update submodule pointer
[ghc-hetmet.git] / compiler / typecheck / TcInstDcls.lhs
1 %
2 % (c) The University of Glasgow 2006
3 % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
4 %
5
6 TcInstDecls: Typechecking instance declarations
7
8 \begin{code}
9 module TcInstDcls ( tcInstDecls1, tcInstDecls2 ) where
10
11 import HsSyn
12 import TcBinds
13 import TcTyClsDecls
14 import TcClassDcl
15 import TcPat( addInlinePrags )
16 import TcRnMonad
17 import TcMType
18 import TcType
19 import BuildTyCl
20 import Inst
21 import InstEnv
22 import FamInst
23 import FamInstEnv
24 import TcDeriv
25 import TcEnv
26 import RnSource ( addTcgDUs )
27 import TcHsType
28 import TcUnify
29 import MkCore   ( nO_METHOD_BINDING_ERROR_ID )
30 import Type
31 import Coercion
32 import TyCon
33 import DataCon
34 import Class
35 import Var
36 import Pair
37 import VarSet
38 import CoreUtils  ( mkPiTypes )
39 import CoreUnfold ( mkDFunUnfolding )
40 import CoreSyn    ( Expr(Var), DFunArg(..), CoreExpr )
41 import Id
42 import MkId
43 import Name
44 import NameSet
45 import DynFlags
46 import SrcLoc
47 import Util
48 import Outputable
49 import Bag
50 import BasicTypes
51 import HscTypes
52 import FastString
53 import Maybes   ( orElse )
54 import Data.Maybe
55 import Control.Monad
56 import Data.List
57
58 #include "HsVersions.h"
59 \end{code}
60
61 Typechecking instance declarations is done in two passes. The first
62 pass, made by @tcInstDecls1@, collects information to be used in the
63 second pass.
64
65 This pre-processed info includes the as-yet-unprocessed bindings
66 inside the instance declaration.  These are type-checked in the second
67 pass, when the class-instance envs and GVE contain all the info from
68 all the instance and value decls.  Indeed that's the reason we need
69 two passes over the instance decls.
70
71
72 Note [How instance declarations are translated]
73 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
74 Here is how we translation instance declarations into Core
75
76 Running example:
77         class C a where
78            op1, op2 :: Ix b => a -> b -> b
79            op2 = <dm-rhs>
80
81         instance C a => C [a]
82            {-# INLINE [2] op1 #-}
83            op1 = <rhs>
84 ===>
85         -- Method selectors
86         op1,op2 :: forall a. C a => forall b. Ix b => a -> b -> b
87         op1 = ...
88         op2 = ...
89
90         -- Default methods get the 'self' dictionary as argument
91         -- so they can call other methods at the same type
92         -- Default methods get the same type as their method selector
93         $dmop2 :: forall a. C a => forall b. Ix b => a -> b -> b
94         $dmop2 = /\a. \(d:C a). /\b. \(d2: Ix b). <dm-rhs>
95                -- NB: type variables 'a' and 'b' are *both* in scope in <dm-rhs>
96                -- Note [Tricky type variable scoping]
97
98         -- A top-level definition for each instance method
99         -- Here op1_i, op2_i are the "instance method Ids"
100         -- The INLINE pragma comes from the user pragma
101         {-# INLINE [2] op1_i #-}  -- From the instance decl bindings
102         op1_i, op2_i :: forall a. C a => forall b. Ix b => [a] -> b -> b
103         op1_i = /\a. \(d:C a). 
104                let this :: C [a]
105                    this = df_i a d
106                      -- Note [Subtle interaction of recursion and overlap]
107
108                    local_op1 :: forall b. Ix b => [a] -> b -> b
109                    local_op1 = <rhs>
110                      -- Source code; run the type checker on this
111                      -- NB: Type variable 'a' (but not 'b') is in scope in <rhs>
112                      -- Note [Tricky type variable scoping]
113
114                in local_op1 a d
115
116         op2_i = /\a \d:C a. $dmop2 [a] (df_i a d) 
117
118         -- The dictionary function itself
119         {-# NOINLINE CONLIKE df_i #-}   -- Never inline dictionary functions
120         df_i :: forall a. C a -> C [a]
121         df_i = /\a. \d:C a. MkC (op1_i a d) (op2_i a d)
122                 -- But see Note [Default methods in instances]
123                 -- We can't apply the type checker to the default-method call
124
125         -- Use a RULE to short-circuit applications of the class ops
126         {-# RULE "op1@C[a]" forall a, d:C a. 
127                             op1 [a] (df_i d) = op1_i a d #-}
128
129 Note [Instances and loop breakers]
130 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
131 * Note that df_i may be mutually recursive with both op1_i and op2_i.
132   It's crucial that df_i is not chosen as the loop breaker, even 
133   though op1_i has a (user-specified) INLINE pragma.
134
135 * Instead the idea is to inline df_i into op1_i, which may then select
136   methods from the MkC record, and thereby break the recursion with
137   df_i, leaving a *self*-recurisve op1_i.  (If op1_i doesn't call op at
138   the same type, it won't mention df_i, so there won't be recursion in
139   the first place.)  
140
141 * If op1_i is marked INLINE by the user there's a danger that we won't
142   inline df_i in it, and that in turn means that (since it'll be a
143   loop-breaker because df_i isn't), op1_i will ironically never be 
144   inlined.  But this is OK: the recursion breaking happens by way of
145   a RULE (the magic ClassOp rule above), and RULES work inside InlineRule
146   unfoldings. See Note [RULEs enabled in SimplGently] in SimplUtils
147
148 Note [ClassOp/DFun selection]
149 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
150 One thing we see a lot is stuff like
151     op2 (df d1 d2)
152 where 'op2' is a ClassOp and 'df' is DFun.  Now, we could inline *both*
153 'op2' and 'df' to get
154      case (MkD ($cop1 d1 d2) ($cop2 d1 d2) ... of
155        MkD _ op2 _ _ _ -> op2
156 And that will reduce to ($cop2 d1 d2) which is what we wanted.
157
158 But it's tricky to make this work in practice, because it requires us to 
159 inline both 'op2' and 'df'.  But neither is keen to inline without having
160 seen the other's result; and it's very easy to get code bloat (from the 
161 big intermediate) if you inline a bit too much.
162
163 Instead we use a cunning trick.
164  * We arrange that 'df' and 'op2' NEVER inline.  
165
166  * We arrange that 'df' is ALWAYS defined in the sylised form
167       df d1 d2 = MkD ($cop1 d1 d2) ($cop2 d1 d2) ...
168
169  * We give 'df' a magical unfolding (DFunUnfolding [$cop1, $cop2, ..])
170    that lists its methods.
171
172  * We make CoreUnfold.exprIsConApp_maybe spot a DFunUnfolding and return
173    a suitable constructor application -- inlining df "on the fly" as it 
174    were.
175
176  * We give the ClassOp 'op2' a BuiltinRule that extracts the right piece
177    iff its argument satisfies exprIsConApp_maybe.  This is done in
178    MkId mkDictSelId
179
180  * We make 'df' CONLIKE, so that shared uses stil match; eg
181       let d = df d1 d2
182       in ...(op2 d)...(op1 d)...
183
184 Note [Single-method classes]
185 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
186 If the class has just one method (or, more accurately, just one element
187 of {superclasses + methods}), then we use a different strategy.
188
189    class C a where op :: a -> a
190    instance C a => C [a] where op = <blah>
191
192 We translate the class decl into a newtype, which just gives a
193 top-level axiom. The "constructor" MkC expands to a cast, as does the
194 class-op selector.
195
196    axiom Co:C a :: C a ~ (a->a)
197
198    op :: forall a. C a -> (a -> a)
199    op a d = d |> (Co:C a)
200
201    MkC :: forall a. (a->a) -> C a
202    MkC = /\a.\op. op |> (sym Co:C a)
203
204 The clever RULE stuff doesn't work now, because ($df a d) isn't
205 a constructor application, so exprIsConApp_maybe won't return 
206 Just <blah>.
207
208 Instead, we simply rely on the fact that casts are cheap:
209
210    $df :: forall a. C a => C [a]
211    {-# INLINE df #-}  -- NB: INLINE this
212    $df = /\a. \d. MkC [a] ($cop_list a d)
213        = $cop_list |> forall a. C a -> (sym (Co:C [a]))
214
215    $cop_list :: forall a. C a => [a] -> [a]
216    $cop_list = <blah>
217
218 So if we see
219    (op ($df a d))
220 we'll inline 'op' and '$df', since both are simply casts, and
221 good things happen.
222
223 Why do we use this different strategy?  Because otherwise we
224 end up with non-inlined dictionaries that look like
225     $df = $cop |> blah
226 which adds an extra indirection to every use, which seems stupid.  See
227 Trac #4138 for an example (although the regression reported there
228 wasn't due to the indirction).
229
230 There is an awkward wrinkle though: we want to be very 
231 careful when we have
232     instance C a => C [a] where
233       {-# INLINE op #-}
234       op = ...
235 then we'll get an INLINE pragma on $cop_list but it's important that
236 $cop_list only inlines when it's applied to *two* arguments (the
237 dictionary and the list argument).  So we nust not eta-expand $df
238 above.  We ensure that this doesn't happen by putting an INLINE 
239 pragma on the dfun itself; after all, it ends up being just a cast.
240
241 There is one more dark corner to the INLINE story, even more deeply 
242 buried.  Consider this (Trac #3772):
243
244     class DeepSeq a => C a where
245       gen :: Int -> a
246
247     instance C a => C [a] where
248       gen n = ...
249
250     class DeepSeq a where
251       deepSeq :: a -> b -> b
252
253     instance DeepSeq a => DeepSeq [a] where
254       {-# INLINE deepSeq #-}
255       deepSeq xs b = foldr deepSeq b xs
256
257 That gives rise to these defns:
258
259     $cdeepSeq :: DeepSeq a -> [a] -> b -> b
260     -- User INLINE( 3 args )!
261     $cdeepSeq a (d:DS a) b (x:[a]) (y:b) = ...
262
263     $fDeepSeq[] :: DeepSeq a -> DeepSeq [a]
264     -- DFun (with auto INLINE pragma)
265     $fDeepSeq[] a d = $cdeepSeq a d |> blah
266
267     $cp1 a d :: C a => DeepSep [a]
268     -- We don't want to eta-expand this, lest
269     -- $cdeepSeq gets inlined in it!
270     $cp1 a d = $fDeepSep[] a (scsel a d)
271
272     $fC[] :: C a => C [a]
273     -- Ordinary DFun
274     $fC[] a d = MkC ($cp1 a d) ($cgen a d)
275
276 Here $cp1 is the code that generates the superclass for C [a].  The
277 issue is this: we must not eta-expand $cp1 either, or else $fDeepSeq[]
278 and then $cdeepSeq will inline there, which is definitely wrong.  Like
279 on the dfun, we solve this by adding an INLINE pragma to $cp1.
280
281 Note [Subtle interaction of recursion and overlap]
282 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
283 Consider this
284   class C a where { op1,op2 :: a -> a }
285   instance C a => C [a] where
286     op1 x = op2 x ++ op2 x
287     op2 x = ...
288   instance C [Int] where
289     ...
290
291 When type-checking the C [a] instance, we need a C [a] dictionary (for
292 the call of op2).  If we look up in the instance environment, we find
293 an overlap.  And in *general* the right thing is to complain (see Note
294 [Overlapping instances] in InstEnv).  But in *this* case it's wrong to
295 complain, because we just want to delegate to the op2 of this same
296 instance.  
297
298 Why is this justified?  Because we generate a (C [a]) constraint in 
299 a context in which 'a' cannot be instantiated to anything that matches
300 other overlapping instances, or else we would not be excecuting this
301 version of op1 in the first place.
302
303 It might even be a bit disguised:
304
305   nullFail :: C [a] => [a] -> [a]
306   nullFail x = op2 x ++ op2 x
307
308   instance C a => C [a] where
309     op1 x = nullFail x
310
311 Precisely this is used in package 'regex-base', module Context.hs.
312 See the overlapping instances for RegexContext, and the fact that they
313 call 'nullFail' just like the example above.  The DoCon package also
314 does the same thing; it shows up in module Fraction.hs
315
316 Conclusion: when typechecking the methods in a C [a] instance, we want to
317 treat the 'a' as an *existential* type variable, in the sense described
318 by Note [Binding when looking up instances].  That is why isOverlappableTyVar
319 responds True to an InstSkol, which is the kind of skolem we use in
320 tcInstDecl2.
321
322
323 Note [Tricky type variable scoping]
324 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
325 In our example
326         class C a where
327            op1, op2 :: Ix b => a -> b -> b
328            op2 = <dm-rhs>
329
330         instance C a => C [a]
331            {-# INLINE [2] op1 #-}
332            op1 = <rhs>
333
334 note that 'a' and 'b' are *both* in scope in <dm-rhs>, but only 'a' is
335 in scope in <rhs>.  In particular, we must make sure that 'b' is in
336 scope when typechecking <dm-rhs>.  This is achieved by subFunTys,
337 which brings appropriate tyvars into scope. This happens for both
338 <dm-rhs> and for <rhs>, but that doesn't matter: the *renamer* will have
339 complained if 'b' is mentioned in <rhs>.
340
341
342
343 %************************************************************************
344 %*                                                                      *
345 \subsection{Extracting instance decls}
346 %*                                                                      *
347 %************************************************************************
348
349 Gather up the instance declarations from their various sources
350
351 \begin{code}
352 tcInstDecls1    -- Deal with both source-code and imported instance decls
353    :: [LTyClDecl Name]          -- For deriving stuff
354    -> [LInstDecl Name]          -- Source code instance decls
355    -> [LDerivDecl Name]         -- Source code stand-alone deriving decls
356    -> TcM (TcGblEnv,            -- The full inst env
357            [InstInfo Name],     -- Source-code instance decls to process;
358                                 -- contains all dfuns for this module
359            HsValBinds Name)     -- Supporting bindings for derived instances
360
361 tcInstDecls1 tycl_decls inst_decls deriv_decls
362   = checkNoErrs $
363     do {        -- Stop if addInstInfos etc discovers any errors
364                 -- (they recover, so that we get more than one error each
365                 -- round)
366
367                 -- (1) Do class and family instance declarations
368        ; idx_tycons        <- mapAndRecoverM (tcFamInstDecl TopLevel) $
369                               filter (isFamInstDecl . unLoc) tycl_decls 
370        ; local_info_tycons <- mapAndRecoverM tcLocalInstDecl1  inst_decls
371
372        ; let { (local_info,
373                 at_tycons_s)   = unzip local_info_tycons
374              ; at_idx_tycons   = concat at_tycons_s ++ idx_tycons
375              ; implicit_things = concatMap implicitTyConThings at_idx_tycons
376              ; aux_binds       = mkRecSelBinds at_idx_tycons  }
377
378                 -- (2) Add the tycons of indexed types and their implicit
379                 --     tythings to the global environment
380        ; tcExtendGlobalEnv (map ATyCon at_idx_tycons ++ implicit_things) $ do {
381
382
383                 -- Next, construct the instance environment so far, consisting
384                 -- of
385                 --   (a) local instance decls
386                 --   (b) local family instance decls
387        ; addInsts local_info         $
388          addFamInsts at_idx_tycons   $ do {
389
390                 -- (3) Compute instances from "deriving" clauses;
391                 -- This stuff computes a context for the derived instance
392                 -- decl, so it needs to know about all the instances possible
393                 -- NB: class instance declarations can contain derivings as
394                 --     part of associated data type declarations
395          failIfErrsM    -- If the addInsts stuff gave any errors, don't
396                         -- try the deriving stuff, because that may give
397                         -- more errors still
398        ; (deriv_inst_info, deriv_binds, deriv_dus, deriv_tys, deriv_ty_insts) 
399               <- tcDeriving tycl_decls inst_decls deriv_decls
400
401        -- Extend the global environment also with the generated datatypes for
402        -- the generic representation
403        ; let all_tycons = map ATyCon (deriv_tys ++ deriv_ty_insts)
404        ; gbl_env <- tcExtendGlobalEnv all_tycons $
405                     tcExtendGlobalEnv (concatMap implicitTyThings all_tycons) $
406                     addFamInsts deriv_ty_insts $
407                     addInsts deriv_inst_info getGblEnv
408        ; return ( addTcgDUs gbl_env deriv_dus,
409                   deriv_inst_info ++ local_info,
410                   aux_binds `plusHsValBinds` deriv_binds)
411     }}}
412
413 addInsts :: [InstInfo Name] -> TcM a -> TcM a
414 addInsts infos thing_inside
415   = tcExtendLocalInstEnv (map iSpec infos) thing_inside
416
417 addFamInsts :: [TyCon] -> TcM a -> TcM a
418 addFamInsts tycons thing_inside
419   = tcExtendLocalFamInstEnv (map mkLocalFamInst tycons) thing_inside
420 \end{code}
421
422 \begin{code}
423 tcLocalInstDecl1 :: LInstDecl Name
424                  -> TcM (InstInfo Name, [TyCon])
425         -- A source-file instance declaration
426         -- Type-check all the stuff before the "where"
427         --
428         -- We check for respectable instance type, and context
429 tcLocalInstDecl1 (L loc (InstDecl poly_ty binds uprags ats))
430   = setSrcSpan loc                      $
431     addErrCtxt (instDeclCtxt1 poly_ty)  $
432
433     do  { is_boot <- tcIsHsBoot
434         ; checkTc (not is_boot || (isEmptyLHsBinds binds && null uprags))
435                   badBootDeclErr
436
437         ; (tyvars, theta, clas, inst_tys) <- tcHsInstHead poly_ty
438         ; checkValidInstance poly_ty tyvars theta clas inst_tys
439
440         -- Next, process any associated types.
441         ; idx_tycons <- recoverM (return []) $
442                      do { idx_tycons <- checkNoErrs $ 
443                                         mapAndRecoverM (tcFamInstDecl NotTopLevel) ats
444                         ; checkValidAndMissingATs clas (tyvars, inst_tys)
445                                                   (zip ats idx_tycons)
446                         ; return idx_tycons }
447
448         -- Finally, construct the Core representation of the instance.
449         -- (This no longer includes the associated types.)
450         ; dfun_name <- newDFunName clas inst_tys (getLoc poly_ty)
451                 -- Dfun location is that of instance *header*
452         ; overlap_flag <- getOverlapFlag
453         ; let (eq_theta,dict_theta) = partition isEqPred theta
454               theta'         = eq_theta ++ dict_theta
455               dfun           = mkDictFunId dfun_name tyvars theta' clas inst_tys
456               ispec          = mkLocalInstance dfun overlap_flag
457
458         ; return (InstInfo { iSpec  = ispec, iBinds = VanillaInst binds uprags False },
459                   idx_tycons)
460         }
461   where
462     -- We pass in the source form and the type checked form of the ATs.  We
463     -- really need the source form only to be able to produce more informative
464     -- error messages.
465     checkValidAndMissingATs :: Class
466                             -> ([TyVar], [TcType])     -- instance types
467                             -> [(LTyClDecl Name,       -- source form of AT
468                                  TyCon)]               -- Core form of AT
469                             -> TcM ()
470     checkValidAndMissingATs clas inst_tys ats
471       = do { -- Issue a warning for each class AT that is not defined in this
472              -- instance.
473            ; let class_ats   = map tyConName (classATs clas)
474                  defined_ats = listToNameSet . map (tcdName.unLoc.fst)  $ ats
475                  omitted     = filterOut (`elemNameSet` defined_ats) class_ats
476            ; warn <- doptM Opt_WarnMissingMethods
477            ; mapM_ (warnTc warn . omittedATWarn) omitted
478
479              -- Ensure that all AT indexes that correspond to class parameters
480              -- coincide with the types in the instance head.  All remaining
481              -- AT arguments must be variables.  Also raise an error for any
482              -- type instances that are not associated with this class.
483            ; mapM_ (checkIndexes clas inst_tys) ats
484            }
485
486     checkIndexes clas inst_tys (hsAT, tycon)
487 -- !!!TODO: check that this does the Right Thing for indexed synonyms, too!
488       = checkIndexes' clas inst_tys hsAT
489                       (tyConTyVars tycon,
490                        snd . fromJust . tyConFamInst_maybe $ tycon)
491
492     checkIndexes' clas (instTvs, instTys) hsAT (atTvs, atTys)
493       = let atName = tcdName . unLoc $ hsAT
494         in
495         setSrcSpan (getLoc hsAT)       $
496         addErrCtxt (atInstCtxt atName) $
497         case find ((atName ==) . tyConName) (classATs clas) of
498           Nothing     -> addErrTc $ badATErr clas atName  -- not in this class
499           Just atycon ->
500                 -- The following is tricky!  We need to deal with three
501                 -- complications: (1) The AT possibly only uses a subset of
502                 -- the class parameters as indexes and those it uses may be in
503                 -- a different order; (2) the AT may have extra arguments,
504                 -- which must be type variables; and (3) variables in AT and
505                 -- instance head will be different `Name's even if their
506                 -- source lexemes are identical.
507                 --
508                 -- e.g.    class C a b c where 
509                 --           data D b a :: * -> *           -- NB (1) b a, omits c
510                 --         instance C [x] Bool Char where 
511                 --           data D Bool [x] v = MkD x [v]  -- NB (2) v
512                 --                -- NB (3) the x in 'instance C...' have differnt
513                 --                --        Names to x's in 'data D...'
514                 --
515                 -- Re (1), `poss' contains a permutation vector to extract the
516                 -- class parameters in the right order.
517                 --
518                 -- Re (2), we wrap the (permuted) class parameters in a Maybe
519                 -- type and use Nothing for any extra AT arguments.  (First
520                 -- equation of `checkIndex' below.)
521                 --
522                 -- Re (3), we replace any type variable in the AT parameters
523                 -- that has the same source lexeme as some variable in the
524                 -- instance types with the instance type variable sharing its
525                 -- source lexeme.
526                 --
527                 let poss :: [Int]
528                     -- For *associated* type families, gives the position
529                     -- of that 'TyVar' in the class argument list (0-indexed)
530                     -- e.g.  class C a b c where { type F c a :: *->* }
531                     --       Then we get Just [2,0]
532                     poss = catMaybes [ tv `elemIndex` classTyVars clas 
533                                      | tv <- tyConTyVars atycon]
534                        -- We will get Nothings for the "extra" type 
535                        -- variables in an associated data type
536                        -- e.g. class C a where { data D a :: *->* }
537                        -- here D gets arity 2 and has two tyvars
538
539                     relevantInstTys = map (instTys !!) poss
540                     instArgs        = map Just relevantInstTys ++
541                                       repeat Nothing  -- extra arguments
542                     renaming        = substSameTyVar atTvs instTvs
543                 in
544                 zipWithM_ checkIndex (substTys renaming atTys) instArgs
545
546     checkIndex ty Nothing
547       | isTyVarTy ty         = return ()
548       | otherwise            = addErrTc $ mustBeVarArgErr ty
549     checkIndex ty (Just instTy)
550       | ty `eqType` instTy = return ()
551       | otherwise          = addErrTc $ wrongATArgErr ty instTy
552
553     listToNameSet = addListToNameSet emptyNameSet
554
555     substSameTyVar []       _            = emptyTvSubst
556     substSameTyVar (tv:tvs) replacingTvs =
557       let replacement = case find (tv `sameLexeme`) replacingTvs of
558                         Nothing  -> mkTyVarTy tv
559                         Just rtv -> mkTyVarTy rtv
560           --
561           tv1 `sameLexeme` tv2 =
562             nameOccName (tyVarName tv1) == nameOccName (tyVarName tv2)
563       in
564       TcType.extendTvSubst (substSameTyVar tvs replacingTvs) tv replacement
565 \end{code}
566
567
568 %************************************************************************
569 %*                                                                      *
570                Type checking family instances
571 %*                                                                      *
572 %************************************************************************
573
574 Family instances are somewhat of a hybrid.  They are processed together with
575 class instance heads, but can contain data constructors and hence they share a
576 lot of kinding and type checking code with ordinary algebraic data types (and
577 GADTs).
578
579 \begin{code}
580 tcFamInstDecl :: TopLevelFlag -> LTyClDecl Name -> TcM TyCon
581 tcFamInstDecl top_lvl (L loc decl)
582   =     -- Prime error recovery, set source location
583     setSrcSpan loc                              $
584     tcAddDeclCtxt decl                          $
585     do { -- type family instances require -XTypeFamilies
586          -- and can't (currently) be in an hs-boot file
587        ; type_families <- xoptM Opt_TypeFamilies
588        ; is_boot  <- tcIsHsBoot   -- Are we compiling an hs-boot file?
589        ; checkTc type_families $ badFamInstDecl (tcdLName decl)
590        ; checkTc (not is_boot) $ badBootFamInstDeclErr
591
592          -- Perform kind and type checking
593        ; tc <- tcFamInstDecl1 decl
594        ; checkValidTyCon tc     -- Remember to check validity;
595                                 -- no recursion to worry about here
596
597        -- Check that toplevel type instances are not for associated types.
598        ; when (isTopLevel top_lvl && isAssocFamily tc)
599               (addErr $ assocInClassErr (tcdName decl))
600
601        ; return tc }
602
603 isAssocFamily :: TyCon -> Bool  -- Is an assocaited type
604 isAssocFamily tycon
605   = case tyConFamInst_maybe tycon of
606           Nothing       -> panic "isAssocFamily: no family?!?"
607           Just (fam, _) -> isTyConAssoc fam
608
609 assocInClassErr :: Name -> SDoc
610 assocInClassErr name
611  = ptext (sLit "Associated type") <+> quotes (ppr name) <+>
612    ptext (sLit "must be inside a class instance")
613
614
615
616 tcFamInstDecl1 :: TyClDecl Name -> TcM TyCon
617
618   -- "type instance"
619 tcFamInstDecl1 (decl@TySynonym {tcdLName = L loc tc_name})
620   = kcIdxTyPats decl $ \k_tvs k_typats resKind family ->
621     do { -- check that the family declaration is for a synonym
622          checkTc (isFamilyTyCon family) (notFamily family)
623        ; checkTc (isSynTyCon family) (wrongKindOfFamily family)
624
625        ; -- (1) kind check the right-hand side of the type equation
626        ; k_rhs <- kcCheckLHsType (tcdSynRhs decl) (EK resKind EkUnk)
627                   -- ToDo: the ExpKind could be better
628
629          -- we need the exact same number of type parameters as the family
630          -- declaration 
631        ; let famArity = tyConArity family
632        ; checkTc (length k_typats == famArity) $ 
633            wrongNumberOfParmsErr famArity
634
635          -- (2) type check type equation
636        ; tcTyVarBndrs k_tvs $ \t_tvs -> do {  -- turn kinded into proper tyvars
637        ; t_typats <- mapM tcHsKindedType k_typats
638        ; t_rhs    <- tcHsKindedType k_rhs
639
640          -- (3) check the well-formedness of the instance
641        ; checkValidTypeInst t_typats t_rhs
642
643          -- (4) construct representation tycon
644        ; rep_tc_name <- newFamInstTyConName tc_name t_typats loc
645        ; buildSynTyCon rep_tc_name t_tvs (SynonymTyCon t_rhs) 
646                        (typeKind t_rhs) 
647                        NoParentTyCon (Just (family, t_typats))
648        }}
649
650   -- "newtype instance" and "data instance"
651 tcFamInstDecl1 (decl@TyData {tcdND = new_or_data, tcdLName = L loc tc_name,
652                              tcdCons = cons})
653   = kcIdxTyPats decl $ \k_tvs k_typats resKind fam_tycon ->
654     do { -- check that the family declaration is for the right kind
655          checkTc (isFamilyTyCon fam_tycon) (notFamily fam_tycon)
656        ; checkTc (isAlgTyCon fam_tycon) (wrongKindOfFamily fam_tycon)
657
658        ; -- (1) kind check the data declaration as usual
659        ; k_decl <- kcDataDecl decl k_tvs
660        ; let k_ctxt = tcdCtxt k_decl
661              k_cons = tcdCons k_decl
662
663          -- result kind must be '*' (otherwise, we have too few patterns)
664        ; checkTc (isLiftedTypeKind resKind) $ tooFewParmsErr (tyConArity fam_tycon)
665
666          -- (2) type check indexed data type declaration
667        ; tcTyVarBndrs k_tvs $ \t_tvs -> do {  -- turn kinded into proper tyvars
668        ; unbox_strict <- doptM Opt_UnboxStrictFields
669
670          -- kind check the type indexes and the context
671        ; t_typats     <- mapM tcHsKindedType k_typats
672        ; stupid_theta <- tcHsKindedContext k_ctxt
673
674          -- (3) Check that
675          --     (a) left-hand side contains no type family applications
676          --         (vanilla synonyms are fine, though, and we checked for
677          --         foralls earlier)
678        ; mapM_ checkTyFamFreeness t_typats
679
680        ; dataDeclChecks tc_name new_or_data stupid_theta k_cons
681
682          -- (4) construct representation tycon
683        ; rep_tc_name <- newFamInstTyConName tc_name t_typats loc
684        ; let ex_ok = True       -- Existentials ok for type families!
685        ; fixM (\ rep_tycon -> do 
686              { let orig_res_ty = mkTyConApp fam_tycon t_typats
687              ; data_cons <- tcConDecls unbox_strict ex_ok rep_tycon
688                                        (t_tvs, orig_res_ty) k_cons
689              ; tc_rhs <-
690                  case new_or_data of
691                    DataType -> return (mkDataTyConRhs data_cons)
692                    NewType  -> ASSERT( not (null data_cons) )
693                                mkNewTyConRhs rep_tc_name rep_tycon (head data_cons)
694              ; buildAlgTyCon rep_tc_name t_tvs stupid_theta tc_rhs Recursive
695                              h98_syntax NoParentTyCon (Just (fam_tycon, t_typats))
696                  -- We always assume that indexed types are recursive.  Why?
697                  -- (1) Due to their open nature, we can never be sure that a
698                  -- further instance might not introduce a new recursive
699                  -- dependency.  (2) They are always valid loop breakers as
700                  -- they involve a coercion.
701              })
702        }}
703        where
704          h98_syntax = case cons of      -- All constructors have same shape
705                         L _ (ConDecl { con_res = ResTyGADT _ }) : _ -> False
706                         _ -> True
707
708 tcFamInstDecl1 d = pprPanic "tcFamInstDecl1" (ppr d)
709
710 -- Kind checking of indexed types
711 -- -
712
713 -- Kind check type patterns and kind annotate the embedded type variables.
714 --
715 -- * Here we check that a type instance matches its kind signature, but we do
716 --   not check whether there is a pattern for each type index; the latter
717 --   check is only required for type synonym instances.
718
719 kcIdxTyPats :: TyClDecl Name
720             -> ([LHsTyVarBndr Name] -> [LHsType Name] -> Kind -> TyCon -> TcM a)
721                -- ^^kinded tvs         ^^kinded ty pats  ^^res kind
722             -> TcM a
723 kcIdxTyPats decl thing_inside
724   = kcHsTyVars (tcdTyVars decl) $ \tvs -> 
725     do { let tc_name = tcdLName decl
726        ; fam_tycon <- tcLookupLocatedTyCon tc_name
727        ; let { (kinds, resKind) = splitKindFunTys (tyConKind fam_tycon)
728              ; hs_typats        = fromJust $ tcdTyPats decl }
729
730          -- we may not have more parameters than the kind indicates
731        ; checkTc (length kinds >= length hs_typats) $
732            tooManyParmsErr (tcdLName decl)
733
734          -- type functions can have a higher-kinded result
735        ; let resultKind = mkArrowKinds (drop (length hs_typats) kinds) resKind
736        ; typats <- zipWithM kcCheckLHsType hs_typats 
737                             [ EK kind (EkArg (ppr tc_name) n) 
738                             | (kind,n) <- kinds `zip` [1..]]
739        ; thing_inside tvs typats resultKind fam_tycon
740        }
741 \end{code}
742
743
744 %************************************************************************
745 %*                                                                      *
746       Type-checking instance declarations, pass 2
747 %*                                                                      *
748 %************************************************************************
749
750 \begin{code}
751 tcInstDecls2 :: [LTyClDecl Name] -> [InstInfo Name]
752              -> TcM (LHsBinds Id)
753 -- (a) From each class declaration,
754 --      generate any default-method bindings
755 -- (b) From each instance decl
756 --      generate the dfun binding
757
758 tcInstDecls2 tycl_decls inst_decls
759   = do  { -- (a) Default methods from class decls
760           let class_decls = filter (isClassDecl . unLoc) tycl_decls
761         ; dm_binds_s <- mapM tcClassDecl2 class_decls
762         ; let dm_binds = unionManyBags dm_binds_s
763                                     
764           -- (b) instance declarations
765         ; let dm_ids = collectHsBindsBinders dm_binds
766               -- Add the default method Ids (again)
767               -- See Note [Default methods and instances]
768         ; inst_binds_s <- tcExtendIdEnv dm_ids $
769                           mapM tcInstDecl2 inst_decls
770
771           -- Done
772         ; return (dm_binds `unionBags` unionManyBags inst_binds_s) }
773 \end{code}
774
775 See Note [Default methods and instances]
776 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
777 The default method Ids are already in the type environment (see Note
778 [Default method Ids and Template Haskell] in TcTyClsDcls), BUT they
779 don't have their InlinePragmas yet.  Usually that would not matter,
780 because the simplifier propagates information from binding site to
781 use.  But, unusually, when compiling instance decls we *copy* the
782 INLINE pragma from the default method to the method for that
783 particular operation (see Note [INLINE and default methods] below).
784
785 So right here in tcInstDecl2 we must re-extend the type envt with
786 the default method Ids replete with their INLINE pragmas.  Urk.
787
788 \begin{code}
789
790 tcInstDecl2 :: InstInfo Name -> TcM (LHsBinds Id)
791             -- Returns a binding for the dfun
792 tcInstDecl2 (InstInfo { iSpec = ispec, iBinds = ibinds })
793   = recoverM (return emptyLHsBinds)             $
794     setSrcSpan loc                              $
795     addErrCtxt (instDeclCtxt2 (idType dfun_id)) $ 
796     do {  -- Instantiate the instance decl with skolem constants
797        ; (inst_tyvars, dfun_theta, inst_head) <- tcSkolDFunType (idType dfun_id)
798                      -- We instantiate the dfun_id with superSkolems.
799                      -- See Note [Subtle interaction of recursion and overlap]
800                      -- and Note [Binding when looking up instances]
801        ; let (clas, inst_tys) = tcSplitDFunHead inst_head
802              (class_tyvars, sc_theta, _, op_items) = classBigSig clas
803              sc_theta' = substTheta (zipOpenTvSubst class_tyvars inst_tys) sc_theta
804              n_ty_args = length inst_tyvars
805              n_silent  = dfunNSilent dfun_id
806              (silent_theta, orig_theta) = splitAt n_silent dfun_theta
807
808        ; silent_ev_vars <- mapM newSilentGiven silent_theta
809        ; orig_ev_vars   <- newEvVars orig_theta
810        ; let dfun_ev_vars = silent_ev_vars ++ orig_ev_vars
811
812        ; (sc_dicts, sc_args)
813              <- mapAndUnzipM (tcSuperClass n_ty_args dfun_ev_vars) sc_theta'
814
815        -- Check that any superclasses gotten from a silent arguemnt
816        -- can be deduced from the originally-specified dfun arguments
817        ; ct_loc <- getCtLoc ScOrigin
818        ; _ <- checkConstraints skol_info inst_tyvars orig_ev_vars $
819               emitFlats $ listToBag $
820               [ mkEvVarX sc ct_loc | sc <- sc_dicts, isSilentEvVar sc ]
821
822        -- Deal with 'SPECIALISE instance' pragmas
823        -- See Note [SPECIALISE instance pragmas]
824        ; spec_info@(spec_inst_prags,_) <- tcSpecInstPrags dfun_id ibinds
825
826         -- Typecheck the methods
827        ; (meth_ids, meth_binds) 
828            <- tcExtendTyVarEnv inst_tyvars $
829                 -- The inst_tyvars scope over the 'where' part
830                 -- Those tyvars are inside the dfun_id's type, which is a bit
831                 -- bizarre, but OK so long as you realise it!
832               tcInstanceMethods dfun_id clas inst_tyvars dfun_ev_vars
833                                 inst_tys spec_info
834                                 op_items ibinds
835
836        -- Create the result bindings
837        ; self_dict <- newEvVar (ClassP clas inst_tys)
838        ; let class_tc      = classTyCon clas
839              [dict_constr] = tyConDataCons class_tc
840              dict_bind     = mkVarBind self_dict dict_rhs
841              dict_rhs      = foldl mk_app inst_constr $
842                              map HsVar sc_dicts ++ map (wrapId arg_wrapper) meth_ids
843              inst_constr   = L loc $ wrapId (mkWpTyApps inst_tys)
844                                             (dataConWrapId dict_constr)
845                      -- We don't produce a binding for the dict_constr; instead we
846                      -- rely on the simplifier to unfold this saturated application
847                      -- We do this rather than generate an HsCon directly, because
848                      -- it means that the special cases (e.g. dictionary with only one
849                      -- member) are dealt with by the common MkId.mkDataConWrapId 
850                      -- code rather than needing to be repeated here.
851
852              mk_app :: LHsExpr Id -> HsExpr Id -> LHsExpr Id
853              mk_app fun arg = L loc (HsApp fun (L loc arg))
854
855              arg_wrapper = mkWpEvVarApps dfun_ev_vars <.> mkWpTyApps (mkTyVarTys inst_tyvars)
856
857                 -- Do not inline the dfun; instead give it a magic DFunFunfolding
858                 -- See Note [ClassOp/DFun selection]
859                 -- See also note [Single-method classes]
860              dfun_id_w_fun
861                 | isNewTyCon class_tc
862                 = dfun_id `setInlinePragma` alwaysInlinePragma { inl_sat = Just 0 }
863                 | otherwise
864                 = dfun_id `setIdUnfolding`  mkDFunUnfolding dfun_ty (sc_args ++ meth_args)
865                           `setInlinePragma` dfunInlinePragma
866              meth_args = map (DFunPolyArg . Var) meth_ids
867
868              main_bind = AbsBinds { abs_tvs = inst_tyvars
869                                   , abs_ev_vars = dfun_ev_vars
870                                   , abs_exports = [(inst_tyvars, dfun_id_w_fun, self_dict,
871                                                     SpecPrags spec_inst_prags)]
872                                   , abs_ev_binds = emptyTcEvBinds
873                                   , abs_binds = unitBag dict_bind }
874
875        ; return (unitBag (L loc main_bind) `unionBags`
876                  listToBag meth_binds)
877        }
878  where
879    skol_info = InstSkol         
880    dfun_ty   = idType dfun_id
881    dfun_id   = instanceDFunId ispec
882    loc       = getSrcSpan dfun_id
883
884 ------------------------------
885 tcSuperClass :: Int -> [EvVar] -> PredType -> TcM (EvVar, DFunArg CoreExpr)
886 -- All superclasses should be either
887 --   (a) be one of the arguments to the dfun, of
888 --   (b) be a constant, soluble at top level
889 tcSuperClass n_ty_args ev_vars pred
890   | Just (ev, i) <- find n_ty_args ev_vars
891   = return (ev, DFunLamArg i)
892   | otherwise
893   = ASSERT2( isEmptyVarSet (tyVarsOfPred pred), ppr pred)       -- Constant!
894     do { sc_dict  <- emitWanted ScOrigin pred
895        ; return (sc_dict, DFunConstArg (Var sc_dict)) }
896   where
897     find _ [] = Nothing
898     find i (ev:evs) | pred `eqPred` evVarPred ev = Just (ev, i)
899                     | otherwise                  = find (i+1) evs
900
901 ------------------------------
902 tcSpecInstPrags :: DFunId -> InstBindings Name
903                 -> TcM ([Located TcSpecPrag], PragFun)
904 tcSpecInstPrags _ (NewTypeDerived {})
905   = return ([], \_ -> [])
906 tcSpecInstPrags dfun_id (VanillaInst binds uprags _)
907   = do { spec_inst_prags <- mapM (wrapLocM (tcSpecInst dfun_id)) $
908                             filter isSpecInstLSig uprags
909              -- The filter removes the pragmas for methods
910        ; return (spec_inst_prags, mkPragFun uprags binds) }
911 \end{code}
912
913 Note [Silent Superclass Arguments]
914 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
915 Consider the following (extreme) situation:
916         class C a => D a where ...
917         instance D [a] => D [a] where ...
918 Although this looks wrong (assume D [a] to prove D [a]), it is only a
919 more extreme case of what happens with recursive dictionaries.
920
921 To implement the dfun we must generate code for the superclass C [a],
922 which we can get by superclass selection from the supplied argument!
923 So we’d generate:
924        dfun :: forall a. D [a] -> D [a]
925        dfun = \d::D [a] -> MkD (scsel d) ..
926
927 However this means that if we later encounter a situation where
928 we have a [Wanted] dw::D [a] we could solve it thus:
929      dw := dfun dw
930 Although recursive, this binding would pass the TcSMonadisGoodRecEv
931 check because it appears as guarded.  But in reality, it will make a
932 bottom superclass. The trouble is that isGoodRecEv can't "see" the
933 superclass-selection inside dfun.
934
935 Our solution to this problem is to change the way â€˜dfuns’ are created
936 for instances, so that we pass as first arguments to the dfun some
937 ``silent superclass arguments’’, which are the immediate superclasses
938 of the dictionary we are trying to construct. In our example:
939        dfun :: forall a. (C [a], D [a] -> D [a]
940        dfun = \(dc::C [a]) (dd::D [a]) -> DOrd dc ...
941
942 This gives us:
943
944      -----------------------------------------------------------
945      DFun Superclass Invariant
946      ~~~~~~~~~~~~~~~~~~~~~~~~
947      In the body of a DFun, every superclass argument to the
948      returned dictionary is
949        either   * one of the arguments of the DFun,
950        or       * constant, bound at top level
951      -----------------------------------------------------------
952
953 This means that no superclass is hidden inside a dfun application, so
954 the counting argument in isGoodRecEv (more dfun calls than superclass
955 selections) works correctly.
956
957 The extra arguments required to satisfy the DFun Superclass Invariant
958 always come first, and are called the "silent" arguments.  DFun types
959 are built (only) by MkId.mkDictFunId, so that is where we decide
960 what silent arguments are to be added.
961
962 This net effect is that it is safe to treat a dfun application as
963 wrapping a dictionary constructor around its arguments (in particular,
964 a dfun never picks superclasses from the arguments under the dictionary
965 constructor).
966
967 In our example, if we had  [Wanted] dw :: D [a] we would get via the instance:
968     dw := dfun d1 d2
969     [Wanted] (d1 :: C [a])
970     [Wanted] (d2 :: D [a])
971     [Derived] (d :: D [a])
972     [Derived] (scd :: C [a])   scd  := scsel d
973     [Derived] (scd2 :: C [a])  scd2 := scsel d2
974
975 And now, though we *can* solve: 
976      d2 := dw
977 we will get an isGoodRecEv failure when we try to solve:
978     d1 := scsel d 
979  or
980     d1 := scsel d2 
981
982 Test case SCLoop tests this fix. 
983          
984 Note [SPECIALISE instance pragmas]
985 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
986 Consider
987
988    instance (Ix a, Ix b) => Ix (a,b) where
989      {-# SPECIALISE instance Ix (Int,Int) #-}
990      range (x,y) = ...
991
992 We do *not* want to make a specialised version of the dictionary
993 function.  Rather, we want specialised versions of each method.
994 Thus we should generate something like this:
995
996   $dfIx :: (Ix a, Ix x) => Ix (a,b)
997   {- DFUN [$crange, ...] -}
998   $dfIx da db = Ix ($crange da db) (...other methods...)
999
1000   $dfIxPair :: (Ix a, Ix x) => Ix (a,b)
1001   {- DFUN [$crangePair, ...] -}
1002   $dfIxPair = Ix ($crangePair da db) (...other methods...)
1003
1004   $crange :: (Ix a, Ix b) -> ((a,b),(a,b)) -> [(a,b)]
1005   {-# SPECIALISE $crange :: ((Int,Int),(Int,Int)) -> [(Int,Int)] #-}
1006   $crange da db = <blah>
1007
1008   {-# RULE  range ($dfIx da db) = $crange da db #-}
1009
1010 Note that  
1011
1012   * The RULE is unaffected by the specialisation.  We don't want to
1013     specialise $dfIx, because then it would need a specialised RULE
1014     which is a pain.  The single RULE works fine at all specialisations.
1015     See Note [How instance declarations are translated] above
1016
1017   * Instead, we want to specialise the *method*, $crange
1018
1019 In practice, rather than faking up a SPECIALISE pragama for each
1020 method (which is painful, since we'd have to figure out its
1021 specialised type), we call tcSpecPrag *as if* were going to specialise
1022 $dfIx -- you can see that in the call to tcSpecInst.  That generates a
1023 SpecPrag which, as it turns out, can be used unchanged for each method.
1024 The "it turns out" bit is delicate, but it works fine!
1025
1026 \begin{code}
1027 tcSpecInst :: Id -> Sig Name -> TcM TcSpecPrag
1028 tcSpecInst dfun_id prag@(SpecInstSig hs_ty) 
1029   = addErrCtxt (spec_ctxt prag) $
1030     do  { let name = idName dfun_id
1031         ; (tyvars, theta, clas, tys) <- tcHsInstHead hs_ty
1032         ; let (_, spec_dfun_ty) = mkDictFunTy tyvars theta clas tys
1033
1034         ; co_fn <- tcSubType (SpecPragOrigin name) SpecInstCtxt
1035                              (idType dfun_id) spec_dfun_ty
1036         ; return (SpecPrag dfun_id co_fn defaultInlinePragma) }
1037   where
1038     spec_ctxt prag = hang (ptext (sLit "In the SPECIALISE pragma")) 2 (ppr prag)
1039
1040 tcSpecInst _  _ = panic "tcSpecInst"
1041 \end{code}
1042
1043 %************************************************************************
1044 %*                                                                      *
1045       Type-checking an instance method
1046 %*                                                                      *
1047 %************************************************************************
1048
1049 tcInstanceMethod
1050 - Make the method bindings, as a [(NonRec, HsBinds)], one per method
1051 - Remembering to use fresh Name (the instance method Name) as the binder
1052 - Bring the instance method Ids into scope, for the benefit of tcInstSig
1053 - Use sig_fn mapping instance method Name -> instance tyvars
1054 - Ditto prag_fn
1055 - Use tcValBinds to do the checking
1056
1057 \begin{code}
1058 tcInstanceMethods :: DFunId -> Class -> [TcTyVar]
1059                   -> [EvVar]
1060                   -> [TcType]
1061                   -> ([Located TcSpecPrag], PragFun)
1062                   -> [(Id, DefMeth)]
1063                   -> InstBindings Name 
1064                   -> TcM ([Id], [LHsBind Id])
1065         -- The returned inst_meth_ids all have types starting
1066         --      forall tvs. theta => ...
1067 tcInstanceMethods dfun_id clas tyvars dfun_ev_vars inst_tys 
1068                   (spec_inst_prags, prag_fn)
1069                   op_items (VanillaInst binds _ standalone_deriv)
1070   = mapAndUnzipM tc_item op_items
1071   where
1072     ----------------------
1073     tc_item :: (Id, DefMeth) -> TcM (Id, LHsBind Id)
1074     tc_item (sel_id, dm_info)
1075       = case findMethodBind (idName sel_id) binds of
1076             Just user_bind -> tc_body sel_id standalone_deriv user_bind
1077             Nothing        -> tc_default sel_id dm_info
1078
1079     ----------------------
1080     tc_body :: Id -> Bool -> LHsBind Name -> TcM (TcId, LHsBind Id)
1081     tc_body sel_id generated_code rn_bind 
1082       = add_meth_ctxt sel_id generated_code rn_bind $
1083         do { (meth_id, local_meth_id) <- mkMethIds clas tyvars dfun_ev_vars 
1084                                                    inst_tys sel_id
1085            ; let prags = prag_fn (idName sel_id)
1086            ; meth_id1 <- addInlinePrags meth_id prags
1087            ; spec_prags <- tcSpecPrags meth_id1 prags
1088            ; bind <- tcInstanceMethodBody InstSkol
1089                           tyvars dfun_ev_vars
1090                           meth_id1 local_meth_id meth_sig_fn 
1091                           (mk_meth_spec_prags meth_id1 spec_prags)
1092                           rn_bind 
1093            ; return (meth_id1, bind) }
1094
1095     ----------------------
1096     tc_default :: Id -> DefMeth -> TcM (TcId, LHsBind Id)
1097
1098     tc_default sel_id (GenDefMeth dm_name)
1099       = do { meth_bind <- mkGenericDefMethBind clas inst_tys sel_id dm_name
1100            ; tc_body sel_id False {- Not generated code? -} meth_bind }
1101 {-
1102     tc_default sel_id GenDefMeth    -- Derivable type classes stuff
1103       = do { meth_bind <- mkGenericDefMethBind clas inst_tys sel_id
1104            ; tc_body sel_id False {- Not generated code? -} meth_bind }
1105 -}
1106     tc_default sel_id NoDefMeth     -- No default method at all
1107       = do { warnMissingMethod sel_id
1108            ; (meth_id, _) <- mkMethIds clas tyvars dfun_ev_vars 
1109                                          inst_tys sel_id
1110            ; return (meth_id, mkVarBind meth_id $ 
1111                               mkLHsWrap lam_wrapper error_rhs) }
1112       where
1113         error_rhs    = L loc $ HsApp error_fun error_msg
1114         error_fun    = L loc $ wrapId (WpTyApp meth_tau) nO_METHOD_BINDING_ERROR_ID
1115         error_msg    = L loc (HsLit (HsStringPrim (mkFastString error_string)))
1116         meth_tau     = funResultTy (applyTys (idType sel_id) inst_tys)
1117         error_string = showSDoc (hcat [ppr loc, text "|", ppr sel_id ])
1118         lam_wrapper  = mkWpTyLams tyvars <.> mkWpLams dfun_ev_vars
1119
1120     tc_default sel_id (DefMeth dm_name) -- A polymorphic default method
1121       = do {   -- Build the typechecked version directly, 
1122                  -- without calling typecheck_method; 
1123                  -- see Note [Default methods in instances]
1124                  -- Generate   /\as.\ds. let self = df as ds
1125                  --                      in $dm inst_tys self
1126                  -- The 'let' is necessary only because HsSyn doesn't allow
1127                  -- you to apply a function to a dictionary *expression*.
1128
1129            ; self_dict <- newEvVar (ClassP clas inst_tys)
1130            ; let self_ev_bind = EvBind self_dict $
1131                                 EvDFunApp dfun_id (mkTyVarTys tyvars) dfun_ev_vars
1132
1133            ; (meth_id, local_meth_id) <- mkMethIds clas tyvars dfun_ev_vars 
1134                                                    inst_tys sel_id
1135            ; dm_id <- tcLookupId dm_name
1136            ; let dm_inline_prag = idInlinePragma dm_id
1137                  rhs = HsWrap (mkWpEvVarApps [self_dict] <.> mkWpTyApps inst_tys) $
1138                          HsVar dm_id 
1139
1140                  meth_bind = L loc $ VarBind { var_id = local_meth_id
1141                                              , var_rhs = L loc rhs 
1142                                              , var_inline = False }
1143                  meth_id1 = meth_id `setInlinePragma` dm_inline_prag
1144                             -- Copy the inline pragma (if any) from the default
1145                             -- method to this version. Note [INLINE and default methods]
1146                             
1147                  bind = AbsBinds { abs_tvs = tyvars, abs_ev_vars =  dfun_ev_vars
1148                                  , abs_exports = [( tyvars, meth_id1, local_meth_id
1149                                                   , mk_meth_spec_prags meth_id1 [])]
1150                                  , abs_ev_binds = EvBinds (unitBag self_ev_bind)
1151                                  , abs_binds    = unitBag meth_bind }
1152              -- Default methods in an instance declaration can't have their own 
1153              -- INLINE or SPECIALISE pragmas. It'd be possible to allow them, but
1154              -- currently they are rejected with 
1155              --           "INLINE pragma lacks an accompanying binding"
1156
1157            ; return (meth_id1, L loc bind) } 
1158
1159     ----------------------
1160     mk_meth_spec_prags :: Id -> [LTcSpecPrag] -> TcSpecPrags
1161         -- Adapt the SPECIALISE pragmas to work for this method Id
1162         -- There are two sources: 
1163         --   * spec_inst_prags: {-# SPECIALISE instance :: <blah> #-}
1164         --     These ones have the dfun inside, but [perhaps surprisingly] 
1165         --     the correct wrapper
1166         --   * spec_prags_for_me: {-# SPECIALISE op :: <blah> #-}
1167     mk_meth_spec_prags meth_id spec_prags_for_me
1168       = SpecPrags (spec_prags_for_me ++ 
1169                    [ L loc (SpecPrag meth_id wrap inl)
1170                    | L loc (SpecPrag _ wrap inl) <- spec_inst_prags])
1171    
1172     loc = getSrcSpan dfun_id
1173     meth_sig_fn _ = Just ([],loc)       -- The 'Just' says "yes, there's a type sig"
1174         -- But there are no scoped type variables from local_method_id
1175         -- Only the ones from the instance decl itself, which are already
1176         -- in scope.  Example:
1177         --      class C a where { op :: forall b. Eq b => ... }
1178         --      instance C [c] where { op = <rhs> }
1179         -- In <rhs>, 'c' is scope but 'b' is not!
1180
1181         -- For instance decls that come from standalone deriving clauses
1182         -- we want to print out the full source code if there's an error
1183         -- because otherwise the user won't see the code at all
1184     add_meth_ctxt sel_id generated_code rn_bind thing 
1185       | generated_code = addLandmarkErrCtxt (derivBindCtxt sel_id clas inst_tys rn_bind) thing
1186       | otherwise      = thing
1187
1188
1189 tcInstanceMethods dfun_id clas tyvars dfun_ev_vars inst_tys 
1190                   _ op_items (NewTypeDerived coi _)
1191
1192 -- Running example:
1193 --   class Show b => Foo a b where
1194 --     op :: a -> b -> b
1195 --   newtype N a = MkN (Tree [a]) 
1196 --   deriving instance (Show p, Foo Int p) => Foo Int (N p)
1197 --               -- NB: standalone deriving clause means
1198 --               --     that the contex is user-specified
1199 -- Hence op :: forall a b. Foo a b => a -> b -> b
1200 --
1201 -- We're going to make an instance like
1202 --   instance (Show p, Foo Int p) => Foo Int (N p)
1203 --      op = $copT
1204 --
1205 --   $copT :: forall p. (Show p, Foo Int p) => Int -> N p -> N p
1206 --   $copT p (d1:Show p) (d2:Foo Int p) 
1207 --     = op Int (Tree [p]) rep_d |> op_co
1208 --     where 
1209 --       rep_d :: Foo Int (Tree [p]) = ...d1...d2...
1210 --       op_co :: (Int -> Tree [p] -> Tree [p]) ~ (Int -> T p -> T p)
1211 -- We get op_co by substituting [Int/a] and [co/b] in type for op
1212 -- where co : [p] ~ T p
1213 --
1214 -- Notice that the dictionary bindings "..d1..d2.." must be generated
1215 -- by the constraint solver, since the <context> may be
1216 -- user-specified.
1217
1218   = do { rep_d_stuff <- checkConstraints InstSkol tyvars dfun_ev_vars $
1219                         emitWanted ScOrigin rep_pred
1220                          
1221        ; mapAndUnzipM (tc_item rep_d_stuff) op_items }
1222   where
1223      loc = getSrcSpan dfun_id
1224
1225      inst_tvs = fst (tcSplitForAllTys (idType dfun_id))
1226      Just (init_inst_tys, _) = snocView inst_tys
1227      rep_ty   = pFst (coercionKind co)  -- [p]
1228      rep_pred = mkClassPred clas (init_inst_tys ++ [rep_ty])
1229
1230      -- co : [p] ~ T p
1231      co = substCoWithTys inst_tvs (mkTyVarTys tyvars) $
1232           mkSymCo coi
1233
1234      ----------------
1235      tc_item :: (TcEvBinds, EvVar) -> (Id, DefMeth) -> TcM (TcId, LHsBind TcId)
1236      tc_item (rep_ev_binds, rep_d) (sel_id, _)
1237        = do { (meth_id, local_meth_id) <- mkMethIds clas tyvars dfun_ev_vars 
1238                                                     inst_tys sel_id
1239
1240             ; let meth_rhs  = wrapId (mk_op_wrapper sel_id rep_d) sel_id
1241                   meth_bind = VarBind { var_id = local_meth_id
1242                                       , var_rhs = L loc meth_rhs
1243                                       , var_inline = False }
1244
1245                   bind = AbsBinds { abs_tvs = tyvars, abs_ev_vars = dfun_ev_vars
1246                                    , abs_exports = [(tyvars, meth_id, 
1247                                                      local_meth_id, noSpecPrags)]
1248                                    , abs_ev_binds = rep_ev_binds
1249                                    , abs_binds = unitBag $ L loc meth_bind }
1250
1251             ; return (meth_id, L loc bind) }
1252
1253      ----------------
1254      mk_op_wrapper :: Id -> EvVar -> HsWrapper
1255      mk_op_wrapper sel_id rep_d 
1256        = WpCast (liftCoSubstWith sel_tvs (map mkReflCo init_inst_tys ++ [co])
1257                                local_meth_ty)
1258          <.> WpEvApp (EvId rep_d)
1259          <.> mkWpTyApps (init_inst_tys ++ [rep_ty]) 
1260        where
1261          (sel_tvs, sel_rho) = tcSplitForAllTys (idType sel_id)
1262          (_, local_meth_ty) = tcSplitPredFunTy_maybe sel_rho
1263                               `orElse` pprPanic "tcInstanceMethods" (ppr sel_id)
1264
1265 ----------------------
1266 mkMethIds :: Class -> [TcTyVar] -> [EvVar] -> [TcType] -> Id -> TcM (TcId, TcId)
1267 mkMethIds clas tyvars dfun_ev_vars inst_tys sel_id
1268   = do  { uniq <- newUnique
1269         ; let meth_name = mkDerivedInternalName mkClassOpAuxOcc uniq sel_name
1270         ; local_meth_name <- newLocalName sel_name
1271                   -- Base the local_meth_name on the selector name, becuase
1272                   -- type errors from tcInstanceMethodBody come from here
1273
1274         ; let meth_id       = mkLocalId meth_name meth_ty
1275               local_meth_id = mkLocalId local_meth_name local_meth_ty
1276         ; return (meth_id, local_meth_id) }
1277   where
1278     local_meth_ty = instantiateMethod clas sel_id inst_tys
1279     meth_ty = mkForAllTys tyvars $ mkPiTypes dfun_ev_vars local_meth_ty
1280     sel_name = idName sel_id
1281
1282 ----------------------
1283 wrapId :: HsWrapper -> id -> HsExpr id
1284 wrapId wrapper id = mkHsWrap wrapper (HsVar id)
1285
1286 derivBindCtxt :: Id -> Class -> [Type ] -> LHsBind Name -> SDoc
1287 derivBindCtxt sel_id clas tys _bind
1288    = vcat [ ptext (sLit "When typechecking the code for ") <+> quotes (ppr sel_id)
1289           , nest 2 (ptext (sLit "in a standalone derived instance for")
1290                     <+> quotes (pprClassPred clas tys) <> colon)
1291           , nest 2 $ ptext (sLit "To see the code I am typechecking, use -ddump-deriv") ]
1292
1293 -- Too voluminous
1294 --        , nest 2 $ pprSetDepth AllTheWay $ ppr bind ]
1295
1296 warnMissingMethod :: Id -> TcM ()
1297 warnMissingMethod sel_id
1298   = do { warn <- doptM Opt_WarnMissingMethods           
1299        ; warnTc (warn  -- Warn only if -fwarn-missing-methods
1300                  && not (startsWithUnderscore (getOccName sel_id)))
1301                                         -- Don't warn about _foo methods
1302                 (ptext (sLit "No explicit method nor default method for")
1303                  <+> quotes (ppr sel_id)) }
1304 \end{code}
1305
1306 Note [Export helper functions]
1307 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1308 We arrange to export the "helper functions" of an instance declaration,
1309 so that they are not subject to preInlineUnconditionally, even if their
1310 RHS is trivial.  Reason: they are mentioned in the DFunUnfolding of
1311 the dict fun as Ids, not as CoreExprs, so we can't substitute a 
1312 non-variable for them.
1313
1314 We could change this by making DFunUnfoldings have CoreExprs, but it
1315 seems a bit simpler this way.
1316
1317 Note [Default methods in instances]
1318 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1319 Consider this
1320
1321    class Baz v x where
1322       foo :: x -> x
1323       foo y = <blah>
1324
1325    instance Baz Int Int
1326
1327 From the class decl we get
1328
1329    $dmfoo :: forall v x. Baz v x => x -> x
1330    $dmfoo y = <blah>
1331
1332 Notice that the type is ambiguous.  That's fine, though. The instance
1333 decl generates
1334
1335    $dBazIntInt = MkBaz fooIntInt
1336    fooIntInt = $dmfoo Int Int $dBazIntInt
1337
1338 BUT this does mean we must generate the dictionary translation of
1339 fooIntInt directly, rather than generating source-code and
1340 type-checking it.  That was the bug in Trac #1061. In any case it's
1341 less work to generate the translated version!
1342
1343 Note [INLINE and default methods]
1344 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1345 Default methods need special case.  They are supposed to behave rather like
1346 macros.  For exmample
1347
1348   class Foo a where
1349     op1, op2 :: Bool -> a -> a
1350
1351     {-# INLINE op1 #-}
1352     op1 b x = op2 (not b) x
1353
1354   instance Foo Int where
1355     -- op1 via default method
1356     op2 b x = <blah>
1357    
1358 The instance declaration should behave
1359
1360    just as if 'op1' had been defined with the
1361    code, and INLINE pragma, from its original
1362    definition. 
1363
1364 That is, just as if you'd written
1365
1366   instance Foo Int where
1367     op2 b x = <blah>
1368
1369     {-# INLINE op1 #-}
1370     op1 b x = op2 (not b) x
1371
1372 So for the above example we generate:
1373
1374
1375   {-# INLINE $dmop1 #-}
1376   -- $dmop1 has an InlineCompulsory unfolding
1377   $dmop1 d b x = op2 d (not b) x
1378
1379   $fFooInt = MkD $cop1 $cop2
1380
1381   {-# INLINE $cop1 #-}
1382   $cop1 = $dmop1 $fFooInt
1383
1384   $cop2 = <blah>
1385
1386 Note carefullly:
1387
1388 * We *copy* any INLINE pragma from the default method $dmop1 to the
1389   instance $cop1.  Otherwise we'll just inline the former in the
1390   latter and stop, which isn't what the user expected
1391
1392 * Regardless of its pragma, we give the default method an 
1393   unfolding with an InlineCompulsory source. That means
1394   that it'll be inlined at every use site, notably in
1395   each instance declaration, such as $cop1.  This inlining
1396   must happen even though 
1397     a) $dmop1 is not saturated in $cop1
1398     b) $cop1 itself has an INLINE pragma
1399
1400   It's vital that $dmop1 *is* inlined in this way, to allow the mutual
1401   recursion between $fooInt and $cop1 to be broken
1402
1403 * To communicate the need for an InlineCompulsory to the desugarer
1404   (which makes the Unfoldings), we use the IsDefaultMethod constructor
1405   in TcSpecPrags.
1406
1407
1408 %************************************************************************
1409 %*                                                                      *
1410 \subsection{Error messages}
1411 %*                                                                      *
1412 %************************************************************************
1413
1414 \begin{code}
1415 instDeclCtxt1 :: LHsType Name -> SDoc
1416 instDeclCtxt1 hs_inst_ty
1417   = inst_decl_ctxt (case unLoc hs_inst_ty of
1418                         HsForAllTy _ _ _ (L _ (HsPredTy pred)) -> ppr pred
1419                         HsPredTy pred                    -> ppr pred
1420                         _                                -> ppr hs_inst_ty)     -- Don't expect this
1421 instDeclCtxt2 :: Type -> SDoc
1422 instDeclCtxt2 dfun_ty
1423   = inst_decl_ctxt (ppr (mkClassPred cls tys))
1424   where
1425     (_,_,cls,tys) = tcSplitDFunTy dfun_ty
1426
1427 inst_decl_ctxt :: SDoc -> SDoc
1428 inst_decl_ctxt doc = ptext (sLit "In the instance declaration for") <+> quotes doc
1429
1430 atInstCtxt :: Name -> SDoc
1431 atInstCtxt name = ptext (sLit "In the associated type instance for") <+>
1432                   quotes (ppr name)
1433
1434 mustBeVarArgErr :: Type -> SDoc
1435 mustBeVarArgErr ty =
1436   sep [ ptext (sLit "Arguments that do not correspond to a class parameter") <+>
1437         ptext (sLit "must be variables")
1438       , ptext (sLit "Instead of a variable, found") <+> ppr ty
1439       ]
1440
1441 wrongATArgErr :: Type -> Type -> SDoc
1442 wrongATArgErr ty instTy =
1443   sep [ ptext (sLit "Type indexes must match class instance head")
1444       , ptext (sLit "Found") <+> quotes (ppr ty)
1445         <+> ptext (sLit "but expected") <+> quotes (ppr instTy)
1446       ]
1447
1448 tooManyParmsErr :: Located Name -> SDoc
1449 tooManyParmsErr tc_name
1450   = ptext (sLit "Family instance has too many parameters:") <+> 
1451     quotes (ppr tc_name)
1452
1453 tooFewParmsErr :: Arity -> SDoc
1454 tooFewParmsErr arity
1455   = ptext (sLit "Family instance has too few parameters; expected") <+> 
1456     ppr arity
1457
1458 wrongNumberOfParmsErr :: Arity -> SDoc
1459 wrongNumberOfParmsErr exp_arity
1460   = ptext (sLit "Number of parameters must match family declaration; expected")
1461     <+> ppr exp_arity
1462
1463 badBootFamInstDeclErr :: SDoc
1464 badBootFamInstDeclErr
1465   = ptext (sLit "Illegal family instance in hs-boot file")
1466
1467 notFamily :: TyCon -> SDoc
1468 notFamily tycon
1469   = vcat [ ptext (sLit "Illegal family instance for") <+> quotes (ppr tycon)
1470          , nest 2 $ parens (ppr tycon <+> ptext (sLit "is not an indexed type family"))]
1471   
1472 wrongKindOfFamily :: TyCon -> SDoc
1473 wrongKindOfFamily family
1474   = ptext (sLit "Wrong category of family instance; declaration was for a")
1475     <+> kindOfFamily
1476   where
1477     kindOfFamily | isSynTyCon family = ptext (sLit "type synonym")
1478                  | isAlgTyCon family = ptext (sLit "data type")
1479                  | otherwise = pprPanic "wrongKindOfFamily" (ppr family)
1480 \end{code}