet ].
+      apply nd_prod.
+      apply nd_id.
+      eapply nd_comp; [ eapply nd_rule; eapply RArrange; eapply ACanL | idtac ].
+      eapply nd_comp; [ idtac | eapply nd_rule; eapply RArrange; eapply AExch (* okay *)].
+      apply precompose.
+
+    destruct case_RWhere.
+      simpl.
+      destruct lev as [|ec lev]; simpl; [ apply nd_rule; apply RWhere; auto | idtac ].
+      repeat take_simplify.
+      repeat drop_simplify.
+      simpl.
+
+      set (mapOptionTree (flatten_type ○ unlev) (take_lev (ec :: lev) Σ₁)) as Σ₁'.
+      set (mapOptionTree (flatten_type ○ unlev) (take_lev (ec :: lev) Σ₂)) as Σ₂'.
+      set (mapOptionTree (flatten_type ○ unlev) (take_lev (ec :: lev) Σ₃)) as Σ₃'.
+      set (mapOptionTree flatten_leveled_type (drop_lev (ec :: lev) Σ₁)) as Σ₁''.
+      set (mapOptionTree flatten_leveled_type (drop_lev (ec :: lev) Σ₂)) as Σ₂''.
+      set (mapOptionTree flatten_leveled_type (drop_lev (ec :: lev) Σ₃)) as Σ₃''.
+
+      eapply nd_comp.
+      eapply nd_prod; [ eapply nd_id | idtac ].
+      eapply (first_nd _ _ _ _ _ _ Σ₃').
+      eapply nd_comp.
+      eapply nd_prod; [ eapply nd_id | idtac ].
+      eapply (second_nd _ _ _ _ _ _ Σ₁').
+
+      eapply nd_comp; [ idtac | eapply nd_rule; eapply RWhere ].
+      apply nd_prod; [ idtac | apply nd_id ].
+      eapply nd_comp; [ idtac | eapply precompose' ].
+      apply nd_rule.
+      apply RArrange.
+      apply ALeft.
+      apply ACanL.
+
+    destruct case_RCut.
+      simpl.
+      destruct l as [|ec lev]; simpl.
+        apply nd_rule.
+        replace (mapOptionTree flatten_leveled_type (Σ₁₂ @@@ nil)) with (mapOptionTree flatten_type Σ₁₂ @@@ nil).
+        apply RCut.
+        induction Σ₁₂; try destruct a; auto.
+        simpl.
+        rewrite <- IHΣ₁₂1.
+        rewrite <- IHΣ₁₂2.
+        reflexivity.
+      simpl; repeat drop_simplify.
+      simpl; repeat take_simplify.
+      simpl.
+      set (drop_lev (ec :: lev) (Σ₁₂ @@@ (ec :: lev))) as x1.
+      rewrite take_lemma'.
+      rewrite mapOptionTree_compose.
+      rewrite mapOptionTree_compose.
+      rewrite mapOptionTree_compose.
+      rewrite mapOptionTree_compose.
+      rewrite unlev_relev.
+      rewrite <- mapOptionTree_compose.
+      rewrite <- mapOptionTree_compose.
+      rewrite <- mapOptionTree_compose.
+      eapply nd_comp; [ idtac | eapply nd_rule; eapply RCut ]. 
+      apply nd_prod.
+      apply nd_id.
+      eapply nd_comp.
+      eapply nd_rule.
+      eapply RArrange.
+      eapply ALeft.
+      eapply ARight.
+      unfold x1.
+      rewrite drop_to_nothing.
+      apply arrangeCancelEmptyTree with (q:=(mapTree (fun _ : ??(HaskType Γ ★) => tt) Σ₁₂)).
+      admit. (* OK *)
+      eapply nd_comp; [ eapply nd_rule; eapply RArrange; eapply ALeft; eapply ACanL | idtac ].
+      set (mapOptionTree flatten_type Σ₁₂) as a.
+      set (mapOptionTree (flatten_type ○ unlev) (take_lev (ec :: lev) Σ₁)) as b.
+      set (mapOptionTree flatten_leveled_type (drop_lev (ec :: lev) Σ₂)) as c.
+      set (mapOptionTree (flatten_type ○ unlev) (take_lev (ec :: lev) Σ₂)) as d.
+      set (mapOptionTree flatten_leveled_type (drop_lev (ec :: lev) Σ)) as e.
+      set (mapOptionTree (flatten_type ○ unlev) (take_lev (ec :: lev) Σ)) as f.
+      eapply nd_comp; [ idtac | eapply nd_rule; eapply RCut ].
+      eapply nd_comp; [ apply nd_llecnac | idtac ].
+      apply nd_prod.
+      simpl.
+      eapply secondify.
+      apply ga_first.
+      eapply nd_comp; [ idtac | eapply nd_rule; eapply RArrange; eapply ALeft; eapply AExch ].
+      eapply nd_comp; [ idtac | eapply nd_rule; eapply RArrange; eapply AuAssoc ].
+      simpl.
+      apply precompose.
+
+    destruct case_RLeft.
+      simpl.
+      destruct l as [|ec lev].
+      simpl.
+        replace (mapOptionTree flatten_leveled_type (Σ @@@ nil)) with (mapOptionTree flatten_type Σ @@@ nil).
+        apply nd_rule.
+        apply RLeft.
+        induction Σ; try destruct a; auto.
+        simpl.
+        rewrite <- IHΣ1.
+        rewrite <- IHΣ2.
+        reflexivity.
+      repeat drop_simplify.
+        rewrite drop_to_nothing.
+        simpl.
         eapply nd_comp.
+        Focus 2.
         eapply nd_rule.
-        eapply (org_fc _ _ [] [(_,_)] (RVar _ _ _ _)) . auto.
-        apply Flat_RVar.
+        eapply RArrange.
+        eapply ARight.
+        apply arrangeUnCancelEmptyTree with (q:=(mapTree (fun _ : ??(HaskType Γ ★) => tt) Σ)).
+        admit (* FIXME *).
+        idtac.
+        eapply nd_comp; [ idtac | eapply nd_rule; eapply RArrange; eapply AuCanL ].
+        apply boost.
+        take_simplify.
+        simpl.
+        replace (take_lev (ec :: lev) (Σ @@@ (ec :: lev))) with (Σ @@@ (ec::lev)).
+        rewrite mapOptionTree_compose.
+        rewrite mapOptionTree_compose.
+        rewrite unlev_relev.
+        apply ga_second.
+      rewrite take_lemma'.
+      reflexivity.
+        
+    destruct case_RRight.
+      simpl.
+      destruct l as [|ec lev].
+      simpl.
+        replace (mapOptionTree flatten_leveled_type (Σ @@@ nil)) with (mapOptionTree flatten_type Σ @@@ nil).
         apply nd_rule.
-        apply (org_fc _ _ [(_,_)] [(_,_)] (RNote _ _ _ _ _ n)). auto.
-        apply Flat_RNote.
+        apply RRight.
+        induction Σ; try destruct a; auto.
+        simpl.
+        rewrite <- IHΣ1.
+        rewrite <- IHΣ2.
+        reflexivity.
+      repeat drop_simplify.
+        rewrite drop_to_nothing.
+        simpl.
+        eapply nd_comp.
+        Focus 2.
+        eapply nd_rule.
+        eapply RArrange.
+        eapply ALeft.
+        apply arrangeUnCancelEmptyTree with (q:=(mapTree (fun _ : ??(HaskType Γ ★) => tt) Σ)).
+        admit (* FIXME *).
+        idtac.
+        eapply nd_comp; [ idtac | eapply nd_rule; eapply RArrange; eapply AuCanR ].
+        apply boost.
+        take_simplify.
+        simpl.
+        replace (take_lev (ec :: lev) (Σ @@@ (ec :: lev))) with (Σ @@@ (ec::lev)).
+        rewrite mapOptionTree_compose.
+        rewrite mapOptionTree_compose.
+        rewrite unlev_relev.
+        apply ga_first.
+      rewrite take_lemma'.
+      reflexivity.
+
+    destruct case_RVoid.
+      simpl.
+      apply nd_rule.
+      destruct l.
+      apply RVoid.
+      apply (Prelude_error "RVoid at level >0").
         
-      destruct case_RVar.
+    destruct case_RAppT.
+      simpl. destruct lev; simpl.
+      unfold flatten_leveled_type.
+      simpl.
+      rewrite flatten_commutes_with_HaskTAll.
+      rewrite flatten_commutes_with_substT.
+      apply nd_rule.
+      apply RAppT.
+      apply Δ.
+      apply Δ.
+      apply (Prelude_error "found type application at level >0; this is not supported").
+
+    destruct case_RAbsT.
+      simpl. destruct lev; simpl.
+      rewrite flatten_commutes_with_HaskTAll.
+      rewrite flatten_commutes_with_HaskTApp.
+      eapply nd_comp; [ idtac | eapply nd_rule; eapply RAbsT ].
+      simpl.
+      set (mapOptionTree (flatten_leveled_type ) (mapOptionTree (weakLT(κ:=κ)) Σ)) as a.
+      set (mapOptionTree (weakLT(κ:=κ)) (mapOptionTree (flatten_leveled_type ) Σ)) as q'.
+      assert (a=q').
+        unfold a.
+        unfold q'.
+        clear a q'.
+        induction Σ.
+          destruct a.
+          simpl.
+          rewrite flatten_commutes_with_weakLT.
+          reflexivity.
+          reflexivity.
+          simpl.
+          rewrite <- IHΣ1.
+          rewrite <- IHΣ2.
+          reflexivity.
+      rewrite H.
+      apply nd_id.
+      apply Δ.
+      apply Δ.
+      apply (Prelude_error "found type abstraction at level >0; this is not supported").
+
+    destruct case_RAppCo.
+      simpl. destruct lev; simpl.
+      unfold flatten_type.
+      simpl.
+      apply nd_rule.
+      apply RAppCo.
+      apply flatten_coercion.
+      apply γ.
+      apply (Prelude_error "found coercion application at level >0; this is not supported").
+
+    destruct case_RAbsCo.
+      simpl. destruct lev; simpl.
+      unfold flatten_type.
+      simpl.
+      apply (Prelude_error "AbsCo not supported (FIXME)").
+      apply (Prelude_error "found coercion abstraction at level >0; this is not supported").
+
+    destruct case_RLetRec.
+      rename t into lev.
+      simpl. destruct lev; simpl.
+      apply nd_rule.
+      set (@RLetRec Γ Δ (mapOptionTree flatten_leveled_type lri) (flatten_type x) (mapOptionTree flatten_type y) nil) as q.
+      replace (mapOptionTree flatten_leveled_type (y @@@ nil)) with (mapOptionTree flatten_type y @@@ nil).
+      apply q.
+        induction y; try destruct a; auto.
+        simpl.
+        rewrite IHy1.
+        rewrite IHy2.
+        reflexivity.
+      apply (Prelude_error "LetRec not supported inside brackets yet (FIXME)").
+
+    destruct case_RCase.
+      simpl.
+      apply (Prelude_error "Case not supported (BIG FIXME)").
+
+    destruct case_SBrak.
+      simpl.
+      destruct lev.
+      drop_simplify.
+      set (drop_lev (ec :: nil) (take_arg_types_as_tree t @@@ (ec :: nil))) as empty_tree.
+      take_simplify.
+      rewrite take_lemma'.
+      simpl.
+      rewrite mapOptionTree_compose.
+      rewrite mapOptionTree_compose.
+      rewrite unlev_relev.
+      rewrite <- mapOptionTree_compose.
+      simpl.
+      rewrite krunk.
+      set (mapOptionTree flatten_leveled_type (drop_lev (ec :: nil) succ)) as succ_host.
+      set (mapOptionTree (flatten_type ○ unlev)(take_lev (ec :: nil) succ)) as succ_guest.
+      set (mapOptionTree flatten_type (take_arg_types_as_tree t)) as succ_args.
+      unfold empty_tree.
+      eapply nd_comp; [ eapply nd_rule; eapply RArrange; eapply ALeft; apply tree_of_nothing | idtac ].
+      eapply nd_comp; [ eapply nd_rule; eapply RArrange; eapply ACanR | idtac ].
+      refine (ga_unkappa Γ Δ (v2t ec) nil _ _ _ _ ;; _).
+      eapply nd_comp; [ idtac | eapply arrange_brak ].
+      unfold succ_host.
+      unfold succ_guest.
+      eapply nd_rule.
+        eapply RArrange.
+        apply AExch.
+      apply (Prelude_error "found Brak at depth >0 indicating 3-level code; only two-level code is currently supported").
+
+    destruct case_SEsc.
+      simpl.
+      destruct lev.
+      simpl.
+      unfold flatten_leveled_type at 2.
+      simpl.
+      rewrite krunk.
+      rewrite mapOptionTree_compose.
+      take_simplify.
+      drop_simplify.
+      simpl.
+      eapply nd_comp; [ idtac | eapply nd_rule; eapply RArrange; eapply ALeft; apply tree_of_nothing' ].
+      eapply nd_comp; [ idtac | eapply nd_rule; eapply RArrange; eapply ACanR ].
+      simpl.
+      rewrite take_lemma'.
+      rewrite unlev_relev.
+      rewrite <- mapOptionTree_compose.
+      eapply nd_comp; [ apply (arrange_esc _ _ ec) | idtac ].
+
+      set (decide_tree_empty (take_lev (ec :: nil) succ)) as q'.
+      destruct q'.
+      destruct s.
+      rewrite e.
+      clear e.
+
+      set (mapOptionTree flatten_leveled_type (drop_lev (ec :: nil) succ)) as succ_host.
+      set (mapOptionTree flatten_type (take_arg_types_as_tree t)) as succ_args.
+
+      eapply nd_comp; [ idtac | eapply nd_rule; eapply RArrange; apply AuCanR ].
+      eapply nd_comp; [ idtac | eapply nd_rule; eapply RArrange; apply AuCanR ].
+      eapply nd_comp; [ idtac | eapply nd_rule; eapply RArrange; apply ACanL ].
+      eapply nd_comp; [ idtac | eapply nd_rule; eapply RLet ].
+      eapply nd_comp; [ apply nd_llecnac | idtac ].
+      apply nd_prod; [ idtac | eapply boost ].
+      induction x.
         apply ga_id.
+        eapply nd_comp; [ idtac | eapply nd_rule; eapply RArrange; eapply ACanL ].
+        simpl.
+        apply ga_join.
+          apply IHx1.
+          apply IHx2.
+          simpl.
+          apply postcompose.
+
+      refine ( _ ;; (boost _ _ _ _ _ (postcompose _ _ _ _ _ _ _ _))).
+      apply ga_cancell.
+      apply firstify.
 
-      (*
-       *   class GArrow g (**) u => GArrowApply g (**) u (~>) where
-       *     ga_applyl    :: g (x**(x~>y)   ) y
-       *     ga_applyr    :: g (   (x~>y)**x) y
-       *   
-       *   class GArrow g (**) u => GArrowCurry g (**) u (~>) where
-       *     ga_curryl    :: g (x**y) z  ->  g x (y~>z)
-       *     ga_curryr    :: g (x**y) z  ->  g y (x~>z)
-       *)
-      destruct case_RLam.
-        (* GArrowCurry.ga_curry *)
-        admit.
-
-      destruct case_RApp.
-        (* GArrowApply.ga_apply *)
-        admit.
-
-      destruct case_RLet.
-        admit.
-
-      destruct case_RVoid.
+      induction x.
+        destruct a; simpl.
         apply ga_id.
+        simpl.
+        refine ( _ ;; (boost _ _ _ _ _ (postcompose _ _ _ _ _ _ _ _))).
+        apply ga_cancell.
+        refine ( _ ;; (boost _ _ _ _ _ (postcompose _ _ _ _ _ _ _ _))).
+        eapply firstify.
+        apply IHx1.
+        apply secondify.
+        apply IHx2.
 
-      destruct case_RJoin.
-        (* this assumes we want effects to occur in syntactically-left-to-right order *)
-        admit.
-        Defined.
+      (* environment has non-empty leaves *)
+      apply (Prelude_error "ga_kappa not supported yet (BIG FIXME)").
 
-(*
+      (* nesting too deep *)
+      apply (Prelude_error "found Esc at depth >0 indicating 3-level code; only two-level code is currently supported").
+      Defined.
+
+  Definition flatten_proof :
+    forall  {h}{c},
+      ND  Rule h c ->
+      ND  Rule h c.
+    apply (Prelude_error "sorry, non-skolemized flattening isn't implemented").
+    Defined.
+
+  Definition skolemize_and_flatten_proof :
+    forall  {h}{c},
+      ND  Rule h c ->
+      ND  Rule
+           (mapOptionTree (flatten_judgment ○ skolemize_judgment) h)
+           (mapOptionTree (flatten_judgment ○ skolemize_judgment) c).
+    intros.
+    rewrite mapOptionTree_compose.
+    rewrite mapOptionTree_compose.
+    apply flatten_skolemized_proof.
+    apply skolemize_proof.
+    apply X.
+    Defined.
+
+
+  (* to do: establish some metric on judgments (max length of level of any succedent type, probably), show how to
+   * calculate it, and show that the flattening procedure above drives it down by one *)
+
+  (*
   Instance FlatteningFunctor {Γ}{Δ}{ec} : Functor (JudgmentsL (PCF Γ Δ ec)) (TypesL (SystemFCa Γ Δ)) (obact) :=
     { fmor := FlatteningFunctor_fmor }.
-    Admitted.
 
   Definition ReificationFunctor Γ Δ : Functor (JudgmentsL _ _ (PCF n Γ Δ)) SystemFCa' (mapOptionTree brakifyJudg).
     refine {| fmor := ReificationFunctor_fmor Γ Δ |}; unfold hom; unfold ob; simpl ; intros.
-    Admitted.
 
   Definition PCF_SMME (n:nat)(Γ:TypeEnv)(Δ:CoercionEnv Γ) : ProgrammingLanguageSMME.
     refine {| plsmme_pl := PCF n Γ Δ |}.
-    admit.
     Defined.
 
   Definition SystemFCa_SMME (n:nat)(Γ:TypeEnv)(Δ:CoercionEnv Γ) : ProgrammingLanguageSMME.
     refine {| plsmme_pl := SystemFCa n Γ Δ |}.
-    admit.
     Defined.
 
   Definition ReificationFunctorMonoidal n : MonoidalFunctor (JudgmentsN n) (JudgmentsN (S n)) (ReificationFunctor n).
-    admit.
     Defined.
 
   (* 5.1.4 *)
   Definition PCF_SystemFCa_two_level n Γ Δ : TwoLevelLanguage (PCF_SMME n Γ Δ) (SystemFCa_SMME (S n) Γ Δ).
-    admit.
     Defined.
-*)
+  *)
   (*  ... and the retraction exists *)
 
 End HaskFlattener.
 
+Implicit Arguments garrow [ ].