X-Git-Url: http://git.megacz.com/?p=coq-hetmet.git;a=blobdiff_plain;f=src%2FHaskProof.v;h=8c6acf438f2af0afd28b79f00b4cfc4aaaee9a8f;hp=8da87e8db29aee25cf2a071f8d526b490691ce8f;hb=6a7c6977507488245ba4b8cabcf323920c25baef;hpb=bcb16a7fa1ff772f12807c4587609fd756b7762e diff --git a/src/HaskProof.v b/src/HaskProof.v index 8da87e8..8c6acf4 100644 --- a/src/HaskProof.v +++ b/src/HaskProof.v @@ -10,12 +10,15 @@ Generalizable All Variables. Require Import Preamble. Require Import General. Require Import NaturalDeduction. +Require Import NaturalDeductionContext. Require Import Coq.Strings.String. Require Import Coq.Lists.List. Require Import HaskKinds. Require Import HaskCoreTypes. -Require Import HaskCoreLiterals. +Require Import HaskLiterals. +Require Import HaskTyCons. Require Import HaskStrongTypes. +Require Import HaskWeakVars. (* A judgment consists of an environment shape (Γ and Δ) and a pair of trees of leveled types (the antecedent and succedent) valid * in any context of that shape. Notice that the succedent contains a tree of types rather than a single type; think @@ -26,161 +29,108 @@ Inductive Judg := mkJudg : forall Γ:TypeEnv, forall Δ:CoercionEnv Γ, - Tree ??(LeveledHaskType Γ) -> - Tree ??(LeveledHaskType Γ) -> + Tree ??(LeveledHaskType Γ ★) -> + Tree ??(HaskType Γ ★) -> + HaskLevel Γ -> Judg. - Notation "Γ > Δ > a '|-' s" := (mkJudg Γ Δ a s) (at level 52, Δ at level 50, a at level 52, s at level 50). - -(* A Uniform Judgment (UJudg) has its environment as a type index; we'll use these to distinguish proofs that have a single, - * uniform context throughout the whole proof. Such proofs are important because (1) we can do left and right context - * expansion on them (see rules RLeft and RRight) and (2) they will form the fiber categories of our fibration later on *) -Inductive UJudg (Γ:TypeEnv)(Δ:CoercionEnv Γ) := - mkUJudg : - Tree ??(LeveledHaskType Γ) -> - Tree ??(LeveledHaskType Γ) -> - UJudg Γ Δ. - Notation "Γ >> Δ > a '|-' s" := (mkUJudg Γ Δ a s) (at level 52, Δ at level 50, a at level 52, s at level 50). - Notation "'ext_tree_left'" := (fun ctx j => match j with mkUJudg t s => mkUJudg _ _ (ctx,,t) s end). - Notation "'ext_tree_right'" := (fun ctx j => match j with mkUJudg t s => mkUJudg _ _ (t,,ctx) s end). - -(* we can turn a UJudg into a Judg by simply internalizing the index *) -Definition UJudg2judg {Γ}{Δ}(ej:@UJudg Γ Δ) : Judg := - match ej with mkUJudg t s => Γ > Δ > t |- s end. - Coercion UJudg2judg : UJudg >-> Judg. + Notation "Γ > Δ > a '|-' s '@' l" := (mkJudg Γ Δ a s l) (at level 52, Δ at level 50, a at level 52, s at level 50, l at level 50). (* information needed to define a case branch in a HaskProof *) -Record ProofCaseBranch {tc:TyCon}{Γ}{Δ}{lev}{branchtype : HaskType Γ}{avars} := -{ pcb_scb : @StrongAltCon tc -; pcb_freevars : Tree ??(LeveledHaskType Γ) -; pcb_judg := sac_Γ pcb_scb Γ > sac_Δ pcb_scb Γ avars (map weakCK' Δ) +Record ProofCaseBranch {tc:TyCon}{Γ}{Δ}{lev}{branchtype : HaskType Γ ★}{avars}{sac:@StrongAltCon tc} := +{ pcb_freevars : Tree ??(LeveledHaskType Γ ★) +; pcb_judg := sac_gamma sac Γ > sac_delta sac Γ avars (map weakCK' Δ) > (mapOptionTree weakLT' pcb_freevars),,(unleaves (map (fun t => t@@weakL' lev) - (vec2list (sac_types pcb_scb Γ avars)))) - |- [weakLT' (branchtype @@ lev)] + (vec2list (sac_types sac Γ avars)))) + |- [weakT' branchtype ] @ weakL' lev }. -Coercion pcb_scb : ProofCaseBranch >-> StrongAltCon. Implicit Arguments ProofCaseBranch [ ]. -(* Figure 3, production $\vdash_E$, Uniform rules *) -Inductive URule {Γ}{Δ} : Tree ??(UJudg Γ Δ) -> Tree ??(UJudg Γ Δ) -> Type := -| RCanL : ∀ t a , URule [Γ>>Δ> [],,a |- t ] [Γ>>Δ> a |- t ] -| RCanR : ∀ t a , URule [Γ>>Δ> a,,[] |- t ] [Γ>>Δ> a |- t ] -| RuCanL : ∀ t a , URule [Γ>>Δ> a |- t ] [Γ>>Δ> [],,a |- t ] -| RuCanR : ∀ t a , URule [Γ>>Δ> a |- t ] [Γ>>Δ> a,,[] |- t ] -| RAssoc : ∀ t a b c , URule [Γ>>Δ>a,,(b,,c) |- t ] [Γ>>Δ>(a,,b),,c |- t ] -| RCossa : ∀ t a b c , URule [Γ>>Δ>(a,,b),,c |- t ] [Γ>>Δ> a,,(b,,c) |- t ] -| RLeft : ∀ h c x , URule h c -> URule (mapOptionTree (ext_tree_left x) h) (mapOptionTree (ext_tree_left x) c) -| RRight : ∀ h c x , URule h c -> URule (mapOptionTree (ext_tree_right x) h) (mapOptionTree (ext_tree_right x) c) -| RExch : ∀ t a b , URule [Γ>>Δ> (b,,a) |- t ] [Γ>>Δ> (a,,b) |- t ] -| RWeak : ∀ t a , URule [Γ>>Δ> [] |- t ] [Γ>>Δ> a |- t ] -| RCont : ∀ t a , URule [Γ>>Δ> (a,,a) |- t ] [Γ>>Δ> a |- t ]. - - (* Figure 3, production $\vdash_E$, all rules *) Inductive Rule : Tree ??Judg -> Tree ??Judg -> Type := -| RURule : ∀ Γ Δ h c, @URule Γ Δ h c -> Rule (mapOptionTree UJudg2judg h) (mapOptionTree UJudg2judg c) +| RArrange : ∀ Γ Δ Σ₁ Σ₂ Σ l, Arrange Σ₁ Σ₂ -> Rule [Γ > Δ > Σ₁ |- Σ @l] [Γ > Δ > Σ₂ |- Σ @l] (* λ^α rules *) -| RBrak : ∀ Γ Δ t v Σ l, Rule [Γ > Δ > Σ |- [t @@ (v::l) ]] [Γ > Δ > Σ |- [<[v|-t]> @@l]] -| REsc : ∀ Γ Δ t v Σ l, Rule [Γ > Δ > Σ |- [<[v|-t]> @@ l]] [Γ > Δ > Σ |- [t @@ (v::l) ]] +| RBrak : ∀ Γ Δ t v Σ l, Rule [Γ > Δ > Σ |- [t]@(v::l) ] [Γ > Δ > Σ |- [<[v|-t]> ] @l] +| REsc : ∀ Γ Δ t v Σ l, Rule [Γ > Δ > Σ |- [<[v|-t]> ] @l] [Γ > Δ > Σ |- [t]@(v::l) ] (* Part of GHC, but not explicitly in System FC *) -| RNote : ∀ h c, Note -> Rule h [ c ] -| RLit : ∀ Γ Δ v l, Rule [ ] [Γ > Δ > []|- [literalType v @@ l]] +| RNote : ∀ Γ Δ Σ τ l, Note -> Rule [Γ > Δ > Σ |- [τ ] @l] [Γ > Δ > Σ |- [τ ] @l] +| RLit : ∀ Γ Δ v l, Rule [ ] [Γ > Δ > []|- [literalType v ] @l] (* SystemFC rules *) -| RVar : ∀ Γ Δ σ l, Rule [ ] [Γ>Δ> [σ@@l] |- [σ @@l]] -| RLam : ∀ Γ Δ Σ tx te l, Γ ⊢ᴛy tx : ★ -> Rule [Γ>Δ> Σ,,[tx@@l]|- [te@@l] ] [Γ>Δ> Σ |- [tx--->te @@l]] -| RCast : ∀ Γ Δ Σ σ τ γ l, Δ ⊢ᴄᴏ γ : σ ∼ τ -> Rule [Γ>Δ> Σ |- [σ@@l] ] [Γ>Δ> Σ |- [τ @@l]] -| RBindingGroup : ∀ Γ Δ Σ₁ Σ₂ τ₁ τ₂ , Rule ([Γ > Δ > Σ₁ |- τ₁ ],,[Γ > Δ > Σ₂ |- τ₂ ]) [Γ>Δ> Σ₁,,Σ₂ |- τ₁,,τ₂ ] -| RApp : ∀ Γ Δ Σ₁ Σ₂ tx te l, Rule ([Γ>Δ> Σ₁ |- [tx--->te @@l]],,[Γ>Δ> Σ₂ |- [tx@@l]]) [Γ>Δ> Σ₁,,Σ₂ |- [te @@l]] -| RLet : ∀ Γ Δ Σ₁ Σ₂ σ₁ σ₂ l, Rule ([Γ>Δ> Σ₁,,[σ₂@@l] |- [σ₁@@l] ],,[Γ>Δ> Σ₂ |- [σ₂@@l]]) [Γ>Δ> Σ₁,,Σ₂ |- [σ₁ @@l]] -| REmptyGroup : ∀ Γ Δ , Rule [] [Γ > Δ > [] |- [] ] -| RAppT : ∀ Γ Δ Σ κ σ τ l, Γ ⊢ᴛy τ : κ -> Rule [Γ>Δ> Σ |- [HaskTAll κ σ @@l]] [Γ>Δ> Σ |- [substT σ τ @@l]] +| RVar : ∀ Γ Δ σ l, Rule [ ] [Γ>Δ> [σ@@l] |- [σ ] @l] +| RGlobal : forall Γ Δ l (g:Global Γ) v, Rule [ ] [Γ>Δ> [] |- [g v ] @l] +| RLam : forall Γ Δ Σ (tx:HaskType Γ ★) te l, Rule [Γ>Δ> Σ,,[tx@@l]|- [te] @l] [Γ>Δ> Σ |- [tx--->te ] @l] +| RCast : forall Γ Δ Σ (σ₁ σ₂:HaskType Γ ★) l, + HaskCoercion Γ Δ (σ₁∼∼∼σ₂) -> Rule [Γ>Δ> Σ |- [σ₁] @l] [Γ>Δ> Σ |- [σ₂ ] @l] + +(* order is important here; we want to be able to skolemize without introducing new AExch'es *) +| RApp : ∀ Γ Δ Σ₁ Σ₂ tx te l, Rule ([Γ>Δ> Σ₁ |- [tx--->te]@l],,[Γ>Δ> Σ₂ |- [tx]@l]) [Γ>Δ> Σ₁,,Σ₂ |- [te]@l] + +| RLet : ∀ Γ Δ Σ₁ Σ₂ σ₁ σ₂ l, Rule ([Γ>Δ> Σ₁ |- [σ₁]@l],,[Γ>Δ> [σ₁@@l],,Σ₂ |- [σ₂]@l ]) [Γ>Δ> Σ₁,,Σ₂ |- [σ₂ ]@l] +| RWhere : ∀ Γ Δ Σ₁ Σ₂ Σ₃ σ₁ σ₂ l, Rule ([Γ>Δ> Σ₁,,([σ₁@@l],,Σ₃) |- [σ₂]@l ],,[Γ>Δ> Σ₂ |- [σ₁]@l]) [Γ>Δ> Σ₁,,(Σ₂,,Σ₃) |- [σ₂ ]@l] + +| RCut : ∀ Γ Δ Σ Σ₁ Σ₁₂ Σ₂ Σ₃ l, Rule ([Γ>Δ> Σ₁ |- Σ₁₂ @l],,[Γ>Δ> Σ,,((Σ₁₂@@@l),,Σ₂) |- Σ₃@l ]) [Γ>Δ> Σ,,(Σ₁,,Σ₂) |- Σ₃@l] +| RLeft : ∀ Γ Δ Σ₁ Σ₂ Σ l, Rule [Γ>Δ> Σ₁ |- Σ₂ @l] [Γ>Δ> (Σ@@@l),,Σ₁ |- Σ,,Σ₂@l] +| RRight : ∀ Γ Δ Σ₁ Σ₂ Σ l, Rule [Γ>Δ> Σ₁ |- Σ₂ @l] [Γ>Δ> Σ₁,,(Σ@@@l) |- Σ₂,,Σ@l] + +| RVoid : ∀ Γ Δ l, Rule [] [Γ > Δ > [] |- [] @l ] + +| RAppT : forall Γ Δ Σ κ σ (τ:HaskType Γ κ) l, Rule [Γ>Δ> Σ |- [HaskTAll κ σ]@l] [Γ>Δ> Σ |- [substT σ τ]@l] | RAbsT : ∀ Γ Δ Σ κ σ l, - Rule [(κ::Γ)> (weakCE Δ) > mapOptionTree weakLT Σ |- [ HaskTApp (weakF σ) (FreshHaskTyVar _) @@ (weakL l)]] - [Γ>Δ > Σ |- [HaskTAll κ σ @@ l]] -| RAppCo : forall Γ Δ Σ σ₁ σ₂ σ γ l, Δ ⊢ᴄᴏ γ : σ₁∼σ₂ -> - Rule [Γ>Δ> Σ |- [σ₁∼∼σ₂ ⇒ σ@@l]] [Γ>Δ> Σ |- [σ @@l]] -| RAbsCo : ∀ Γ Δ Σ κ σ σ₁ σ₂ l, - Γ ⊢ᴛy σ₁:κ -> - Γ ⊢ᴛy σ₂:κ -> - Rule [Γ > ((σ₁∼∼∼σ₂)::Δ) > Σ |- [σ @@ l]] - [Γ > Δ > Σ |- [σ₁∼∼σ₂⇒ σ @@l]] -| RLetRec : ∀ Γ Δ Σ₁ τ₁ τ₂, Rule [Γ > Δ > Σ₁,,τ₂ |- τ₁,,τ₂ ] [Γ > Δ > Σ₁ |- τ₁ ] + Rule [(κ::Γ)> (weakCE Δ) > mapOptionTree weakLT Σ |- [ HaskTApp (weakF σ) (FreshHaskTyVar _) ]@(weakL l)] + [Γ>Δ > Σ |- [HaskTAll κ σ ]@l] + +| RAppCo : forall Γ Δ Σ κ (σ₁ σ₂:HaskType Γ κ) (γ:HaskCoercion Γ Δ (σ₁∼∼∼σ₂)) σ l, + Rule [Γ>Δ> Σ |- [σ₁∼∼σ₂ ⇒ σ]@l] [Γ>Δ> Σ |- [σ ]@l] +| RAbsCo : forall Γ Δ Σ κ (σ₁ σ₂:HaskType Γ κ) σ l, + Rule [Γ > ((σ₁∼∼∼σ₂)::Δ) > Σ |- [σ ]@l] + [Γ > Δ > Σ |- [σ₁∼∼σ₂⇒ σ ]@l] + +| RLetRec : forall Γ Δ Σ₁ τ₁ τ₂ lev, Rule [Γ > Δ > Σ₁,,(τ₂@@@lev) |- (τ₂,,[τ₁]) @lev ] [Γ > Δ > Σ₁ |- [τ₁] @lev] | RCase : forall Γ Δ lev tc Σ avars tbranches - (alts:Tree ??(@ProofCaseBranch tc Γ Δ lev tbranches avars)), + (alts:Tree ??{ sac : @StrongAltCon tc & @ProofCaseBranch tc Γ Δ lev tbranches avars sac }), Rule - ((mapOptionTree pcb_judg alts),, - [Γ > Δ > Σ |- [ caseType tc avars @@ lev ] ]) - [Γ > Δ > (mapOptionTreeAndFlatten pcb_freevars alts),,Σ |- [ tbranches @@ lev ] ] + ((mapOptionTree (fun x => pcb_judg (projT2 x)) alts),, + [Γ > Δ > Σ |- [ caseType tc avars ] @lev]) + [Γ > Δ > (mapOptionTreeAndFlatten (fun x => pcb_freevars (projT2 x)) alts),,Σ |- [ tbranches ] @ lev] . -Coercion RURule : URule >-> Rule. +Definition RCut' : ∀ Γ Δ Σ₁ Σ₁₂ Σ₂ Σ₃ l, + ND Rule ([Γ>Δ> Σ₁ |- Σ₁₂ @l],,[Γ>Δ> (Σ₁₂@@@l),,Σ₂ |- Σ₃@l ]) [Γ>Δ> Σ₁,,Σ₂ |- Σ₃@l]. + intros. + eapply nd_comp; [ idtac | eapply nd_rule; eapply RArrange; eapply ACanL ]. + eapply nd_comp; [ idtac | eapply nd_rule; eapply RCut ]. + apply nd_prod. + apply nd_id. + apply nd_rule. + apply RArrange. + apply AuCanL. + Defined. (* A rule is considered "flat" if it is neither RBrak nor REsc *) +(* TODO: change this to (if RBrak/REsc -> False) *) Inductive Rule_Flat : forall {h}{c}, Rule h c -> Prop := -| Flat_RURule : ∀ Γ Δ h c r , Rule_Flat (RURule Γ Δ h c r) -| Flat_RNote : ∀ x y z , Rule_Flat (RNote x y z) +| Flat_RArrange : ∀ Γ Δ h c r a l , Rule_Flat (RArrange Γ Δ h c r a l) +| Flat_RNote : ∀ Γ Δ Σ τ l n , Rule_Flat (RNote Γ Δ Σ τ l n) +| Flat_RLit : ∀ Γ Δ Σ τ , Rule_Flat (RLit Γ Δ Σ τ ) | Flat_RVar : ∀ Γ Δ σ l, Rule_Flat (RVar Γ Δ σ l) -| Flat_RLam : ∀ Γ Δ Σ tx te q l, Rule_Flat (RLam Γ Δ Σ tx te q l) -| Flat_RCast : ∀ Γ Δ Σ σ τ γ q l, Rule_Flat (RCast Γ Δ Σ σ τ γ q l) +| Flat_RLam : ∀ Γ Δ Σ tx te q , Rule_Flat (RLam Γ Δ Σ tx te q ) +| Flat_RCast : ∀ Γ Δ Σ σ τ γ q , Rule_Flat (RCast Γ Δ Σ σ τ γ q ) | Flat_RAbsT : ∀ Γ Σ κ σ a q , Rule_Flat (RAbsT Γ Σ κ σ a q ) -| Flat_RAppT : ∀ Γ Δ Σ κ σ τ q l, Rule_Flat (RAppT Γ Δ Σ κ σ τ q l) +| Flat_RAppT : ∀ Γ Δ Σ κ σ τ q , Rule_Flat (RAppT Γ Δ Σ κ σ τ q ) | Flat_RAppCo : ∀ Γ Δ Σ σ₁ σ₂ σ γ q l, Rule_Flat (RAppCo Γ Δ Σ σ₁ σ₂ σ γ q l) -| Flat_RAbsCo : ∀ Γ Σ κ σ σ₁ σ₂ q1 q2 q3 x , Rule_Flat (RAbsCo Γ Σ κ σ σ₁ σ₂ q1 q2 q3 x ) +| Flat_RAbsCo : ∀ Γ Σ κ σ σ₁ σ₂ q1 q2 , Rule_Flat (RAbsCo Γ Σ κ σ σ₁ σ₂ q1 q2 ) | Flat_RApp : ∀ Γ Δ Σ tx te p l, Rule_Flat (RApp Γ Δ Σ tx te p l) | Flat_RLet : ∀ Γ Δ Σ σ₁ σ₂ p l, Rule_Flat (RLet Γ Δ Σ σ₁ σ₂ p l) -| Flat_RBindingGroup : ∀ q a b c d e , Rule_Flat (RBindingGroup q a b c d e) -| Flat_RCase : ∀ Σ Γ T κlen κ θ l x , Rule_Flat (RCase Σ Γ T κlen κ θ l x ). - -(* given a proof that uses only uniform rules, we can produce a general proof *) -Definition UND_to_ND Γ Δ h c : ND (@URule Γ Δ) h c -> ND Rule (mapOptionTree UJudg2judg h) (mapOptionTree UJudg2judg c) - := @nd_map' _ (@URule Γ Δ ) _ Rule (@UJudg2judg Γ Δ ) (fun h c r => nd_rule (RURule _ _ h c r)) h c. - -Lemma no_urules_with_empty_conclusion : forall Γ Δ c h, @URule Γ Δ c h -> h=[] -> False. - intro. - intro. - induction 1; intros; inversion H. - simpl in *; destruct c; try destruct o; simpl in *; try destruct u; inversion H; simpl in *; apply IHX; auto; inversion H1. - simpl in *; destruct c; try destruct o; simpl in *; try destruct u; inversion H; simpl in *; apply IHX; auto; inversion H1. - Qed. +| Flat_RVoid : ∀ q a l, Rule_Flat (RVoid q a l) +| Flat_RCase : ∀ Σ Γ T κlen κ θ l x , Rule_Flat (RCase Σ Γ T κlen κ θ l x) +| Flat_RLetRec : ∀ Γ Δ Σ₁ τ₁ τ₂ lev, Rule_Flat (RLetRec Γ Δ Σ₁ τ₁ τ₂ lev). Lemma no_rules_with_empty_conclusion : forall c h, @Rule c h -> h=[] -> False. intros. destruct X; try destruct c; try destruct o; simpl in *; try inversion H. - apply no_urules_with_empty_conclusion in u. - apply u. - auto. - Qed. - -Lemma no_urules_with_multiple_conclusions : forall Γ Δ c h, - @URule Γ Δ c h -> { h1:Tree ??(UJudg Γ Δ) & { h2:Tree ??(UJudg Γ Δ) & h=(h1,,h2) }} -> False. - intro. - intro. - induction 1; intros. - inversion X; inversion X0; inversion H; inversion X1; destruct c; try destruct o; inversion H2; apply IHX; exists c1;exists c2; auto. - inversion X; inversion X0; inversion H; inversion X1; destruct c; try destruct o; inversion H2; apply IHX; exists c1;exists c2; auto. - inversion X; inversion X0; inversion H; inversion X1; destruct c; try destruct o; inversion H2; apply IHX; exists c1;exists c2; auto. - inversion X; inversion X0; inversion H; inversion X1; destruct c; try destruct o; inversion H2; apply IHX; exists c1;exists c2; auto. - inversion X; inversion X0; inversion H; inversion X1; destruct c; try destruct o; inversion H2; apply IHX; exists c1;exists c2; auto. - inversion X; inversion X0; inversion H; inversion X1; destruct c; try destruct o; inversion H2; apply IHX; exists c1;exists c2; auto. - - apply IHX. - destruct X0. destruct s. destruct c; try destruct o; try destruct u; simpl in *. - inversion e. - inversion e. - exists c1. exists c2. auto. - - apply IHX. - destruct X0. destruct s. destruct c; try destruct o; try destruct u; simpl in *. - inversion e. - inversion e. - exists c1. exists c2. auto. - - inversion X; inversion X0; inversion H; inversion X1; destruct c; try destruct o; inversion H2; apply IHX; exists c1;exists c2; auto. - inversion X; inversion X0; inversion H; inversion X1; destruct c; try destruct o; inversion H2; apply IHX; exists c1;exists c2; auto. - inversion X; inversion X0; inversion H; inversion X1; destruct c; try destruct o; inversion H2; apply IHX; exists c1;exists c2; auto. Qed. Lemma no_rules_with_multiple_conclusions : forall c h, @@ -190,7 +140,10 @@ Lemma no_rules_with_multiple_conclusions : forall c h, try apply no_urules_with_empty_conclusion in u; try apply u. destruct X0; destruct s; inversion e. auto. - apply (no_urules_with_multiple_conclusions _ _ h (c1,,c2)) in u. inversion u. exists c1. exists c2. auto. + destruct X0; destruct s; inversion e. + destruct X0; destruct s; inversion e. + destruct X0; destruct s; inversion e. + destruct X0; destruct s; inversion e. destruct X0; destruct s; inversion e. destruct X0; destruct s; inversion e. destruct X0; destruct s; inversion e. @@ -219,4 +172,3 @@ Lemma systemfc_all_rules_one_conclusion : forall h c1 c2 (r:Rule h (c1,,c2)), Fa auto. Qed. -