X-Git-Url: http://git.megacz.com/?p=coq-hetmet.git;a=blobdiff_plain;f=src%2FHaskFlattener.v;h=b55dcf5e7c11306e921c790a4b978428b9598888;hp=35ab0d5fad9e8b398009d5ac234b7703099e8264;hb=e8d9db77f48f7710b5eec6cba6fdaf4650a48c88;hpb=d6342fb07462cc126df948459ce98ea9caadb95c diff --git a/src/HaskFlattener.v b/src/HaskFlattener.v index 35ab0d5..b55dcf5 100644 --- a/src/HaskFlattener.v +++ b/src/HaskFlattener.v @@ -1,5 +1,5 @@ (*********************************************************************************************************************************) -(* HaskFlattener: *) +(* HaskFlattener: *) (* *) (* The Flattening Functor. *) (* *) @@ -56,347 +56,771 @@ Open Scope nd_scope. *) Section HaskFlattener. - Context {Γ:TypeEnv}. - Context {Δ:CoercionEnv Γ}. - Context {ec:HaskTyVar Γ ★}. + (* this actually has nothing to do with categories; it shows that proofs [|-A]//[|-B] are one-to-one with []//[A|-B] *) + (* TODO Lemma hom_functor_full*) - Lemma unlev_lemma : forall (x:Tree ??(HaskType Γ ★)) lev, x = mapOptionTree unlev (x @@@ lev). - intros. - rewrite <- mapOptionTree_compose. - simpl. - induction x. - destruct a; simpl; auto. + (* lemma: if a proof from no hypotheses contains no Brak's or Esc's, then the context contains no variables at level!=0 *) + + Definition minus' n m := + match m with + | 0 => n + | _ => match n with + | 0 => 0 + | _ => n - m + end + end. + + Ltac eqd_dec_refl' := + match goal with + | [ |- context[@eqd_dec ?T ?V ?X ?X] ] => + destruct (@eqd_dec T V X X) as [eqd_dec1 | eqd_dec2]; + [ clear eqd_dec1 | set (eqd_dec2 (refl_equal _)) as eqd_dec2'; inversion eqd_dec2' ] + end. + + (* The opposite: replace any type which is NOT at level "lev" with None *) + Definition take_lev {Γ}(lev:HaskLevel Γ)(tt:Tree ??(LeveledHaskType Γ ★)) : Tree ??(HaskType Γ ★) := + mapTree (fun t => match t with + | Some (ttype @@ tlev) => if eqd_dec tlev lev then Some ttype else None + | _ => None + end) tt. + + (* In a tree of types, replace any type at depth "lev" or greater None *) + Definition drop_depth {Γ}(lev:HaskLevel Γ)(tt:Tree ??(LeveledHaskType Γ ★)) : Tree ??(LeveledHaskType Γ ★) := + mapTree (fun t => match t with + | Some (ttype @@ tlev) => if eqd_dec tlev lev then None else t + | _ => t + end) tt. + + Lemma drop_depth_lemma : forall Γ (lev:HaskLevel Γ) x, drop_depth lev [x @@ lev] = []. + intros; simpl. + Opaque eqd_dec. + unfold drop_depth. simpl. - rewrite IHx1 at 1. - rewrite IHx2 at 1. - reflexivity. + Transparent eqd_dec. + eqd_dec_refl'. + auto. Qed. - Context (ga_rep : Tree ??(HaskType Γ ★) -> HaskType Γ ★ ). - Context (ga_type : HaskType Γ ★ -> HaskType Γ ★ -> HaskType Γ ★). - - (*Notation "a ~~~~> b" := (ND Rule [] [ Γ > Δ > a |- b ]) (at level 20).*) - Notation "a ~~~~> b" := (ND (OrgR Γ Δ) [] [ (a , b) ]) (at level 20). + Lemma drop_depth_lemma_s : forall Γ (lev:HaskLevel Γ) ec x, drop_depth (ec::lev) [x @@ (ec :: lev)] = []. + intros; simpl. + Opaque eqd_dec. + unfold drop_depth. + simpl. + Transparent eqd_dec. + eqd_dec_refl'. + auto. + Qed. - Lemma magic : forall a b c, - ([] ~~~~> [ga_type a b @@ nil]) -> - ([ga_type b c @@ nil] ~~~~> [ga_type a c @@ nil]). - admit. + Lemma take_lemma : forall Γ (lev:HaskLevel Γ) x, take_lev lev [x @@ lev] = [x]. + intros; simpl. + Opaque eqd_dec. + unfold take_lev. + simpl. + Transparent eqd_dec. + eqd_dec_refl'. + auto. Qed. - Context (ga_lit : ∀ lit, [] ~~~~> [ga_type (ga_rep [] ) (ga_rep [literalType lit])@@ nil]). - Context (ga_id : ∀ σ, [] ~~~~> [ga_type (ga_rep σ ) (ga_rep σ )@@ nil]). - Context (ga_cancell : ∀ c , [] ~~~~> [ga_type (ga_rep ([],,c)) (ga_rep c )@@ nil]). - Context (ga_cancelr : ∀ c , [] ~~~~> [ga_type (ga_rep (c,,[])) (ga_rep c )@@ nil]). - Context (ga_uncancell: ∀ c , [] ~~~~> [ga_type (ga_rep c ) (ga_rep ([],,c) )@@ nil]). - Context (ga_uncancelr: ∀ c , [] ~~~~> [ga_type (ga_rep c ) (ga_rep (c,,[]) )@@ nil]). - Context (ga_assoc : ∀ a b c,[] ~~~~> [ga_type (ga_rep ((a,,b),,c)) (ga_rep (a,,(b,,c)) )@@ nil]). - Context (ga_unassoc : ∀ a b c,[] ~~~~> [ga_type (ga_rep ( a,,(b,,c))) (ga_rep ((a,,b),,c)) @@ nil]). - Context (ga_swap : ∀ a b, [] ~~~~> [ga_type (ga_rep (a,,b) ) (ga_rep (b,,a) )@@ nil]). - Context (ga_copy : ∀ a , [] ~~~~> [ga_type (ga_rep a ) (ga_rep (a,,a) )@@ nil]). - Context (ga_drop : ∀ a , [] ~~~~> [ga_type (ga_rep a ) (ga_rep [] )@@ nil]). - Context (ga_first : ∀ a b c, - [ga_type (ga_rep a) (ga_rep b) @@nil] ~~~~> [ga_type (ga_rep (a,,c)) (ga_rep (b,,c)) @@nil]). - Context (ga_second : ∀ a b c, - [ga_type (ga_rep a) (ga_rep b) @@nil] ~~~~> [ga_type (ga_rep (c,,a)) (ga_rep (c,,b)) @@nil]). - Context (ga_comp : ∀ a b c, - ([ga_type (ga_rep a) (ga_rep b) @@nil],,[ga_type (ga_rep b) (ga_rep c) @@nil]) - ~~~~> - [ga_type (ga_rep a) (ga_rep c) @@nil]). - - Definition guestJudgmentAsGArrowType (lt:PCFJudg Γ ec) : HaskType Γ ★ := - match lt with - (x,y) => (ga_type (ga_rep x) (ga_rep y)) + Ltac drop_simplify := + match goal with + | [ |- context[@drop_depth ?G ?L [ ?X @@ ?L ] ] ] => + rewrite (drop_depth_lemma G L X) + | [ |- context[@drop_depth ?G (?E :: ?L) [ ?X @@ (?E :: ?L) ] ] ] => + rewrite (drop_depth_lemma_s G L E X) + | [ |- context[@drop_depth ?G ?N (?A,,?B)] ] => + change (@drop_depth G N (A,,B)) with ((@drop_depth G N A),,(@drop_depth G N B)) + | [ |- context[@drop_depth ?G ?N (T_Leaf None)] ] => + change (@drop_depth G N (T_Leaf (@None (LeveledHaskType G ★)))) with (T_Leaf (@None (LeveledHaskType G ★))) + end. + + Ltac take_simplify := + match goal with + | [ |- context[@take_lev ?G ?L [ ?X @@ ?L ] ] ] => + rewrite (take_lemma G L X) + | [ |- context[@take_lev ?G ?N (?A,,?B)] ] => + change (@take_lev G N (A,,B)) with ((@take_lev G N A),,(@take_lev G N B)) + | [ |- context[@take_lev ?G ?N (T_Leaf None)] ] => + change (@take_lev G N (T_Leaf (@None (LeveledHaskType G ★)))) with (T_Leaf (@None (LeveledHaskType G ★))) end. - Definition obact (X:Tree ??(PCFJudg Γ ec)) : Tree ??(LeveledHaskType Γ ★) := - mapOptionTree guestJudgmentAsGArrowType X @@@ nil. + Fixpoint reduceTree {T}(unit:T)(merge:T -> T -> T)(tt:Tree ??T) : T := + match tt with + | T_Leaf None => unit + | T_Leaf (Some x) => x + | T_Branch b1 b2 => merge (reduceTree unit merge b1) (reduceTree unit merge b2) + end. - Hint Constructors Rule_Flat. - Context {ndr:@ND_Relation _ Rule}. + Set Printing Width 130. + + Context {unitTy : forall TV, RawHaskType TV ★ }. + Context {prodTy : forall TV, RawHaskType TV (★ ⇛ ★ ⇛ ★) }. + Context {gaTy : forall TV, RawHaskType TV (★ ⇛ ★ ⇛ ★ ⇛ ★)}. + + Definition ga_tree := fun TV tr => reduceTree (unitTy TV) (fun t1 t2 => TApp (TApp (prodTy TV) t1) t2) tr. + Definition ga' := fun TV ec ant' suc' => TApp (TApp (TApp (gaTy TV) ec) (ga_tree TV ant')) (ga_tree TV suc'). + Definition ga {Γ} : HaskType Γ ★ -> Tree ??(HaskType Γ ★) -> Tree ??(HaskType Γ ★) -> HaskType Γ ★ := + fun ec ant suc => + fun TV ite => + let ant' := mapOptionTree (fun x => x TV ite) ant in + let suc' := mapOptionTree (fun x => x TV ite) suc in + ga' TV (ec TV ite) ant' suc'. + + Class garrow := + { ga_id : ∀ Γ Δ ec l a , ND Rule [] [Γ > Δ > [] |- [@ga Γ ec a a @@ l] ] + ; ga_cancelr : ∀ Γ Δ ec l a , ND Rule [] [Γ > Δ > [] |- [@ga Γ ec (a,,[]) a @@ l] ] + ; ga_cancell : ∀ Γ Δ ec l a , ND Rule [] [Γ > Δ > [] |- [@ga Γ ec ([],,a) a @@ l] ] + ; ga_uncancelr : ∀ Γ Δ ec l a , ND Rule [] [Γ > Δ > [] |- [@ga Γ ec a (a,,[]) @@ l] ] + ; ga_uncancell : ∀ Γ Δ ec l a , ND Rule [] [Γ > Δ > [] |- [@ga Γ ec a ([],,a) @@ l] ] + ; ga_assoc : ∀ Γ Δ ec l a b c, ND Rule [] [Γ > Δ > [] |- [@ga Γ ec ((a,,b),,c) (a,,(b,,c)) @@ l] ] + ; ga_unassoc : ∀ Γ Δ ec l a b c, ND Rule [] [Γ > Δ > [] |- [@ga Γ ec (a,,(b,,c)) ((a,,b),,c) @@ l] ] + ; ga_swap : ∀ Γ Δ ec l a b , ND Rule [] [Γ > Δ > [] |- [@ga Γ ec (a,,b) (b,,a) @@ l] ] + ; ga_drop : ∀ Γ Δ ec l a , ND Rule [] [Γ > Δ > [] |- [@ga Γ ec a [] @@ l] ] + ; ga_copy : ∀ Γ Δ ec l a , ND Rule [] [Γ > Δ > [] |- [@ga Γ ec a (a,,a) @@ l] ] + ; ga_first : ∀ Γ Δ ec l a b x, ND Rule [] [Γ > Δ > [@ga Γ ec a b @@ l] |- [@ga Γ ec (a,,x) (b,,x) @@ l] ] + ; ga_second : ∀ Γ Δ ec l a b x, ND Rule [] [Γ > Δ > [@ga Γ ec a b @@ l] |- [@ga Γ ec (x,,a) (x,,b) @@ l] ] + ; ga_lit : ∀ Γ Δ ec l lit , ND Rule [] [Γ > Δ > [] |- [@ga Γ ec [] [literalType lit] @@ l] ] + ; ga_curry : ∀ Γ Δ ec l a b c, ND Rule [] [Γ > Δ > [@ga Γ ec (a,,[b]) [c] @@ l] |- [@ga Γ ec a [b ---> c] @@ l] ] + ; ga_comp : ∀ Γ Δ ec l a b c, ND Rule [] [Γ > Δ > [@ga Γ ec a b @@ l],,[@ga Γ ec b c @@ l] |- [@ga Γ ec a c @@ l] ] + ; ga_apply : ∀ Γ Δ ec l a a' b c, ND Rule [] + [Γ > Δ > [@ga Γ ec a [b ---> c] @@ l],,[@ga Γ ec a' [b] @@ l] |- [@ga Γ ec (a,,a') [c] @@ l] ] + ; ga_kappa : ∀ Γ Δ ec l a b Σ, ND Rule + [Γ > Δ > Σ,,[@ga Γ ec [] a @@ l] |- [@ga Γ ec [] b @@ l] ] + [Γ > Δ > Σ |- [@ga Γ ec a b @@ l] ] + }. + Context `(gar:garrow). + + Notation "a ~~~~> b" := (@ga _ _ a b) (at level 20). (* - * Here it is, what you've all been waiting for! When reading this, - * it might help to have the definition for "Inductive ND" (see - * NaturalDeduction.v) handy as a cross-reference. + * The story: + * - code types <[t]>@c become garrows c () t + * - free variables of type t at a level lev deeper than the succedent become garrows c () t + * - free variables at the level of the succedent become *) - Hint Constructors Rule_Flat. - Definition FlatteningFunctor_fmor - : forall h c, - (ND (PCFRule Γ Δ ec) h c) -> - ((obact h)~~~~>(obact c)). + Fixpoint garrowfy_raw_codetypes {TV}{κ}(depth:nat)(exp: RawHaskType TV κ) : RawHaskType TV κ := + match exp with + | TVar _ x => TVar x + | TAll _ y => TAll _ (fun v => garrowfy_raw_codetypes depth (y v)) + | TApp _ _ x y => TApp (garrowfy_raw_codetypes depth x) (garrowfy_raw_codetypes depth y) + | TCon tc => TCon tc + | TCoerc _ t1 t2 t => TCoerc (garrowfy_raw_codetypes depth t1) (garrowfy_raw_codetypes depth t2) + (garrowfy_raw_codetypes depth t) + | TArrow => TArrow + | TCode v e => match depth with + | O => ga' TV v [] [(*garrowfy_raw_codetypes depth*) e] + | (S depth') => TCode v (garrowfy_raw_codetypes depth' e) + end + | TyFunApp tfc lt => TyFunApp tfc (garrowfy_raw_codetypes_list _ depth lt) + end + with garrowfy_raw_codetypes_list {TV}(lk:list Kind)(depth:nat)(exp:@RawHaskTypeList TV lk) : @RawHaskTypeList TV lk := + match exp in @RawHaskTypeList _ LK return @RawHaskTypeList TV LK with + | TyFunApp_nil => TyFunApp_nil + | TyFunApp_cons κ kl t rest => TyFunApp_cons _ _ (garrowfy_raw_codetypes depth t) (garrowfy_raw_codetypes_list _ depth rest) + end. + Definition garrowfy_code_types {Γ}{κ}(n:nat)(ht:HaskType Γ κ) : HaskType Γ κ := + fun TV ite => + garrowfy_raw_codetypes n (ht TV ite). + Definition garrowfy_leveled_code_types {Γ}(n:nat)(ht:LeveledHaskType Γ ★) : LeveledHaskType Γ ★ := + match ht with htt @@ htlev => garrowfy_code_types (minus' n (length htlev)) htt @@ htlev end. + + Axiom literal_types_unchanged : forall n Γ l, garrowfy_code_types n (literalType l) = literalType(Γ:=Γ) l. + + Axiom flatten_coercion : forall n Γ Δ κ (σ τ:HaskType Γ κ) (γ:HaskCoercion Γ Δ (σ ∼∼∼ τ)), + HaskCoercion Γ Δ (garrowfy_code_types n σ ∼∼∼ garrowfy_code_types n τ). + + (* This tries to assign a single level to the entire succedent of a judgment. If the succedent has types from different + * levels (should not happen) it just picks one; if the succedent has no non-None leaves (also should not happen) it + * picks nil *) + Definition getΓ (j:Judg) := match j with Γ > _ > _ |- _ => Γ end. + Definition getSuc (j:Judg) : Tree ??(LeveledHaskType (getΓ j) ★) := + match j as J return Tree ??(LeveledHaskType (getΓ J) ★) with Γ > _ > _ |- s => s end. + Fixpoint getjlev {Γ}(tt:Tree ??(LeveledHaskType Γ ★)) : HaskLevel Γ := + match tt with + | T_Leaf None => nil + | T_Leaf (Some (_ @@ lev)) => lev + | T_Branch b1 b2 => + match getjlev b1 with + | nil => getjlev b2 + | lev => lev + end + end. - set (@nil (HaskTyVar Γ ★)) as lev. + Definition v2t {Γ}(ec:HaskTyVar Γ ★) := fun TV ite => TVar (ec TV ite). + + (* "n" is the maximum depth remaining AFTER flattening *) + Definition flatten_judgment (n:nat)(j:Judg) := + match j as J return Judg with + Γ > Δ > ant |- suc => + match (match getjlev suc with + | nil => inl _ tt + | (ec::lev') => if eqd_dec (length lev') n + (* If the judgment's level is the deepest in the proof, flatten it by turning + * all antecedent variables at this level into None's, garrowfying any other + * antecedent variables (from other levels) at the same depth, and turning the + * succedent into a garrow type *) + then inr _ (Γ > Δ > mapOptionTree (garrowfy_leveled_code_types n) (drop_depth (ec::lev') ant) + |- [ga (v2t ec) (take_lev (ec::lev') ant) (mapOptionTree unlev suc) @@ lev']) + else inl _ tt + end) with + + (* otherwise, just garrowfy all code types of the specified depth, throughout the judgment *) + | inl tt => Γ > Δ > mapOptionTree (garrowfy_leveled_code_types n) ant |- mapOptionTree (garrowfy_leveled_code_types n) suc + | inr r => r + end + end. - unfold hom; unfold ob; unfold ehom; simpl; unfold pmon_I; unfold obact; intros. + Definition boost : forall Γ Δ ant x y, + ND Rule [] [ Γ > Δ > x |- y ] -> + ND Rule [ Γ > Δ > ant |- x ] [ Γ > Δ > ant |- y ]. + admit. + Defined. + + Definition postcompose : ∀ Γ Δ ec lev a b c, + ND Rule [] [ Γ > Δ > [] |- [@ga Γ ec a b @@ lev] ] -> + ND Rule [] [ Γ > Δ > [@ga Γ ec b c @@ lev] |- [@ga Γ ec a c @@ lev] ]. + admit. + Defined. + + Definition seq : ∀ Γ Δ lev a b, + ND Rule [] [ Γ > Δ > [] |- [a @@ lev] ] -> + ND Rule [] [ Γ > Δ > [] |- [b @@ lev] ] -> + ND Rule [] [ Γ > Δ > [] |- [a @@ lev],,[b @@ lev] ]. + admit. + Defined. + + Lemma ga_unkappa : ∀ Γ Δ ec l a b Σ, + ND Rule + [Γ > Δ > Σ |- [@ga Γ ec a b @@ l] ] + [Γ > Δ > Σ,,[@ga Γ ec [] a @@ l] |- [@ga Γ ec [] b @@ l] ]. + intros. + set (ga_comp Γ Δ ec l [] a b) as q. - induction X; simpl. + set (@RLet Γ Δ) as q'. + set (@RLet Γ Δ [@ga _ ec [] a @@ l] Σ (@ga _ ec [] b) (@ga _ ec a b) l) as q''. + eapply nd_comp. + Focus 2. + eapply nd_rule. + eapply RArrange. + apply RExch. - (* the proof from no hypotheses of no conclusions (nd_id0) becomes RVoid *) - apply nd_rule; apply (org_fc Γ Δ [] [(_,_)] (RVoid _ _)). apply Flat_RVoid. + eapply nd_comp. + Focus 2. + eapply nd_rule. + apply q''. - (* the proof from hypothesis X of conclusion X (nd_id1) becomes RVar *) - apply nd_rule; apply (org_fc _ _ [] [(_,_)] (RVar _ _ _ _)). apply Flat_RVar. + idtac. + clear q'' q'. + eapply nd_comp. + apply nd_rlecnac. + apply nd_prod. + apply nd_id. + apply q. + Defined. - (* the proof from hypothesis X of no conclusions (nd_weak) becomes RWeak;;RVoid *) - eapply nd_comp; - [ idtac - | eapply nd_rule - ; eapply (org_fc _ _ [(_,_)] [(_,_)] (RArrange _ _ _ _ _ (RWeak _))) - ; auto ]. - eapply nd_rule. - eapply (org_fc _ _ [] [(_,_)] (RVoid _ _)); auto. apply Flat_RVoid. - apply Flat_RArrange. - - (* the proof from hypothesis X of two identical conclusions X,,X (nd_copy) becomes RVar;;RJoin;;RCont *) - eapply nd_comp; [ idtac | eapply nd_rule; eapply (org_fc _ _ [(_,_)] [(_,_)] (RArrange _ _ _ _ _ (RCont _))) ]. - eapply nd_comp; [ apply nd_llecnac | idtac ]. - set (snd_initial(SequentND:=pl_snd(ProgrammingLanguage:=SystemFCa Γ Δ)) - (mapOptionTree (guestJudgmentAsGArrowType) h @@@ lev)) as q. - eapply nd_comp. - eapply nd_prod. - apply q. - apply q. - apply nd_rule. - eapply (org_fc _ _ ([(_,_)],,[(_,_)]) [(_,_)] (RJoin _ _ _ _ _ _ )). - destruct h; simpl. - destruct o. - simpl. - apply Flat_RJoin. - apply Flat_RJoin. - apply Flat_RJoin. - apply Flat_RArrange. +(* + Notation "` x" := (take_lev _ x) (at level 20). + Notation "`` x" := (mapOptionTree unlev x) (at level 20). + Notation "``` x" := (drop_depth _ x) (at level 20). +*) + Definition garrowfy_arrangement' : + forall Γ (Δ:CoercionEnv Γ) + (ec:HaskTyVar Γ ★) (lev:HaskLevel Γ) (ant1 ant2:Tree ??(LeveledHaskType Γ ★)) (r:Arrange ant1 ant2), + ND Rule [] [Γ > Δ > [] |- [@ga _ (v2t ec) (take_lev (ec :: lev) ant2) (take_lev (ec :: lev) ant1) @@ lev] ]. + + intros Γ Δ ec lev. + refine (fix garrowfy ant1 ant2 (r:Arrange ant1 ant2): + ND Rule [] [Γ > Δ > [] |- [@ga _ (v2t ec) (take_lev (ec :: lev) ant2) (take_lev (ec :: lev) ant1) @@ lev]] := + match r as R in Arrange A B return + ND Rule [] [Γ > Δ > [] |- [@ga _ (v2t ec) (take_lev (ec :: lev) B) (take_lev (ec :: lev) A) @@ lev]] + with + | RCanL a => let case_RCanL := tt in ga_uncancell _ _ _ _ _ + | RCanR a => let case_RCanR := tt in ga_uncancelr _ _ _ _ _ + | RuCanL a => let case_RuCanL := tt in ga_cancell _ _ _ _ _ + | RuCanR a => let case_RuCanR := tt in ga_cancelr _ _ _ _ _ + | RAssoc a b c => let case_RAssoc := tt in ga_assoc _ _ _ _ _ _ _ + | RCossa a b c => let case_RCossa := tt in ga_unassoc _ _ _ _ _ _ _ + | RExch a b => let case_RExch := tt in ga_swap _ _ _ _ _ _ + | RWeak a => let case_RWeak := tt in ga_drop _ _ _ _ _ + | RCont a => let case_RCont := tt in ga_copy _ _ _ _ _ + | RLeft a b c r' => let case_RLeft := tt in garrowfy _ _ r' ;; boost _ _ _ _ _ (ga_second _ _ _ _ _ _ _) + | RRight a b c r' => let case_RRight := tt in garrowfy _ _ r' ;; boost _ _ _ _ _ (ga_first _ _ _ _ _ _ _) + | RComp a b c r1 r2 => let case_RComp := tt in (fun r1' r2' => _) (garrowfy _ _ r1) (garrowfy _ _ r2) + end); clear garrowfy; repeat take_simplify; repeat drop_simplify; intros. + + destruct case_RComp. + refine ( _ ;; boost _ _ _ _ _ (ga_comp _ _ _ _ _ _ _)). + apply seq. + apply r2'. + apply r1'. + Defined. + + Definition garrowfy_arrangement : + forall Γ (Δ:CoercionEnv Γ) n + (ec:HaskTyVar Γ ★) (lev:HaskLevel Γ) (ant1 ant2:Tree ??(LeveledHaskType Γ ★)) (r:Arrange ant1 ant2) succ, + ND Rule + [Γ > Δ > mapOptionTree (garrowfy_leveled_code_types ((length lev))) (drop_depth n ant1) + |- [@ga _ (v2t ec) (take_lev (ec :: lev) ant1) (mapOptionTree unlev succ) @@ lev]] + [Γ > Δ > mapOptionTree (garrowfy_leveled_code_types ((length lev))) (drop_depth n ant2) + |- [@ga _ (v2t ec) (take_lev (ec :: lev) ant2) (mapOptionTree unlev succ) @@ lev]]. + intros. + refine ( _ ;; (boost _ _ _ _ _ (postcompose _ _ _ _ _ _ _ (garrowfy_arrangement' Γ Δ ec lev ant1 ant2 r)))). + apply nd_rule. + apply RArrange. + refine ((fix garrowfy ant1 ant2 (r:Arrange ant1 ant2) := + match r as R in Arrange A B return + Arrange (mapOptionTree (garrowfy_leveled_code_types ((length lev))) (drop_depth _ A)) + (mapOptionTree (garrowfy_leveled_code_types ((length lev))) (drop_depth _ B)) with + | RCanL a => let case_RCanL := tt in RCanL _ + | RCanR a => let case_RCanR := tt in RCanR _ + | RuCanL a => let case_RuCanL := tt in RuCanL _ + | RuCanR a => let case_RuCanR := tt in RuCanR _ + | RAssoc a b c => let case_RAssoc := tt in RAssoc _ _ _ + | RCossa a b c => let case_RCossa := tt in RCossa _ _ _ + | RExch a b => let case_RExch := tt in RExch _ _ + | RWeak a => let case_RWeak := tt in RWeak _ + | RCont a => let case_RCont := tt in RCont _ + | RLeft a b c r' => let case_RLeft := tt in RLeft _ (garrowfy _ _ r') + | RRight a b c r' => let case_RRight := tt in RRight _ (garrowfy _ _ r') + | RComp a b c r1 r2 => let case_RComp := tt in RComp (garrowfy _ _ r1) (garrowfy _ _ r2) + end) ant1 ant2 r); clear garrowfy; repeat take_simplify; repeat drop_simplify; intros. + Defined. - (* nd_prod becomes nd_llecnac;;nd_prod;;RJoin *) - eapply nd_comp. - apply (nd_llecnac ;; nd_prod IHX1 IHX2). + Definition flatten_arrangement : + forall n Γ Δ ant1 ant2 succ (r:Arrange ant1 ant2), + ND Rule (mapOptionTree (flatten_judgment n) [Γ > Δ > ant1 |- succ]) + (mapOptionTree (flatten_judgment n) [Γ > Δ > ant2 |- succ]). + intros. + simpl. + set (getjlev succ) as succ_lev. + assert (succ_lev=getjlev succ). + reflexivity. + + destruct succ_lev. apply nd_rule. - eapply (org_fc _ _ ([(_,_)],,[(_,_)]) [(_,_)] (RJoin _ _ _ _ _ _ )). - apply (Flat_RJoin Γ Δ (mapOptionTree guestJudgmentAsGArrowType h1 @@@ nil) - (mapOptionTree guestJudgmentAsGArrowType h2 @@@ nil) - (mapOptionTree guestJudgmentAsGArrowType c1 @@@ nil) - (mapOptionTree guestJudgmentAsGArrowType c2 @@@ nil)). + apply RArrange. + induction r; simpl. + apply RCanL. + apply RCanR. + apply RuCanL. + apply RuCanR. + apply RAssoc. + apply RCossa. + apply RExch. + apply RWeak. + apply RCont. + apply RLeft; auto. + apply RRight; auto. + eapply RComp; [ apply IHr1 | apply IHr2 ]. + + set (Peano_dec.eq_nat_dec (Datatypes.length succ_lev) n) as lev_is_n. + assert (lev_is_n=Peano_dec.eq_nat_dec (Datatypes.length succ_lev) n). + reflexivity. + destruct lev_is_n. + rewrite <- e. + apply garrowfy_arrangement. + apply r. + auto. + apply nd_rule. + apply RArrange. + induction r; simpl. + apply RCanL. + apply RCanR. + apply RuCanL. + apply RuCanR. + apply RAssoc. + apply RCossa. + apply RExch. + apply RWeak. + apply RCont. + apply RLeft; auto. + apply RRight; auto. + eapply RComp; [ apply IHr1 | apply IHr2 ]. + Defined. - (* nd_comp becomes pl_subst (aka nd_cut) *) - eapply nd_comp. - apply (nd_llecnac ;; nd_prod IHX1 IHX2). - clear IHX1 IHX2 X1 X2. - apply (@snd_cut _ _ _ _ (pl_snd(ProgrammingLanguage:=SystemFCa Γ Δ))). - - (* nd_cancell becomes RVar;;RuCanL *) - eapply nd_comp; - [ idtac | eapply nd_rule; apply (org_fc _ _ [(_,_)] [(_,_)] (RArrange _ _ _ _ _ (RuCanL _))) ]. - apply (snd_initial(SequentND:=pl_cnd(ProgrammingLanguage:=(SystemFCa Γ Δ)))). - apply Flat_RArrange. - - (* nd_cancelr becomes RVar;;RuCanR *) - eapply nd_comp; - [ idtac | eapply nd_rule; apply (org_fc _ _ [(_,_)] [(_,_)] (RArrange _ _ _ _ _ (RuCanR _))) ]. - apply (snd_initial(SequentND:=pl_cnd(ProgrammingLanguage:=(SystemFCa Γ Δ)))). - apply Flat_RArrange. - - (* nd_llecnac becomes RVar;;RCanL *) - eapply nd_comp; - [ idtac | eapply nd_rule; apply (org_fc _ _ [(_,_)] [(_,_)] (RArrange _ _ _ _ _ (RCanL _))) ]. - apply (snd_initial(SequentND:=pl_cnd(ProgrammingLanguage:=(SystemFCa Γ Δ)))). - apply Flat_RArrange. - - (* nd_rlecnac becomes RVar;;RCanR *) - eapply nd_comp; - [ idtac | eapply nd_rule; apply (org_fc _ _ [(_,_)] [(_,_)] (RArrange _ _ _ _ _ (RCanR _))) ]. - apply (snd_initial(SequentND:=pl_cnd(ProgrammingLanguage:=(SystemFCa Γ Δ)))). - apply Flat_RArrange. - - (* nd_assoc becomes RVar;;RAssoc *) - eapply nd_comp; - [ idtac | eapply nd_rule; apply (org_fc _ _ [(_,_)] [(_,_)] (RArrange _ _ _ _ _ (RAssoc _ _ _))) ]. - apply (snd_initial(SequentND:=pl_cnd(ProgrammingLanguage:=(SystemFCa Γ Δ)))). - apply Flat_RArrange. - - (* nd_cossa becomes RVar;;RCossa *) - eapply nd_comp; - [ idtac | eapply nd_rule; apply (org_fc _ _ [(_,_)] [(_,_)] (RArrange _ _ _ _ _ (RCossa _ _ _))) ]. - apply (snd_initial(SequentND:=pl_cnd(ProgrammingLanguage:=(SystemFCa Γ Δ)))). - apply Flat_RArrange. - - destruct r as [r rp]. - rename h into h'. - rename c into c'. - rename r into r'. - - refine (match rp as R in @Rule_PCF _ _ _ H C _ - return - ND (OrgR Γ Δ) [] - [sequent (mapOptionTree guestJudgmentAsGArrowType H @@@ nil) - (mapOptionTree guestJudgmentAsGArrowType C @@@ nil)] - with - | PCF_RArrange h c r q => let case_RURule := tt in _ - | PCF_RLit lit => let case_RLit := tt in _ - | PCF_RNote Σ τ n => let case_RNote := tt in _ - | PCF_RVar σ => let case_RVar := tt in _ - | PCF_RLam Σ tx te => let case_RLam := tt in _ - | PCF_RApp Σ tx te p => let case_RApp := tt in _ - | PCF_RLet Σ σ₁ σ₂ p => let case_RLet := tt in _ - | PCF_RJoin b c d e => let case_RJoin := tt in _ - | PCF_RVoid => let case_RVoid := tt in _ - (*| PCF_RCase T κlen κ θ l x => let case_RCase := tt in _*) - (*| PCF_RLetRec Σ₁ τ₁ τ₂ lev => let case_RLetRec := tt in _*) - end); simpl in *. - clear rp h' c' r'. - - rewrite (unlev_lemma h (ec::nil)). - rewrite (unlev_lemma c (ec::nil)). - destruct case_RURule. - refine (match q as Q in Arrange H C - return - H=(h @@@ (ec :: nil)) -> - C=(c @@@ (ec :: nil)) -> - ND (OrgR Γ Δ) [] - [sequent - [ga_type (ga_rep (mapOptionTree unlev H)) (ga_rep r) @@ nil ] - [ga_type (ga_rep (mapOptionTree unlev C)) (ga_rep r) @@ nil ] ] - with - | RLeft a b c r => let case_RLeft := tt in _ - | RRight a b c r => let case_RRight := tt in _ - | RCanL b => let case_RCanL := tt in _ - | RCanR b => let case_RCanR := tt in _ - | RuCanL b => let case_RuCanL := tt in _ - | RuCanR b => let case_RuCanR := tt in _ - | RAssoc b c d => let case_RAssoc := tt in _ - | RCossa b c d => let case_RCossa := tt in _ - | RExch b c => let case_RExch := tt in _ - | RWeak b => let case_RWeak := tt in _ - | RCont b => let case_RCont := tt in _ - | RComp a b c f g => let case_RComp := tt in _ - end (refl_equal _) (refl_equal _)); - intros; simpl in *; - subst; - try rewrite <- unlev_lemma in *. - - destruct case_RCanL. - apply magic. - apply ga_uncancell. - - destruct case_RCanR. - apply magic. - apply ga_uncancelr. + Definition arrange_brak : forall Γ Δ ec succ t, + ND Rule + [Γ > Δ > + mapOptionTree (garrowfy_leveled_code_types 0) (drop_depth (ec :: nil) succ),, + [(@ga _ (v2t ec) [] (take_lev (ec :: nil) succ)) @@ nil] |- + [(@ga _ (v2t ec) [] [t]) @@ nil]] + [Γ > Δ > mapOptionTree (garrowfy_leveled_code_types 0) succ |- [(@ga _ (v2t ec) [] [t]) @@ nil]]. + admit. + Defined. - destruct case_RuCanL. - apply magic. - apply ga_cancell. + Definition arrange_esc : forall Γ Δ ec succ t, + ND Rule + [Γ > Δ > mapOptionTree (garrowfy_leveled_code_types 0) succ |- [(@ga _ (v2t ec) [] [t]) @@ nil]] + [Γ > Δ > + mapOptionTree (garrowfy_leveled_code_types 0) (drop_depth (ec :: nil) succ),, + [(@ga _ (v2t ec) [] (take_lev (ec :: nil) succ)) @@ nil] |- [(@ga _ (v2t ec) [] [t]) @@ nil]]. + admit. + Defined. - destruct case_RuCanR. - apply magic. - apply ga_cancelr. + Lemma mapOptionTree_distributes + : forall T R (a b:Tree ??T) (f:T->R), + mapOptionTree f (a,,b) = (mapOptionTree f a),,(mapOptionTree f b). + reflexivity. + Qed. - destruct case_RAssoc. - apply magic. - apply ga_assoc. - - destruct case_RCossa. - apply magic. - apply ga_unassoc. + Lemma garrowfy_commutes_with_substT : + forall n κ Γ (Δ:CoercionEnv Γ) (σ:∀ TV, InstantiatedTypeEnv TV Γ → TV κ → RawHaskType TV ★) (τ:HaskType Γ κ), + garrowfy_code_types n (substT σ τ) = substT (fun TV ite v => garrowfy_raw_codetypes n (σ TV ite v)) + (garrowfy_code_types n τ). + admit. + Qed. - destruct case_RExch. - apply magic. - apply ga_swap. - - destruct case_RWeak. - apply magic. - apply ga_drop. - - destruct case_RCont. - apply magic. - apply ga_copy. - - destruct case_RLeft. - apply magic. - (*apply ga_second.*) - admit. - - destruct case_RRight. - apply magic. - (*apply ga_first.*) - admit. + Lemma garrowfy_commutes_with_HaskTAll : + forall n κ Γ (Δ:CoercionEnv Γ) (σ:∀ TV, InstantiatedTypeEnv TV Γ → TV κ → RawHaskType TV ★), + garrowfy_code_types n (HaskTAll κ σ) = HaskTAll κ (fun TV ite v => garrowfy_raw_codetypes n (σ TV ite v)). + admit. + Qed. + + Lemma garrowfy_commutes_with_HaskTApp : + forall n κ Γ (Δ:CoercionEnv Γ) (σ:∀ TV, InstantiatedTypeEnv TV Γ → TV κ → RawHaskType TV ★), + garrowfy_code_types n (HaskTApp (weakF σ) (FreshHaskTyVar κ)) = + HaskTApp (weakF (fun TV ite v => garrowfy_raw_codetypes n (σ TV ite v))) (FreshHaskTyVar κ). + admit. + Qed. - destruct case_RComp. - apply magic. - (*apply ga_comp.*) - admit. + Lemma garrowfy_commutes_with_weakLT : forall (Γ:TypeEnv) κ n t, + garrowfy_leveled_code_types n (weakLT(Γ:=Γ)(κ:=κ) t) = weakLT(Γ:=Γ)(κ:=κ) (garrowfy_leveled_code_types n t). + admit. + Qed. - destruct case_RLit. + Definition flatten_proof : + forall n {h}{c}, + ND Rule h c -> + ND Rule (mapOptionTree (flatten_judgment n) h) (mapOptionTree (flatten_judgment n) c). + intros. + eapply nd_map'; [ idtac | apply X ]. + clear h c X. + intros. + simpl in *. + + refine (match X as R in Rule H C with + | RArrange Γ Δ a b x d => let case_RArrange := tt in _ + | RNote Γ Δ Σ τ l n => let case_RNote := tt in _ + | RLit Γ Δ l _ => let case_RLit := tt in _ + | RVar Γ Δ σ lev => let case_RVar := tt in _ + | RGlobal Γ Δ σ l wev => let case_RGlobal := tt in _ + | RLam Γ Δ Σ tx te lev => let case_RLam := tt in _ + | RCast Γ Δ Σ σ τ lev γ => let case_RCast := tt in _ + | RAbsT Γ Δ Σ κ σ lev => let case_RAbsT := tt in _ + | RAppT Γ Δ Σ κ σ τ lev => let case_RAppT := tt in _ + | RAppCo Γ Δ Σ κ σ₁ σ₂ γ σ lev => let case_RAppCo := tt in _ + | RAbsCo Γ Δ Σ κ σ σ₁ σ₂ lev => let case_RAbsCo := tt in _ + | RApp Γ Δ Σ₁ Σ₂ tx te lev => let case_RApp := tt in _ + | RLet Γ Δ Σ₁ Σ₂ σ₁ σ₂ lev => let case_RLet := tt in _ + | RJoin Γ p lri m x q => let case_RJoin := tt in _ + | RVoid _ _ => let case_RVoid := tt in _ + | RBrak Γ Δ t ec succ lev => let case_RBrak := tt in _ + | REsc Γ Δ t ec succ lev => let case_REsc := tt in _ + | RCase Γ Δ lev tc Σ avars tbranches alts => let case_RCase := tt in _ + | RLetRec Γ Δ lri x y t => let case_RLetRec := tt in _ + end); clear X h c. + + destruct case_RArrange. + apply (flatten_arrangement n Γ Δ a b x d). + + destruct case_RBrak. + simpl. + destruct (Peano_dec.eq_nat_dec (Datatypes.length lev) n). + destruct lev. + simpl. + simpl. + destruct n. + change ([garrowfy_code_types 0 (<[ ec |- t ]>) @@ nil]) + with ([ga (v2t ec) [] [t] @@ nil]). + refine (ga_unkappa Γ Δ (v2t ec) nil (take_lev (ec::nil) succ) [t] + (mapOptionTree (garrowfy_leveled_code_types 0) (drop_depth (ec::nil) succ)) ;; _). + apply arrange_brak. + inversion e. + apply (Prelude_error "found Brak at depth >0"). + apply (Prelude_error "found Brak at depth >0"). + + destruct case_REsc. + simpl. + destruct (Peano_dec.eq_nat_dec (Datatypes.length lev) n). + destruct lev. + simpl. + destruct n. + change ([garrowfy_code_types 0 (<[ ec |- t ]>) @@ nil]) + with ([ga (v2t ec) [] [t] @@ nil]). + refine (_ ;; ga_kappa Γ Δ (v2t ec) nil (take_lev (ec::nil) succ) [t] + (mapOptionTree (garrowfy_leveled_code_types 0) (drop_depth (ec::nil) succ))). + apply arrange_esc. + inversion e. + apply (Prelude_error "found Esc at depth >0"). + apply (Prelude_error "found Esc at depth >0"). + + destruct case_RNote. + simpl. + destruct l; simpl. + apply nd_rule; apply RNote; auto. + destruct (Peano_dec.eq_nat_dec (Datatypes.length l) n). + apply nd_rule; apply RNote; auto. + apply nd_rule; apply RNote; auto. + + destruct case_RLit. + simpl. + destruct l0; simpl. + rewrite literal_types_unchanged. + apply nd_rule; apply RLit. + destruct (Peano_dec.eq_nat_dec (Datatypes.length l0) n); unfold mapTree; unfold mapOptionTree; simpl. + unfold take_lev; simpl. + unfold drop_depth; simpl. apply ga_lit. + rewrite literal_types_unchanged. + apply nd_rule. + apply RLit. + + destruct case_RVar. + Opaque flatten_judgment. + simpl. + Transparent flatten_judgment. + idtac. + unfold flatten_judgment. + unfold getjlev. + destruct lev. + apply nd_rule. apply RVar. + destruct (eqd_dec (Datatypes.length lev) n). + + repeat drop_simplify. + repeat take_simplify. + simpl. + apply ga_id. + + apply nd_rule. + apply RVar. - (* hey cool, I figured out how to pass CoreNote's through... *) - destruct case_RNote. - eapply nd_comp. + destruct case_RGlobal. + simpl. + destruct l as [|ec lev]; simpl; [ apply nd_rule; apply RGlobal; auto | idtac ]. + destruct (Peano_dec.eq_nat_dec (Datatypes.length lev) n); [ idtac | apply nd_rule; apply RGlobal; auto ]; simpl. + apply (Prelude_error "found RGlobal at depth >0"). + + destruct case_RLam. + Opaque drop_depth. + Opaque take_lev. + simpl. + destruct lev as [|ec lev]; simpl; [ apply nd_rule; apply RLam; auto | idtac ]. + destruct (Peano_dec.eq_nat_dec (Datatypes.length lev) n); [ idtac | apply nd_rule; apply RLam; auto ]; simpl. + rewrite <- e. + clear e n. + repeat drop_simplify. + repeat take_simplify. + eapply nd_comp. eapply nd_rule. - eapply (org_fc _ _ [] [(_,_)] (RVar _ _ _ _)) . auto. - apply Flat_RVar. - apply nd_rule. - apply (org_fc _ _ [(_,_)] [(_,_)] (RNote _ _ _ _ _ n)). auto. - apply Flat_RNote. + eapply RArrange. + simpl. + apply RCanR. + apply boost. + apply ga_curry. - destruct case_RVar. - apply ga_id. - - (* - * class GArrow g (**) u => GArrowApply g (**) u (~>) where - * ga_applyl :: g (x**(x~>y) ) y - * ga_applyr :: g ( (x~>y)**x) y - * - * class GArrow g (**) u => GArrowCurry g (**) u (~>) where - * ga_curryl :: g (x**y) z -> g x (y~>z) - * ga_curryr :: g (x**y) z -> g y (x~>z) - *) - destruct case_RLam. - (* GArrowCurry.ga_curry *) - admit. - - destruct case_RApp. - (* GArrowApply.ga_apply *) - admit. - - destruct case_RLet. - admit. - - destruct case_RVoid. - apply ga_id. - - destruct case_RJoin. - (* this assumes we want effects to occur in syntactically-left-to-right order *) - admit. - Defined. + destruct case_RCast. + simpl. + destruct lev as [|ec lev]; simpl; [ apply nd_rule; apply RCast; auto | idtac ]. + apply flatten_coercion; auto. + destruct (Peano_dec.eq_nat_dec (Datatypes.length lev) n); [ idtac | apply nd_rule; apply RCast; auto ]; simpl. + apply (Prelude_error "RCast at level >0"). + apply flatten_coercion; auto. + + destruct case_RJoin. + simpl. + destruct (getjlev x); destruct (getjlev q). + apply nd_rule. + apply RJoin. + apply (Prelude_error "RJoin at depth >0"). + apply (Prelude_error "RJoin at depth >0"). + apply (Prelude_error "RJoin at depth >0"). + + destruct case_RApp. + simpl. + destruct lev as [|ec lev]. simpl. apply nd_rule. + replace (garrowfy_code_types n (tx ---> te)) with ((garrowfy_code_types n tx) ---> (garrowfy_code_types n te)). + apply RApp. + unfold garrowfy_code_types. + simpl. + reflexivity. + + destruct (Peano_dec.eq_nat_dec (Datatypes.length lev) n). + eapply nd_comp. + eapply nd_rule. + apply RJoin. + repeat drop_simplify. + repeat take_simplify. + apply boost. + apply ga_apply. + + replace (garrowfy_code_types (minus' n (length (ec::lev))) (tx ---> te)) + with ((garrowfy_code_types (minus' n (length (ec::lev))) tx) ---> + (garrowfy_code_types (minus' n (length (ec::lev))) te)). + apply nd_rule. + apply RApp. + unfold garrowfy_code_types. + simpl. + reflexivity. (* + Notation "` x" := (take_lev _ x) (at level 20). + Notation "`` x" := (mapOptionTree unlev x) (at level 20). + Notation "``` x" := ((drop_depth _ x)) (at level 20). + Notation "!<[]> x" := (garrowfy_code_types _ x) (at level 1). + Notation "!<[@]>" := (garrowfy_leveled_code_types _) (at level 1). +*) + destruct case_RLet. + simpl. + destruct lev as [|ec lev]; simpl; [ apply nd_rule; apply RLet; auto | idtac ]. + destruct (Peano_dec.eq_nat_dec (Datatypes.length lev) n); [ idtac | apply nd_rule; apply RLet; auto ]; simpl. + repeat drop_simplify. + repeat take_simplify. + rename σ₁ into a. + rename σ₂ into b. + rewrite mapOptionTree_distributes. + rewrite mapOptionTree_distributes. + set (mapOptionTree (garrowfy_leveled_code_types (S n)) (drop_depth (ec :: lev) Σ₁)) as A. + set (take_lev (ec :: lev) Σ₁) as A'. + set (mapOptionTree (garrowfy_leveled_code_types (S n)) (drop_depth (ec :: lev) Σ₂)) as B. + set (take_lev (ec :: lev) Σ₂) as B'. + simpl. + + eapply nd_comp. + Focus 2. + eapply nd_rule. + eapply RLet. + + apply nd_prod. + + apply boost. + apply ga_second. + + eapply nd_comp. + Focus 2. + eapply boost. + apply ga_comp. + + eapply nd_comp. + eapply nd_rule. + eapply RArrange. + eapply RCanR. + + eapply nd_comp. + Focus 2. + eapply nd_rule. + eapply RArrange. + eapply RExch. + idtac. + + eapply nd_comp. + apply nd_llecnac. + eapply nd_comp. + Focus 2. + eapply nd_rule. + apply RJoin. + apply nd_prod. + + eapply nd_rule. + eapply RVar. + + apply nd_id. + + destruct case_RVoid. + simpl. + apply nd_rule. + apply RVoid. + + destruct case_RAppT. + simpl. destruct lev; simpl. + rewrite garrowfy_commutes_with_HaskTAll. + rewrite garrowfy_commutes_with_substT. + apply nd_rule. + apply RAppT. + apply Δ. + apply Δ. + apply (Prelude_error "AppT at depth>0"). + + destruct case_RAbsT. + simpl. destruct lev; simpl. + rewrite garrowfy_commutes_with_HaskTAll. + rewrite garrowfy_commutes_with_HaskTApp. + eapply nd_comp; [ idtac | eapply nd_rule; eapply RAbsT ]. + simpl. + set (mapOptionTree (garrowfy_leveled_code_types n) (mapOptionTree (weakLT(κ:=κ)) Σ)) as a. + set (mapOptionTree (weakLT(κ:=κ)) (mapOptionTree (garrowfy_leveled_code_types n) Σ)) as q'. + assert (a=q'). + unfold a. + unfold q'. + clear a q'. + induction Σ. + destruct a. + simpl. + rewrite garrowfy_commutes_with_weakLT. + reflexivity. + reflexivity. + simpl. + rewrite <- IHΣ1. + rewrite <- IHΣ2. + reflexivity. + rewrite H. + apply nd_id. + apply Δ. + apply Δ. + apply (Prelude_error "AbsT at depth>0"). + + destruct case_RAppCo. + simpl. destruct lev; simpl. + unfold garrowfy_code_types. + simpl. + apply nd_rule. + apply RAppCo. + apply flatten_coercion. + apply γ. + apply (Prelude_error "AppCo at depth>0"). + + destruct case_RAbsCo. + simpl. destruct lev; simpl. + unfold garrowfy_code_types. + simpl. + apply (Prelude_error "AbsCo not supported (FIXME)"). + apply (Prelude_error "AbsCo at depth>0"). + + destruct case_RLetRec. + rename t into lev. + apply (Prelude_error "LetRec not supported (FIXME)"). + + destruct case_RCase. + simpl. + apply (Prelude_error "Case not supported (FIXME)"). + Defined. + + + (* to do: establish some metric on judgments (max length of level of any succedent type, probably), show how to + * calculate it, and show that the flattening procedure above drives it down by one *) + + (* Instance FlatteningFunctor {Γ}{Δ}{ec} : Functor (JudgmentsL (PCF Γ Δ ec)) (TypesL (SystemFCa Γ Δ)) (obact) := { fmor := FlatteningFunctor_fmor }. - Admitted. Definition ReificationFunctor Γ Δ : Functor (JudgmentsL _ _ (PCF n Γ Δ)) SystemFCa' (mapOptionTree brakifyJudg). refine {| fmor := ReificationFunctor_fmor Γ Δ |}; unfold hom; unfold ob; simpl ; intros. - Admitted. Definition PCF_SMME (n:nat)(Γ:TypeEnv)(Δ:CoercionEnv Γ) : ProgrammingLanguageSMME. refine {| plsmme_pl := PCF n Γ Δ |}. - admit. Defined. Definition SystemFCa_SMME (n:nat)(Γ:TypeEnv)(Δ:CoercionEnv Γ) : ProgrammingLanguageSMME. refine {| plsmme_pl := SystemFCa n Γ Δ |}. - admit. Defined. Definition ReificationFunctorMonoidal n : MonoidalFunctor (JudgmentsN n) (JudgmentsN (S n)) (ReificationFunctor n). - admit. Defined. (* 5.1.4 *) Definition PCF_SystemFCa_two_level n Γ Δ : TwoLevelLanguage (PCF_SMME n Γ Δ) (SystemFCa_SMME (S n) Γ Δ). - admit. Defined. -*) + *) (* ... and the retraction exists *) End HaskFlattener. +Implicit Arguments garrow [ ].