X-Git-Url: http://git.megacz.com/?p=coq-hetmet.git;a=blobdiff_plain;f=src%2FHaskProof.v;h=7e3ef1c508b9e609cbc49a0ba6ad9fec26223889;hp=8da87e8db29aee25cf2a071f8d526b490691ce8f;hb=786b693ac8d5f2081db75b49bba838a6cff7e2f6;hpb=bcb16a7fa1ff772f12807c4587609fd756b7762e diff --git a/src/HaskProof.v b/src/HaskProof.v index 8da87e8..7e3ef1c 100644 --- a/src/HaskProof.v +++ b/src/HaskProof.v @@ -14,8 +14,9 @@ Require Import Coq.Strings.String. Require Import Coq.Lists.List. Require Import HaskKinds. Require Import HaskCoreTypes. -Require Import HaskCoreLiterals. +Require Import HaskLiteralsAndTyCons. Require Import HaskStrongTypes. +Require Import HaskWeakVars. (* A judgment consists of an environment shape (Γ and Δ) and a pair of trees of leveled types (the antecedent and succedent) valid * in any context of that shape. Notice that the succedent contains a tree of types rather than a single type; think @@ -26,8 +27,8 @@ Inductive Judg := mkJudg : forall Γ:TypeEnv, forall Δ:CoercionEnv Γ, - Tree ??(LeveledHaskType Γ) -> - Tree ??(LeveledHaskType Γ) -> + Tree ??(LeveledHaskType Γ ★) -> + Tree ??(LeveledHaskType Γ ★) -> Judg. Notation "Γ > Δ > a '|-' s" := (mkJudg Γ Δ a s) (at level 52, Δ at level 50, a at level 52, s at level 50). @@ -36,12 +37,12 @@ Inductive Judg := * expansion on them (see rules RLeft and RRight) and (2) they will form the fiber categories of our fibration later on *) Inductive UJudg (Γ:TypeEnv)(Δ:CoercionEnv Γ) := mkUJudg : - Tree ??(LeveledHaskType Γ) -> - Tree ??(LeveledHaskType Γ) -> + Tree ??(LeveledHaskType Γ ★) -> + Tree ??(LeveledHaskType Γ ★) -> UJudg Γ Δ. Notation "Γ >> Δ > a '|-' s" := (mkUJudg Γ Δ a s) (at level 52, Δ at level 50, a at level 52, s at level 50). - Notation "'ext_tree_left'" := (fun ctx j => match j with mkUJudg t s => mkUJudg _ _ (ctx,,t) s end). - Notation "'ext_tree_right'" := (fun ctx j => match j with mkUJudg t s => mkUJudg _ _ (t,,ctx) s end). + Definition ext_tree_left {Γ}{Δ} := (fun ctx (j:UJudg Γ Δ) => match j with mkUJudg t s => mkUJudg Γ Δ (ctx,,t) s end). + Definition ext_tree_right {Γ}{Δ} := (fun ctx (j:UJudg Γ Δ) => match j with mkUJudg t s => mkUJudg Γ Δ (t,,ctx) s end). (* we can turn a UJudg into a Judg by simply internalizing the index *) Definition UJudg2judg {Γ}{Δ}(ej:@UJudg Γ Δ) : Judg := @@ -49,15 +50,14 @@ Definition UJudg2judg {Γ}{Δ}(ej:@UJudg Γ Δ) : Judg := Coercion UJudg2judg : UJudg >-> Judg. (* information needed to define a case branch in a HaskProof *) -Record ProofCaseBranch {tc:TyCon}{Γ}{Δ}{lev}{branchtype : HaskType Γ}{avars} := -{ pcb_scb : @StrongAltCon tc -; pcb_freevars : Tree ??(LeveledHaskType Γ) -; pcb_judg := sac_Γ pcb_scb Γ > sac_Δ pcb_scb Γ avars (map weakCK' Δ) +Record ProofCaseBranch {tc:TyCon}{Γ}{Δ}{lev}{branchtype : HaskType Γ ★}{avars}{sac:@StrongAltCon tc} := +{ pcb_freevars : Tree ??(LeveledHaskType Γ ★) +; pcb_judg := sac_Γ sac Γ > sac_Δ sac Γ avars (map weakCK' Δ) > (mapOptionTree weakLT' pcb_freevars),,(unleaves (map (fun t => t@@weakL' lev) - (vec2list (sac_types pcb_scb Γ avars)))) + (vec2list (sac_types sac Γ avars)))) |- [weakLT' (branchtype @@ lev)] }. -Coercion pcb_scb : ProofCaseBranch >-> StrongAltCon. +(*Coercion pcb_scb : ProofCaseBranch >-> StrongAltCon.*) Implicit Arguments ProofCaseBranch [ ]. (* Figure 3, production $\vdash_E$, Uniform rules *) @@ -85,35 +85,36 @@ Inductive Rule : Tree ??Judg -> Tree ??Judg -> Type := | REsc : ∀ Γ Δ t v Σ l, Rule [Γ > Δ > Σ |- [<[v|-t]> @@ l]] [Γ > Δ > Σ |- [t @@ (v::l) ]] (* Part of GHC, but not explicitly in System FC *) -| RNote : ∀ h c, Note -> Rule h [ c ] +| RNote : ∀ Γ Δ Σ τ l, Note -> Rule [Γ > Δ > Σ |- [τ @@ l]] [Γ > Δ > Σ |- [τ @@ l]] | RLit : ∀ Γ Δ v l, Rule [ ] [Γ > Δ > []|- [literalType v @@ l]] (* SystemFC rules *) | RVar : ∀ Γ Δ σ l, Rule [ ] [Γ>Δ> [σ@@l] |- [σ @@l]] -| RLam : ∀ Γ Δ Σ tx te l, Γ ⊢ᴛy tx : ★ -> Rule [Γ>Δ> Σ,,[tx@@l]|- [te@@l] ] [Γ>Δ> Σ |- [tx--->te @@l]] -| RCast : ∀ Γ Δ Σ σ τ γ l, Δ ⊢ᴄᴏ γ : σ ∼ τ -> Rule [Γ>Δ> Σ |- [σ@@l] ] [Γ>Δ> Σ |- [τ @@l]] +| RGlobal : ∀ Γ Δ τ l, WeakExprVar -> Rule [ ] [Γ>Δ> [] |- [τ @@l]] +| RLam : forall Γ Δ Σ (tx:HaskType Γ ★) te l, Rule [Γ>Δ> Σ,,[tx@@l]|- [te@@l] ] [Γ>Δ> Σ |- [tx--->te @@l]] +| RCast : forall Γ Δ Σ (σ₁ σ₂:HaskType Γ ★) l, +HaskCoercion Γ Δ (σ₁∼∼∼σ₂) -> + Rule [Γ>Δ> Σ |- [σ₁@@l] ] [Γ>Δ> Σ |- [σ₂ @@l]] | RBindingGroup : ∀ Γ Δ Σ₁ Σ₂ τ₁ τ₂ , Rule ([Γ > Δ > Σ₁ |- τ₁ ],,[Γ > Δ > Σ₂ |- τ₂ ]) [Γ>Δ> Σ₁,,Σ₂ |- τ₁,,τ₂ ] | RApp : ∀ Γ Δ Σ₁ Σ₂ tx te l, Rule ([Γ>Δ> Σ₁ |- [tx--->te @@l]],,[Γ>Δ> Σ₂ |- [tx@@l]]) [Γ>Δ> Σ₁,,Σ₂ |- [te @@l]] | RLet : ∀ Γ Δ Σ₁ Σ₂ σ₁ σ₂ l, Rule ([Γ>Δ> Σ₁,,[σ₂@@l] |- [σ₁@@l] ],,[Γ>Δ> Σ₂ |- [σ₂@@l]]) [Γ>Δ> Σ₁,,Σ₂ |- [σ₁ @@l]] | REmptyGroup : ∀ Γ Δ , Rule [] [Γ > Δ > [] |- [] ] -| RAppT : ∀ Γ Δ Σ κ σ τ l, Γ ⊢ᴛy τ : κ -> Rule [Γ>Δ> Σ |- [HaskTAll κ σ @@l]] [Γ>Δ> Σ |- [substT σ τ @@l]] +| RAppT : forall Γ Δ Σ κ σ (τ:HaskType Γ κ) l, Rule [Γ>Δ> Σ |- [HaskTAll κ σ @@l]] [Γ>Δ> Σ |- [substT σ τ @@l]] | RAbsT : ∀ Γ Δ Σ κ σ l, Rule [(κ::Γ)> (weakCE Δ) > mapOptionTree weakLT Σ |- [ HaskTApp (weakF σ) (FreshHaskTyVar _) @@ (weakL l)]] [Γ>Δ > Σ |- [HaskTAll κ σ @@ l]] -| RAppCo : forall Γ Δ Σ σ₁ σ₂ σ γ l, Δ ⊢ᴄᴏ γ : σ₁∼σ₂ -> +| RAppCo : forall Γ Δ Σ κ (σ₁ σ₂:HaskType Γ κ) (γ:HaskCoercion Γ Δ (σ₁∼∼∼σ₂)) σ l, Rule [Γ>Δ> Σ |- [σ₁∼∼σ₂ ⇒ σ@@l]] [Γ>Δ> Σ |- [σ @@l]] -| RAbsCo : ∀ Γ Δ Σ κ σ σ₁ σ₂ l, - Γ ⊢ᴛy σ₁:κ -> - Γ ⊢ᴛy σ₂:κ -> +| RAbsCo : forall Γ Δ Σ κ (σ₁ σ₂:HaskType Γ κ) σ l, Rule [Γ > ((σ₁∼∼∼σ₂)::Δ) > Σ |- [σ @@ l]] [Γ > Δ > Σ |- [σ₁∼∼σ₂⇒ σ @@l]] -| RLetRec : ∀ Γ Δ Σ₁ τ₁ τ₂, Rule [Γ > Δ > Σ₁,,τ₂ |- τ₁,,τ₂ ] [Γ > Δ > Σ₁ |- τ₁ ] +| RLetRec : forall Γ Δ Σ₁ τ₁ τ₂ lev, Rule [Γ > Δ > Σ₁,,(τ₂@@@lev) |- ([τ₁],,τ₂)@@@lev ] [Γ > Δ > Σ₁ |- [τ₁@@lev] ] | RCase : forall Γ Δ lev tc Σ avars tbranches - (alts:Tree ??(@ProofCaseBranch tc Γ Δ lev tbranches avars)), + (alts:Tree ??{ sac : @StrongAltCon tc & @ProofCaseBranch tc Γ Δ lev tbranches avars sac }), Rule - ((mapOptionTree pcb_judg alts),, + ((mapOptionTree (fun x => pcb_judg (projT2 x)) alts),, [Γ > Δ > Σ |- [ caseType tc avars @@ lev ] ]) - [Γ > Δ > (mapOptionTreeAndFlatten pcb_freevars alts),,Σ |- [ tbranches @@ lev ] ] + [Γ > Δ > (mapOptionTreeAndFlatten (fun x => pcb_freevars (projT2 x)) alts),,Σ |- [ tbranches @@ lev ] ] . Coercion RURule : URule >-> Rule. @@ -121,18 +122,21 @@ Coercion RURule : URule >-> Rule. (* A rule is considered "flat" if it is neither RBrak nor REsc *) Inductive Rule_Flat : forall {h}{c}, Rule h c -> Prop := | Flat_RURule : ∀ Γ Δ h c r , Rule_Flat (RURule Γ Δ h c r) -| Flat_RNote : ∀ x y z , Rule_Flat (RNote x y z) +| Flat_RNote : ∀ Γ Δ Σ τ l n , Rule_Flat (RNote Γ Δ Σ τ l n) +| Flat_RLit : ∀ Γ Δ Σ τ , Rule_Flat (RLit Γ Δ Σ τ ) | Flat_RVar : ∀ Γ Δ σ l, Rule_Flat (RVar Γ Δ σ l) -| Flat_RLam : ∀ Γ Δ Σ tx te q l, Rule_Flat (RLam Γ Δ Σ tx te q l) -| Flat_RCast : ∀ Γ Δ Σ σ τ γ q l, Rule_Flat (RCast Γ Δ Σ σ τ γ q l) +| Flat_RLam : ∀ Γ Δ Σ tx te q , Rule_Flat (RLam Γ Δ Σ tx te q ) +| Flat_RCast : ∀ Γ Δ Σ σ τ γ q , Rule_Flat (RCast Γ Δ Σ σ τ γ q ) | Flat_RAbsT : ∀ Γ Σ κ σ a q , Rule_Flat (RAbsT Γ Σ κ σ a q ) -| Flat_RAppT : ∀ Γ Δ Σ κ σ τ q l, Rule_Flat (RAppT Γ Δ Σ κ σ τ q l) +| Flat_RAppT : ∀ Γ Δ Σ κ σ τ q , Rule_Flat (RAppT Γ Δ Σ κ σ τ q ) | Flat_RAppCo : ∀ Γ Δ Σ σ₁ σ₂ σ γ q l, Rule_Flat (RAppCo Γ Δ Σ σ₁ σ₂ σ γ q l) -| Flat_RAbsCo : ∀ Γ Σ κ σ σ₁ σ₂ q1 q2 q3 x , Rule_Flat (RAbsCo Γ Σ κ σ σ₁ σ₂ q1 q2 q3 x ) +| Flat_RAbsCo : ∀ Γ Σ κ σ σ₁ σ₂ q1 q2 , Rule_Flat (RAbsCo Γ Σ κ σ σ₁ σ₂ q1 q2 ) | Flat_RApp : ∀ Γ Δ Σ tx te p l, Rule_Flat (RApp Γ Δ Σ tx te p l) | Flat_RLet : ∀ Γ Δ Σ σ₁ σ₂ p l, Rule_Flat (RLet Γ Δ Σ σ₁ σ₂ p l) | Flat_RBindingGroup : ∀ q a b c d e , Rule_Flat (RBindingGroup q a b c d e) -| Flat_RCase : ∀ Σ Γ T κlen κ θ l x , Rule_Flat (RCase Σ Γ T κlen κ θ l x ). +| Flat_REmptyGroup : ∀ q a , Rule_Flat (REmptyGroup q a) +| Flat_RCase : ∀ Σ Γ T κlen κ θ l x , Rule_Flat (RCase Σ Γ T κlen κ θ l x) +| Flat_RLetRec : ∀ Γ Δ Σ₁ τ₁ τ₂ lev, Rule_Flat (RLetRec Γ Δ Σ₁ τ₁ τ₂ lev). (* given a proof that uses only uniform rules, we can produce a general proof *) Definition UND_to_ND Γ Δ h c : ND (@URule Γ Δ) h c -> ND Rule (mapOptionTree UJudg2judg h) (mapOptionTree UJudg2judg c) @@ -159,12 +163,12 @@ Lemma no_urules_with_multiple_conclusions : forall Γ Δ c h, intro. intro. induction 1; intros. - inversion X; inversion X0; inversion H; inversion X1; destruct c; try destruct o; inversion H2; apply IHX; exists c1;exists c2; auto. - inversion X; inversion X0; inversion H; inversion X1; destruct c; try destruct o; inversion H2; apply IHX; exists c1;exists c2; auto. - inversion X; inversion X0; inversion H; inversion X1; destruct c; try destruct o; inversion H2; apply IHX; exists c1;exists c2; auto. - inversion X; inversion X0; inversion H; inversion X1; destruct c; try destruct o; inversion H2; apply IHX; exists c1;exists c2; auto. - inversion X; inversion X0; inversion H; inversion X1; destruct c; try destruct o; inversion H2; apply IHX; exists c1;exists c2; auto. - inversion X; inversion X0; inversion H; inversion X1; destruct c; try destruct o; inversion H2; apply IHX; exists c1;exists c2; auto. + inversion X;inversion X0;inversion H;inversion X1;destruct c;try destruct o; inversion H2; apply IHX; exists c1;exists c2; auto. + inversion X;inversion X0;inversion H;inversion X1;destruct c;try destruct o; inversion H2; apply IHX; exists c1;exists c2; auto. + inversion X;inversion X0;inversion H;inversion X1;destruct c;try destruct o; inversion H2; apply IHX; exists c1;exists c2; auto. + inversion X;inversion X0;inversion H;inversion X1;destruct c;try destruct o; inversion H2; apply IHX; exists c1;exists c2; auto. + inversion X;inversion X0;inversion H;inversion X1;destruct c;try destruct o; inversion H2; apply IHX; exists c1;exists c2; auto. + inversion X;inversion X0;inversion H;inversion X1;destruct c;try destruct o; inversion H2; apply IHX; exists c1;exists c2; auto. apply IHX. destruct X0. destruct s. destruct c; try destruct o; try destruct u; simpl in *. @@ -178,9 +182,9 @@ Lemma no_urules_with_multiple_conclusions : forall Γ Δ c h, inversion e. exists c1. exists c2. auto. - inversion X; inversion X0; inversion H; inversion X1; destruct c; try destruct o; inversion H2; apply IHX; exists c1;exists c2; auto. - inversion X; inversion X0; inversion H; inversion X1; destruct c; try destruct o; inversion H2; apply IHX; exists c1;exists c2; auto. - inversion X; inversion X0; inversion H; inversion X1; destruct c; try destruct o; inversion H2; apply IHX; exists c1;exists c2; auto. + inversion X;inversion X0;inversion H;inversion X1;destruct c;try destruct o; inversion H2; apply IHX; exists c1;exists c2; auto. + inversion X;inversion X0;inversion H;inversion X1;destruct c;try destruct o; inversion H2; apply IHX; exists c1;exists c2; auto. + inversion X;inversion X0;inversion H;inversion X1;destruct c;try destruct o; inversion H2; apply IHX; exists c1;exists c2; auto. Qed. Lemma no_rules_with_multiple_conclusions : forall c h, @@ -208,6 +212,7 @@ Lemma no_rules_with_multiple_conclusions : forall c h, destruct X0; destruct s; inversion e. destruct X0; destruct s; inversion e. destruct X0; destruct s; inversion e. + destruct X0; destruct s; inversion e. Qed. Lemma systemfc_all_rules_one_conclusion : forall h c1 c2 (r:Rule h (c1,,c2)), False.