X-Git-Url: http://git.megacz.com/?p=coq-hetmet.git;a=blobdiff_plain;f=src%2FHaskProof.v;h=7f158258b5c722d7eca4034803412402aa61d746;hp=8c6acf438f2af0afd28b79f00b4cfc4aaaee9a8f;hb=489b12c6c491b96c37839610d33fbdf666ee527f;hpb=cd81fca459c551077b485b1c1b297b3be1c43f3a diff --git a/src/HaskProof.v b/src/HaskProof.v index 8c6acf4..7f15825 100644 --- a/src/HaskProof.v +++ b/src/HaskProof.v @@ -36,14 +36,13 @@ Inductive Judg := Notation "Γ > Δ > a '|-' s '@' l" := (mkJudg Γ Δ a s l) (at level 52, Δ at level 50, a at level 52, s at level 50, l at level 50). (* information needed to define a case branch in a HaskProof *) -Record ProofCaseBranch {tc:TyCon}{Γ}{Δ}{lev}{branchtype : HaskType Γ ★}{avars}{sac:@StrongAltCon tc} := -{ pcb_freevars : Tree ??(LeveledHaskType Γ ★) -; pcb_judg := sac_gamma sac Γ > sac_delta sac Γ avars (map weakCK' Δ) +Definition pcb_judg + {tc:TyCon}{Γ}{Δ}{lev}{branchtype : HaskType Γ ★}{avars}{sac:@StrongAltCon tc} + (pcb_freevars : Tree ??(LeveledHaskType Γ ★)) := + sac_gamma sac Γ > sac_delta sac Γ avars (map weakCK' Δ) > (mapOptionTree weakLT' pcb_freevars),,(unleaves (map (fun t => t@@weakL' lev) (vec2list (sac_types sac Γ avars)))) - |- [weakT' branchtype ] @ weakL' lev -}. -Implicit Arguments ProofCaseBranch [ ]. + |- [weakT' branchtype ] @ weakL' lev. (* Figure 3, production $\vdash_E$, all rules *) Inductive Rule : Tree ??Judg -> Tree ??Judg -> Type := @@ -68,9 +67,6 @@ Inductive Rule : Tree ??Judg -> Tree ??Judg -> Type := (* order is important here; we want to be able to skolemize without introducing new AExch'es *) | RApp : ∀ Γ Δ Σ₁ Σ₂ tx te l, Rule ([Γ>Δ> Σ₁ |- [tx--->te]@l],,[Γ>Δ> Σ₂ |- [tx]@l]) [Γ>Δ> Σ₁,,Σ₂ |- [te]@l] -| RLet : ∀ Γ Δ Σ₁ Σ₂ σ₁ σ₂ l, Rule ([Γ>Δ> Σ₁ |- [σ₁]@l],,[Γ>Δ> [σ₁@@l],,Σ₂ |- [σ₂]@l ]) [Γ>Δ> Σ₁,,Σ₂ |- [σ₂ ]@l] -| RWhere : ∀ Γ Δ Σ₁ Σ₂ Σ₃ σ₁ σ₂ l, Rule ([Γ>Δ> Σ₁,,([σ₁@@l],,Σ₃) |- [σ₂]@l ],,[Γ>Δ> Σ₂ |- [σ₁]@l]) [Γ>Δ> Σ₁,,(Σ₂,,Σ₃) |- [σ₂ ]@l] - | RCut : ∀ Γ Δ Σ Σ₁ Σ₁₂ Σ₂ Σ₃ l, Rule ([Γ>Δ> Σ₁ |- Σ₁₂ @l],,[Γ>Δ> Σ,,((Σ₁₂@@@l),,Σ₂) |- Σ₃@l ]) [Γ>Δ> Σ,,(Σ₁,,Σ₂) |- Σ₃@l] | RLeft : ∀ Γ Δ Σ₁ Σ₂ Σ l, Rule [Γ>Δ> Σ₁ |- Σ₂ @l] [Γ>Δ> (Σ@@@l),,Σ₁ |- Σ,,Σ₂@l] | RRight : ∀ Γ Δ Σ₁ Σ₂ Σ l, Rule [Γ>Δ> Σ₁ |- Σ₂ @l] [Γ>Δ> Σ₁,,(Σ@@@l) |- Σ₂,,Σ@l] @@ -78,8 +74,8 @@ Inductive Rule : Tree ??Judg -> Tree ??Judg -> Type := | RVoid : ∀ Γ Δ l, Rule [] [Γ > Δ > [] |- [] @l ] | RAppT : forall Γ Δ Σ κ σ (τ:HaskType Γ κ) l, Rule [Γ>Δ> Σ |- [HaskTAll κ σ]@l] [Γ>Δ> Σ |- [substT σ τ]@l] -| RAbsT : ∀ Γ Δ Σ κ σ l, - Rule [(κ::Γ)> (weakCE Δ) > mapOptionTree weakLT Σ |- [ HaskTApp (weakF σ) (FreshHaskTyVar _) ]@(weakL l)] +| RAbsT : ∀ Γ Δ Σ κ σ l n, + Rule [(list_ins n κ Γ)> (weakCE_ Δ) > mapOptionTree weakLT_ Σ |- [ HaskTApp (weakF_ σ) (FreshHaskTyVar_ _) ]@(weakL_ l)] [Γ>Δ > Σ |- [HaskTAll κ σ ]@l] | RAppCo : forall Γ Δ Σ κ (σ₁ σ₂:HaskType Γ κ) (γ:HaskCoercion Γ Δ (σ₁∼∼∼σ₂)) σ l, @@ -88,13 +84,13 @@ Inductive Rule : Tree ??Judg -> Tree ??Judg -> Type := Rule [Γ > ((σ₁∼∼∼σ₂)::Δ) > Σ |- [σ ]@l] [Γ > Δ > Σ |- [σ₁∼∼σ₂⇒ σ ]@l] -| RLetRec : forall Γ Δ Σ₁ τ₁ τ₂ lev, Rule [Γ > Δ > Σ₁,,(τ₂@@@lev) |- (τ₂,,[τ₁]) @lev ] [Γ > Δ > Σ₁ |- [τ₁] @lev] +| RLetRec : forall Γ Δ Σ₁ τ₁ τ₂ lev, Rule [Γ > Δ > (τ₂@@@lev),,Σ₁ |- (τ₂,,[τ₁]) @lev ] [Γ > Δ > Σ₁ |- [τ₁] @lev] | RCase : forall Γ Δ lev tc Σ avars tbranches - (alts:Tree ??{ sac : @StrongAltCon tc & @ProofCaseBranch tc Γ Δ lev tbranches avars sac }), + (alts:Tree ??( (@StrongAltCon tc) * (Tree ??(LeveledHaskType Γ ★)) )), Rule - ((mapOptionTree (fun x => pcb_judg (projT2 x)) alts),, + ((mapOptionTree (fun x => @pcb_judg tc Γ Δ lev tbranches avars (fst x) (snd x)) alts),, [Γ > Δ > Σ |- [ caseType tc avars ] @lev]) - [Γ > Δ > (mapOptionTreeAndFlatten (fun x => pcb_freevars (projT2 x)) alts),,Σ |- [ tbranches ] @ lev] + [Γ > Δ > (mapOptionTreeAndFlatten (fun x => (snd x)) alts),,Σ |- [ tbranches ] @ lev] . Definition RCut' : ∀ Γ Δ Σ₁ Σ₁₂ Σ₂ Σ₃ l, @@ -109,6 +105,23 @@ Definition RCut' : ∀ Γ Δ Σ₁ Σ₁₂ Σ₂ Σ₃ l, apply AuCanL. Defined. +Definition RLet : ∀ Γ Δ Σ₁ Σ₂ σ₁ σ₂ l, + ND Rule ([Γ>Δ> Σ₁ |- [σ₁]@l],,[Γ>Δ> [σ₁@@l],,Σ₂ |- [σ₂]@l ]) [Γ>Δ> Σ₁,,Σ₂ |- [σ₂ ]@l]. + intros. + eapply nd_comp; [ idtac | eapply nd_rule; eapply RArrange; eapply ACanL ]. + eapply nd_comp; [ idtac | eapply nd_rule; eapply RCut ]. + apply nd_prod. + apply nd_id. + eapply nd_rule; eapply RArrange; eapply AuCanL. + Defined. + +Definition RWhere : ∀ Γ Δ Σ₁ Σ₂ Σ₃ σ₁ σ₂ l, + ND Rule ([Γ>Δ> Σ₁,,([σ₁@@l],,Σ₃) |- [σ₂]@l ],,[Γ>Δ> Σ₂ |- [σ₁]@l]) [Γ>Δ> Σ₁,,(Σ₂,,Σ₃) |- [σ₂ ]@l]. + intros. + eapply nd_comp; [ apply nd_exch | idtac ]. + eapply nd_rule; eapply RCut. + Defined. + (* A rule is considered "flat" if it is neither RBrak nor REsc *) (* TODO: change this to (if RBrak/REsc -> False) *) Inductive Rule_Flat : forall {h}{c}, Rule h c -> Prop := @@ -118,12 +131,11 @@ Inductive Rule_Flat : forall {h}{c}, Rule h c -> Prop := | Flat_RVar : ∀ Γ Δ σ l, Rule_Flat (RVar Γ Δ σ l) | Flat_RLam : ∀ Γ Δ Σ tx te q , Rule_Flat (RLam Γ Δ Σ tx te q ) | Flat_RCast : ∀ Γ Δ Σ σ τ γ q , Rule_Flat (RCast Γ Δ Σ σ τ γ q ) -| Flat_RAbsT : ∀ Γ Σ κ σ a q , Rule_Flat (RAbsT Γ Σ κ σ a q ) +| Flat_RAbsT : ∀ Γ Σ κ σ a q n , Rule_Flat (RAbsT Γ Σ κ σ a q n) | Flat_RAppT : ∀ Γ Δ Σ κ σ τ q , Rule_Flat (RAppT Γ Δ Σ κ σ τ q ) | Flat_RAppCo : ∀ Γ Δ Σ σ₁ σ₂ σ γ q l, Rule_Flat (RAppCo Γ Δ Σ σ₁ σ₂ σ γ q l) | Flat_RAbsCo : ∀ Γ Σ κ σ σ₁ σ₂ q1 q2 , Rule_Flat (RAbsCo Γ Σ κ σ σ₁ σ₂ q1 q2 ) | Flat_RApp : ∀ Γ Δ Σ tx te p l, Rule_Flat (RApp Γ Δ Σ tx te p l) -| Flat_RLet : ∀ Γ Δ Σ σ₁ σ₂ p l, Rule_Flat (RLet Γ Δ Σ σ₁ σ₂ p l) | Flat_RVoid : ∀ q a l, Rule_Flat (RVoid q a l) | Flat_RCase : ∀ Σ Γ T κlen κ θ l x , Rule_Flat (RCase Σ Γ T κlen κ θ l x) | Flat_RLetRec : ∀ Γ Δ Σ₁ τ₁ τ₂ lev, Rule_Flat (RLetRec Γ Δ Σ₁ τ₁ τ₂ lev). @@ -159,8 +171,6 @@ Lemma no_rules_with_multiple_conclusions : forall c h, destruct X0; destruct s; inversion e. destruct X0; destruct s; inversion e. destruct X0; destruct s; inversion e. - destruct X0; destruct s; inversion e. - destruct X0; destruct s; inversion e. Qed. Lemma systemfc_all_rules_one_conclusion : forall h c1 c2 (r:Rule h (c1,,c2)), False.