[project @ 2002-07-17 10:47:01 by ross]
[ghc-base.git] / Numeric.hs
index 9f84fdb..75c7b47 100644 (file)
@@ -58,10 +58,10 @@ import qualified Text.Read.Lex as L
 #endif
 
 #ifdef __HUGS__
-import Array
+import Hugs.Numeric
 #endif
 
-
+#ifdef __GLASGOW_HASKELL__
 -- -----------------------------------------------------------------------------
 -- Reading
 
@@ -99,11 +99,9 @@ readSigned readPos = readParen False read'
                               (n,"")  <- readPos str
                               return (n,s)
 
-
 -- -----------------------------------------------------------------------------
 -- Showing
 
-#ifdef __GLASGOW_HASKELL__
 showInt :: Integral a => a -> ShowS
 showInt n cs
     | n < 0     = error "Numeric.showInt: can't show negative numbers"
@@ -138,235 +136,7 @@ showGFloat    :: (RealFloat a) => Maybe Int -> a -> ShowS
 showEFloat d x =  showString (formatRealFloat FFExponent d x)
 showFFloat d x =  showString (formatRealFloat FFFixed d x)
 showGFloat d x =  showString (formatRealFloat FFGeneric d x)
-#endif
-
-#ifdef __HUGS__
--- This converts a rational to a floating.  This should be used in the
--- Fractional instances of Float and Double.
-
-fromRat :: (RealFloat a) => Rational -> a
-fromRat x = 
-    if x == 0 then encodeFloat 0 0              -- Handle exceptional cases
-    else if x < 0 then - fromRat' (-x)          -- first.
-    else fromRat' x
-
--- Conversion process:
--- Scale the rational number by the RealFloat base until
--- it lies in the range of the mantissa (as used by decodeFloat/encodeFloat).
--- Then round the rational to an Integer and encode it with the exponent
--- that we got from the scaling.
--- To speed up the scaling process we compute the log2 of the number to get
--- a first guess of the exponent.
-fromRat' :: (RealFloat a) => Rational -> a
-fromRat' x = r
-  where b = floatRadix r
-        p = floatDigits r
-        (minExp0, _) = floatRange r
-        minExp = minExp0 - p            -- the real minimum exponent
-        xMin = toRational (expt b (p-1))
-        xMax = toRational (expt b p)
-        p0 = (integerLogBase b (numerator x) -
-              integerLogBase b (denominator x) - p) `max` minExp
-        f = if p0 < 0 then 1 % expt b (-p0) else expt b p0 % 1
-        (x', p') = scaleRat (toRational b) minExp xMin xMax p0 (x / f)
-        r = encodeFloat (round x') p'
-
--- Scale x until xMin <= x < xMax, or p (the exponent) <= minExp.
-scaleRat :: Rational -> Int -> Rational -> Rational -> 
-             Int -> Rational -> (Rational, Int)
-scaleRat b minExp xMin xMax p x =
-    if p <= minExp then
-        (x, p)
-    else if x >= xMax then
-        scaleRat b minExp xMin xMax (p+1) (x/b)
-    else if x < xMin  then
-        scaleRat b minExp xMin xMax (p-1) (x*b)
-    else
-        (x, p)
-
--- Exponentiation with a cache for the most common numbers.
-minExpt = 0::Int
-maxExpt = 1100::Int
-expt :: Integer -> Int -> Integer
-expt base n =
-    if base == 2 && n >= minExpt && n <= maxExpt then
-        expts!n
-    else
-        base^n
-
-expts :: Array Int Integer
-expts = array (minExpt,maxExpt) [(n,2^n) | n <- [minExpt .. maxExpt]]
-
--- Compute the (floor of the) log of i in base b.
--- Simplest way would be just divide i by b until it's smaller then b,
--- but that would be very slow!  We are just slightly more clever.
-integerLogBase :: Integer -> Integer -> Int
-integerLogBase b i =
-     if i < b then
-        0
-     else
-        -- Try squaring the base first to cut down the number of divisions.
-        let l = 2 * integerLogBase (b*b) i
-            doDiv :: Integer -> Int -> Int
-            doDiv i l = if i < b then l else doDiv (i `div` b) (l+1)
-        in  doDiv (i `div` (b^l)) l
-
-
--- Misc utilities to show integers and floats 
-
-showEFloat     :: (RealFloat a) => Maybe Int -> a -> ShowS
-showFFloat     :: (RealFloat a) => Maybe Int -> a -> ShowS
-showGFloat     :: (RealFloat a) => Maybe Int -> a -> ShowS
-showFloat      :: (RealFloat a) => a -> ShowS
-
-showEFloat d x =  showString (formatRealFloat FFExponent d x)
-showFFloat d x =  showString (formatRealFloat FFFixed d x)
-showGFloat d x =  showString (formatRealFloat FFGeneric d x)
-showFloat      =  showGFloat Nothing 
-
--- These are the format types.  This type is not exported.
-
-data FFFormat = FFExponent | FFFixed | FFGeneric
-
-formatRealFloat :: (RealFloat a) => FFFormat -> Maybe Int -> a -> String
-formatRealFloat fmt decs x = s
-  where base = 10
-        s = if isNaN x then 
-                "NaN"
-            else if isInfinite x then 
-                if x < 0 then "-Infinity" else "Infinity"
-            else if x < 0 || isNegativeZero x then 
-                '-' : doFmt fmt (floatToDigits (toInteger base) (-x))
-            else 
-                doFmt fmt (floatToDigits (toInteger base) x)
-        doFmt fmt (is, e) =
-            let ds = map intToDigit is
-            in  case fmt of
-                FFGeneric -> 
-                    doFmt (if e < 0 || e > 7 then FFExponent else FFFixed)
-                          (is, e)
-                FFExponent ->
-                    case decs of
-                    Nothing ->
-                        case ds of
-                         ['0'] -> "0.0e0"
-                         [d]   -> d : ".0e" ++ show (e-1)
-                         d:ds  -> d : '.' : ds ++ 'e':show (e-1)
-                    Just dec ->
-                        let dec' = max dec 1 in
-                        case is of
-                         [0] -> '0':'.':take dec' (repeat '0') ++ "e0"
-                         _ ->
-                          let (ei, is') = roundTo base (dec'+1) is
-                              d:ds = map intToDigit
-                                         (if ei > 0 then init is' else is')
-                          in d:'.':ds  ++ "e" ++ show (e-1+ei)
-                FFFixed ->
-                    case decs of
-                    Nothing ->
-                        let f 0 s ds = mk0 s ++ "." ++ mk0 ds
-                            f n s "" = f (n-1) (s++"0") ""
-                            f n s (d:ds) = f (n-1) (s++[d]) ds
-                            mk0 "" = "0"
-                            mk0 s = s
-                        in  f e "" ds
-                    Just dec ->
-                        let dec' = max dec 0 in
-                        if e >= 0 then
-                            let (ei, is') = roundTo base (dec' + e) is
-                                (ls, rs) = splitAt (e+ei) (map intToDigit is')
-                            in  (if null ls then "0" else ls) ++ 
-                                (if null rs then "" else '.' : rs)
-                        else
-                            let (ei, is') = roundTo base dec'
-                                              (replicate (-e) 0 ++ is)
-                                d : ds = map intToDigit
-                                            (if ei > 0 then is' else 0:is')
-                            in  d : '.' : ds
-
-roundTo :: Int -> Int -> [Int] -> (Int, [Int])
-roundTo base d is = case f d is of
-                (0, is) -> (0, is)
-                (1, is) -> (1, 1 : is)
-  where b2 = base `div` 2
-        f n [] = (0, replicate n 0)
-        f 0 (i:_) = (if i >= b2 then 1 else 0, [])
-        f d (i:is) = 
-            let (c, ds) = f (d-1) is
-                i' = c + i
-            in  if i' == base then (1, 0:ds) else (0, i':ds)
-
---
--- Based on "Printing Floating-Point Numbers Quickly and Accurately"
--- by R.G. Burger and R. K. Dybvig, in PLDI 96.
--- This version uses a much slower logarithm estimator.  It should be improved.
-
--- This function returns a list of digits (Ints in [0..base-1]) and an
--- exponent.
-
-floatToDigits :: (RealFloat a) => Integer -> a -> ([Int], Int)
-
-floatToDigits _ 0 = ([0], 0)
-floatToDigits base x =
-    let (f0, e0) = decodeFloat x
-        (minExp0, _) = floatRange x
-        p = floatDigits x
-        b = floatRadix x
-        minExp = minExp0 - p            -- the real minimum exponent
-        -- Haskell requires that f be adjusted so denormalized numbers
-        -- will have an impossibly low exponent.  Adjust for this.
-        (f, e) = let n = minExp - e0
-                 in  if n > 0 then (f0 `div` (b^n), e0+n) else (f0, e0)
-
-        (r, s, mUp, mDn) =
-           if e >= 0 then
-               let be = b^e in
-               if f == b^(p-1) then
-                   (f*be*b*2, 2*b, be*b, b)
-               else
-                   (f*be*2, 2, be, be)
-           else
-               if e > minExp && f == b^(p-1) then
-                   (f*b*2, b^(-e+1)*2, b, 1)
-               else
-                   (f*2, b^(-e)*2, 1, 1)
-        k = 
-            let k0 =
-                    if b==2 && base==10 then
-                        -- logBase 10 2 is slightly bigger than 3/10 so
-                        -- the following will err on the low side.  Ignoring
-                        -- the fraction will make it err even more.
-                        -- Haskell promises that p-1 <= logBase b f < p.
-                        (p - 1 + e0) * 3 `div` 10
-                    else
-                        ceiling ((log (fromInteger (f+1)) + 
-                                 fromIntegral e * log (fromInteger b)) / 
-                                  log (fromInteger base))
-                fixup n =
-                    if n >= 0 then
-                        if r + mUp <= expt base n * s then n else fixup (n+1)
-                    else
-                        if expt base (-n) * (r + mUp) <= s then n
-                                                           else fixup (n+1)
-            in  fixup k0
-
-        gen ds rn sN mUpN mDnN =
-            let (dn, rn') = (rn * base) `divMod` sN
-                mUpN' = mUpN * base
-                mDnN' = mDnN * base
-            in  case (rn' < mDnN', rn' + mUpN' > sN) of
-                (True,  False) -> dn : ds
-                (False, True)  -> dn+1 : ds
-                (True,  True)  -> if rn' * 2 < sN then dn : ds else dn+1 : ds
-                (False, False) -> gen (dn:ds) rn' sN mUpN' mDnN'
-        rds =
-            if k >= 0 then
-                gen [] r (s * expt base k) mUp mDn
-            else
-                let bk = expt base (-k)
-                in  gen [] (r * bk) s (mUp * bk) (mDn * bk)
-    in  (map fromIntegral (reverse rds), k)
-#endif
+#endif  /* __GLASGOW_HASKELL__ */
 
 -- ---------------------------------------------------------------------------
 -- Integer printing functions