Improve the unboxed types documentation
[ghc-hetmet.git] / docs / users_guide / glasgow_exts.xml
1 <?xml version="1.0" encoding="iso-8859-1"?>
2 <para>
3 <indexterm><primary>language, GHC</primary></indexterm>
4 <indexterm><primary>extensions, GHC</primary></indexterm>
5 As with all known Haskell systems, GHC implements some extensions to
6 the language.  They are all enabled by options; by default GHC
7 understands only plain Haskell 98.
8 </para>
9
10 <para>
11 Some of the Glasgow extensions serve to give you access to the
12 underlying facilities with which we implement Haskell.  Thus, you can
13 get at the Raw Iron, if you are willing to write some non-portable
14 code at a more primitive level.  You need not be &ldquo;stuck&rdquo;
15 on performance because of the implementation costs of Haskell's
16 &ldquo;high-level&rdquo; features&mdash;you can always code
17 &ldquo;under&rdquo; them.  In an extreme case, you can write all your
18 time-critical code in C, and then just glue it together with Haskell!
19 </para>
20
21 <para>
22 Before you get too carried away working at the lowest level (e.g.,
23 sloshing <literal>MutableByteArray&num;</literal>s around your
24 program), you may wish to check if there are libraries that provide a
25 &ldquo;Haskellised veneer&rdquo; over the features you want.  The
26 separate <ulink url="../libraries/index.html">libraries
27 documentation</ulink> describes all the libraries that come with GHC.
28 </para>
29
30 <!-- LANGUAGE OPTIONS -->
31   <sect1 id="options-language">
32     <title>Language options</title>
33
34     <indexterm><primary>language</primary><secondary>option</secondary>
35     </indexterm>
36     <indexterm><primary>options</primary><secondary>language</secondary>
37     </indexterm>
38     <indexterm><primary>extensions</primary><secondary>options controlling</secondary>
39     </indexterm>
40
41     <para>The language option flag control what variation of the language are
42     permitted.  Leaving out all of them gives you standard Haskell
43     98.</para>
44
45     <para>Generally speaking, all the language options are introduced by "<option>-X</option>", 
46     e.g. <option>-XTemplateHaskell</option>.
47     </para>
48
49    <para> All the language options can be turned off by using the prefix "<option>No</option>"; 
50       e.g. "<option>-XNoTemplateHaskell</option>".</para>
51
52    <para> Language options recognised by Cabal can also be enabled using the <literal>LANGUAGE</literal> pragma,
53    thus <literal>{-# LANGUAGE TemplateHaskell #-}</literal> (see <xref linkend="language-pragma"/>>). </para>
54
55     <para>Turning on an option that enables special syntax
56     <emphasis>might</emphasis> cause working Haskell 98 code to fail
57     to compile, perhaps because it uses a variable name which has
58     become a reserved word.  So, together with each option below, we
59     list the special syntax which is enabled by this option.  We use
60     notation and nonterminal names from the Haskell 98 lexical syntax
61     (see the Haskell 98 Report).  There are two classes of special
62     syntax:</para>
63
64     <itemizedlist>
65       <listitem>
66         <para>New reserved words and symbols: character sequences
67         which are no longer available for use as identifiers in the
68         program.</para>
69       </listitem>
70       <listitem>
71         <para>Other special syntax: sequences of characters that have
72         a different meaning when this particular option is turned
73         on.</para>
74       </listitem>
75     </itemizedlist>
76
77     <para>We are only listing syntax changes here that might affect
78     existing working programs (i.e. "stolen" syntax).  Many of these
79     extensions will also enable new context-free syntax, but in all
80     cases programs written to use the new syntax would not be
81     compilable without the option enabled.</para>
82
83     <variablelist>
84
85       <varlistentry>
86         <term>
87           <option>-fglasgow-exts</option>:
88           <indexterm><primary><option>-fglasgow-exts</option></primary></indexterm>
89         </term>
90         <listitem>
91           <para>This simultaneously enables all of the extensions to
92           Haskell 98 described in <xref
93           linkend="ghc-language-features"/>, except where otherwise
94           noted. We are trying to move away from this portmanteau flag, 
95           and towards enabling features individually.</para>
96
97           <para>New reserved words: <literal>forall</literal> (only in
98           types), <literal>mdo</literal>.</para>
99
100           <para>Other syntax stolen:
101               <replaceable>varid</replaceable>{<literal>&num;</literal>},
102               <replaceable>char</replaceable><literal>&num;</literal>,      
103               <replaceable>string</replaceable><literal>&num;</literal>,    
104               <replaceable>integer</replaceable><literal>&num;</literal>,    
105               <replaceable>float</replaceable><literal>&num;</literal>,    
106               <replaceable>float</replaceable><literal>&num;&num;</literal>,    
107               <literal>(&num;</literal>, <literal>&num;)</literal>,         
108               <literal>|)</literal>, <literal>{|</literal>.</para>
109
110           <para>Implies these specific language options: 
111             <option>-XForeignFunctionInterface</option>,
112             <option>-XImplicitParams</option>,
113             <option>-XScopedTypeVariables</option>,
114             <option>-XGADTs</option>, 
115             <option>-XTypeFamilies</option>. </para>
116         </listitem>
117       </varlistentry>
118
119       <varlistentry>
120         <term>
121           <option>-XForeignFunctionInterface</option>:
122           <indexterm><primary><option>-XForeignFunctionInterface</option></primary></indexterm>
123         </term>
124         <listitem>
125           <para>This option enables the language extension defined in the
126           Haskell 98 Foreign Function Interface Addendum.</para>
127
128           <para>New reserved words: <literal>foreign</literal>.</para>
129         </listitem>
130       </varlistentry>
131
132       <varlistentry>
133         <term>
134           <option>-XMonomorphismRestriction</option>,<option>-XMonoPatBinds</option>:
135         </term>
136         <listitem>
137           <para> These two flags control how generalisation is done.
138             See <xref linkend="monomorphism"/>.
139           </para>
140         </listitem>
141       </varlistentry>
142
143       <varlistentry>
144         <term>
145           <option>-XExtendedDefaultRules</option>:
146           <indexterm><primary><option>-XExtendedDefaultRules</option></primary></indexterm>
147         </term>
148         <listitem>
149           <para> Use GHCi's extended default rules in a regular module (<xref linkend="extended-default-rules"/>).
150           Independent of the <option>-fglasgow-exts</option>
151           flag. </para>
152         </listitem>
153       </varlistentry>
154
155       <varlistentry>
156         <term>
157           <option>-XOverlappingInstances</option>
158           <indexterm><primary><option>-XOverlappingInstances</option></primary></indexterm>
159         </term>
160         <term>
161           <option>-XUndecidableInstances</option>
162           <indexterm><primary><option>-XUndecidableInstances</option></primary></indexterm>
163         </term>
164         <term>
165           <option>-XIncoherentInstances</option>
166           <indexterm><primary><option>-XIncoherentInstances</option></primary></indexterm>
167         </term>
168         <term>
169           <option>-fcontext-stack=N</option>
170           <indexterm><primary><option>-fcontext-stack</option></primary></indexterm>
171         </term>
172         <listitem>
173           <para> See <xref linkend="instance-decls"/>.  Only relevant
174           if you also use <option>-fglasgow-exts</option>.</para>
175         </listitem>
176       </varlistentry>
177
178       <varlistentry>
179         <term>
180           <option>-finline-phase</option>
181           <indexterm><primary><option>-finline-phase</option></primary></indexterm>
182         </term>
183         <listitem>
184           <para>See <xref linkend="rewrite-rules"/>.  Only relevant if
185           you also use <option>-fglasgow-exts</option>.</para>
186         </listitem>
187       </varlistentry>
188
189       <varlistentry>
190         <term>
191           <option>-XArrows</option>
192           <indexterm><primary><option>-XArrows</option></primary></indexterm>
193         </term>
194         <listitem>
195           <para>See <xref linkend="arrow-notation"/>.  Independent of
196           <option>-fglasgow-exts</option>.</para>
197
198           <para>New reserved words/symbols: <literal>rec</literal>,
199           <literal>proc</literal>, <literal>-&lt;</literal>,
200           <literal>&gt;-</literal>, <literal>-&lt;&lt;</literal>,
201           <literal>&gt;&gt;-</literal>.</para>
202
203           <para>Other syntax stolen: <literal>(|</literal>,
204           <literal>|)</literal>.</para>
205         </listitem>
206       </varlistentry>
207
208       <varlistentry>
209         <term>
210           <option>-XGenerics</option>
211           <indexterm><primary><option>-XGenerics</option></primary></indexterm>
212         </term>
213         <listitem>
214           <para>See <xref linkend="generic-classes"/>.  Independent of
215           <option>-fglasgow-exts</option>.</para>
216         </listitem>
217       </varlistentry>
218
219       <varlistentry>
220         <term><option>-XNoImplicitPrelude</option></term>
221         <listitem>
222           <para><indexterm><primary>-XNoImplicitPrelude
223           option</primary></indexterm> GHC normally imports
224           <filename>Prelude.hi</filename> files for you.  If you'd
225           rather it didn't, then give it a
226           <option>-XNoImplicitPrelude</option> option.  The idea is
227           that you can then import a Prelude of your own.  (But don't
228           call it <literal>Prelude</literal>; the Haskell module
229           namespace is flat, and you must not conflict with any
230           Prelude module.)</para>
231
232           <para>Even though you have not imported the Prelude, most of
233           the built-in syntax still refers to the built-in Haskell
234           Prelude types and values, as specified by the Haskell
235           Report.  For example, the type <literal>[Int]</literal>
236           still means <literal>Prelude.[] Int</literal>; tuples
237           continue to refer to the standard Prelude tuples; the
238           translation for list comprehensions continues to use
239           <literal>Prelude.map</literal> etc.</para>
240
241           <para>However, <option>-XNoImplicitPrelude</option> does
242           change the handling of certain built-in syntax: see <xref
243           linkend="rebindable-syntax"/>.</para>
244         </listitem>
245       </varlistentry>
246
247       <varlistentry>
248         <term><option>-XImplicitParams</option></term>
249         <listitem>
250           <para>Enables implicit parameters (see <xref
251           linkend="implicit-parameters"/>).  Currently also implied by 
252           <option>-fglasgow-exts</option>.</para>
253
254           <para>Syntax stolen:
255           <literal>?<replaceable>varid</replaceable></literal>,
256           <literal>%<replaceable>varid</replaceable></literal>.</para>
257         </listitem>
258       </varlistentry>
259
260       <varlistentry>
261         <term><option>-XOverloadedStrings</option></term>
262         <listitem>
263           <para>Enables overloaded string literals (see <xref
264           linkend="overloaded-strings"/>).</para>
265         </listitem>
266       </varlistentry>
267
268       <varlistentry>
269         <term><option>-XScopedTypeVariables</option></term>
270         <listitem>
271           <para>Enables lexically-scoped type variables (see <xref
272           linkend="scoped-type-variables"/>).  Implied by
273           <option>-fglasgow-exts</option>.</para>
274         </listitem>
275       </varlistentry>
276
277       <varlistentry>
278         <term><option>-XTemplateHaskell</option></term>
279         <listitem>
280           <para>Enables Template Haskell (see <xref
281           linkend="template-haskell"/>).  This flag must
282           be given explicitly; it is no longer implied by
283           <option>-fglasgow-exts</option>.</para>
284
285           <para>Syntax stolen: <literal>[|</literal>,
286           <literal>[e|</literal>, <literal>[p|</literal>,
287           <literal>[d|</literal>, <literal>[t|</literal>,
288           <literal>$(</literal>,
289           <literal>$<replaceable>varid</replaceable></literal>.</para>
290         </listitem>
291       </varlistentry>
292
293       <varlistentry>
294         <term><option>-XQuasiQuotes</option></term>
295         <listitem>
296           <para>Enables quasiquotation (see <xref
297           linkend="th-quasiquotation"/>).</para>
298
299           <para>Syntax stolen:
300           <literal>[:<replaceable>varid</replaceable>|</literal>.</para>
301         </listitem>
302       </varlistentry>
303
304     </variablelist>
305   </sect1>
306
307 <!-- UNBOXED TYPES AND PRIMITIVE OPERATIONS -->
308 <sect1 id="primitives">
309   <title>Unboxed types and primitive operations</title>
310
311 <para>GHC is built on a raft of primitive data types and operations.
312 While you really can use this stuff to write fast code,
313   we generally find it a lot less painful, and more satisfying in the
314   long run, to use higher-level language features and libraries.  With
315   any luck, the code you write will be optimised to the efficient
316   unboxed version in any case.  And if it isn't, we'd like to know
317   about it.</para>
318
319 <para>We do not currently have good, up-to-date documentation about the
320 primitives, perhaps because they are mainly intended for internal use.
321 There used to be a long section about them here in the User Guide, but it
322 became out of date, and wrong information is worse than none.</para>
323
324 <para>The Real Truth about what primitive types there are, and what operations
325 work over those types, is held in the file
326 <filename>compiler/prelude/primops.txt.pp</filename>.
327 This file is used directly to generate GHC's primitive-operation definitions, so
328 it is always correct!  It is also intended for processing into text.</para>
329
330 <para>Indeed,
331 the result of such processing is part of the description of the 
332  <ulink
333       url="http://www.haskell.org/ghc/docs/papers/core.ps.gz">External
334          Core language</ulink>.
335 So that document is a good place to look for a type-set version.
336 We would be very happy if someone wanted to volunteer to produce an XML
337 back end to the program that processes <filename>primops.txt</filename> so that
338 we could include the results here in the User Guide.</para>
339
340 <para>What follows here is a brief summary of some main points.</para>
341   
342 <sect2 id="glasgow-unboxed">
343 <title>Unboxed types
344 </title>
345
346 <para>
347 <indexterm><primary>Unboxed types (Glasgow extension)</primary></indexterm>
348 </para>
349
350 <para>Most types in GHC are <firstterm>boxed</firstterm>, which means
351 that values of that type are represented by a pointer to a heap
352 object.  The representation of a Haskell <literal>Int</literal>, for
353 example, is a two-word heap object.  An <firstterm>unboxed</firstterm>
354 type, however, is represented by the value itself, no pointers or heap
355 allocation are involved.
356 </para>
357
358 <para>
359 Unboxed types correspond to the &ldquo;raw machine&rdquo; types you
360 would use in C: <literal>Int&num;</literal> (long int),
361 <literal>Double&num;</literal> (double), <literal>Addr&num;</literal>
362 (void *), etc.  The <emphasis>primitive operations</emphasis>
363 (PrimOps) on these types are what you might expect; e.g.,
364 <literal>(+&num;)</literal> is addition on
365 <literal>Int&num;</literal>s, and is the machine-addition that we all
366 know and love&mdash;usually one instruction.
367 </para>
368
369 <para> For some primitive types we have special syntax for literals.
370 Anything that would be an integer lexeme followed by a
371 <literal>&num;</literal> is an <literal>Int&num;</literal> literal, e.g.
372 <literal>32&num;</literal> and <literal>-0x3A&num;</literal>. Likewise,
373 any non-negative integer literal followed by
374 <literal>&num;&num;</literal> is a <literal>Word&num;</literal> literal.
375 Likewise, any floating point literal followed by a
376 <literal>&num;</literal> is a <literal>Float&num;</literal> literal, and
377 followed by <literal>&num;&num;</literal> is a
378 <literal>Double&num;</literal>. Finally, a string literal followed by a
379 <literal>&num;</literal>, e.g. <literal>&quot;foo&quot;&num;</literal>,
380 is a <literal>Addr&num;</literal> literal.
381 </para>
382
383 <para>
384 Primitive (unboxed) types cannot be defined in Haskell, and are
385 therefore built into the language and compiler.  Primitive types are
386 always unlifted; that is, a value of a primitive type cannot be
387 bottom.  We use the convention that primitive types, values, and
388 operations have a <literal>&num;</literal> suffix.
389 </para>
390
391 <para>
392 Primitive values are often represented by a simple bit-pattern, such
393 as <literal>Int&num;</literal>, <literal>Float&num;</literal>,
394 <literal>Double&num;</literal>.  But this is not necessarily the case:
395 a primitive value might be represented by a pointer to a
396 heap-allocated object.  Examples include
397 <literal>Array&num;</literal>, the type of primitive arrays.  A
398 primitive array is heap-allocated because it is too big a value to fit
399 in a register, and would be too expensive to copy around; in a sense,
400 it is accidental that it is represented by a pointer.  If a pointer
401 represents a primitive value, then it really does point to that value:
402 no unevaluated thunks, no indirections&hellip;nothing can be at the
403 other end of the pointer than the primitive value.
404 A numerically-intensive program using unboxed types can
405 go a <emphasis>lot</emphasis> faster than its &ldquo;standard&rdquo;
406 counterpart&mdash;we saw a threefold speedup on one example.
407 </para>
408
409 <para>
410 There are some restrictions on the use of primitive types:
411 <itemizedlist>
412 <listitem><para>The main restriction
413 is that you can't pass a primitive value to a polymorphic
414 function or store one in a polymorphic data type.  This rules out
415 things like <literal>[Int&num;]</literal> (i.e. lists of primitive
416 integers).  The reason for this restriction is that polymorphic
417 arguments and constructor fields are assumed to be pointers: if an
418 unboxed integer is stored in one of these, the garbage collector would
419 attempt to follow it, leading to unpredictable space leaks.  Or a
420 <function>seq</function> operation on the polymorphic component may
421 attempt to dereference the pointer, with disastrous results.  Even
422 worse, the unboxed value might be larger than a pointer
423 (<literal>Double&num;</literal> for instance).
424 </para>
425 </listitem>
426 <listitem><para> You cannot define a newtype whose representation type
427 (the argument type of the data constructor) is an unboxed type.  Thus,
428 this is illegal:
429 <programlisting>
430   newtype A = MkA Int#
431 </programlisting>
432 </para></listitem>
433 <listitem><para> You cannot bind a variable with an unboxed type
434 in a <emphasis>top-level</emphasis> binding.
435 </para></listitem>
436 <listitem><para> You cannot bind a variable with an unboxed type
437 in a <emphasis>recursive</emphasis> binding.
438 </para></listitem>
439 <listitem><para> You may bind unboxed variables in a (non-recursive,
440 non-top-level) pattern binding, but any such variable causes the entire
441 pattern-match
442 to become strict.  For example:
443 <programlisting>
444   data Foo = Foo Int Int#
445
446   f x = let (Foo a b, w) = ..rhs.. in ..body..
447 </programlisting>
448 Since <literal>b</literal> has type <literal>Int#</literal>, the entire pattern
449 match
450 is strict, and the program behaves as if you had written
451 <programlisting>
452   data Foo = Foo Int Int#
453
454   f x = case ..rhs.. of { (Foo a b, w) -> ..body.. }
455 </programlisting>
456 </para>
457 </listitem>
458 </itemizedlist>
459 </para>
460
461 </sect2>
462
463 <sect2 id="unboxed-tuples">
464 <title>Unboxed Tuples
465 </title>
466
467 <para>
468 Unboxed tuples aren't really exported by <literal>GHC.Exts</literal>,
469 they're available by default with <option>-fglasgow-exts</option>.  An
470 unboxed tuple looks like this:
471 </para>
472
473 <para>
474
475 <programlisting>
476 (# e_1, ..., e_n #)
477 </programlisting>
478
479 </para>
480
481 <para>
482 where <literal>e&lowbar;1..e&lowbar;n</literal> are expressions of any
483 type (primitive or non-primitive).  The type of an unboxed tuple looks
484 the same.
485 </para>
486
487 <para>
488 Unboxed tuples are used for functions that need to return multiple
489 values, but they avoid the heap allocation normally associated with
490 using fully-fledged tuples.  When an unboxed tuple is returned, the
491 components are put directly into registers or on the stack; the
492 unboxed tuple itself does not have a composite representation.  Many
493 of the primitive operations listed in <literal>primops.txt.pp</literal> return unboxed
494 tuples.
495 In particular, the <literal>IO</literal> and <literal>ST</literal> monads use unboxed
496 tuples to avoid unnecessary allocation during sequences of operations.
497 </para>
498
499 <para>
500 There are some pretty stringent restrictions on the use of unboxed tuples:
501 <itemizedlist>
502 <listitem>
503
504 <para>
505 Values of unboxed tuple types are subject to the same restrictions as
506 other unboxed types; i.e. they may not be stored in polymorphic data
507 structures or passed to polymorphic functions.
508
509 </para>
510 </listitem>
511 <listitem>
512
513 <para>
514 No variable can have an unboxed tuple type, nor may a constructor or function
515 argument have an unboxed tuple type.  The following are all illegal:
516
517
518 <programlisting>
519   data Foo = Foo (# Int, Int #)
520
521   f :: (# Int, Int #) -&#62; (# Int, Int #)
522   f x = x
523
524   g :: (# Int, Int #) -&#62; Int
525   g (# a,b #) = a
526
527   h x = let y = (# x,x #) in ...
528 </programlisting>
529 </para>
530 </listitem>
531 </itemizedlist>
532 </para>
533 <para>
534 The typical use of unboxed tuples is simply to return multiple values,
535 binding those multiple results with a <literal>case</literal> expression, thus:
536 <programlisting>
537   f x y = (# x+1, y-1 #)
538   g x = case f x x of { (# a, b #) -&#62; a + b }
539 </programlisting>
540 You can have an unboxed tuple in a pattern binding, thus
541 <programlisting>
542   f x = let (# p,q #) = h x in ..body..
543 </programlisting>
544 If the types of <literal>p</literal> and <literal>q</literal> are not unboxed,
545 the resulting binding is lazy like any other Haskell pattern binding.  The 
546 above example desugars like this:
547 <programlisting>
548   f x = let t = case h x o f{ (# p,q #) -> (p,q)
549             p = fst t
550             q = snd t
551         in ..body..
552 </programlisting>
553 Indeed, the bindings can even be recursive.
554 </para>
555
556 </sect2>
557 </sect1>
558
559
560 <!-- ====================== SYNTACTIC EXTENSIONS =======================  -->
561
562 <sect1 id="syntax-extns">
563 <title>Syntactic extensions</title>
564  
565     <!-- ====================== HIERARCHICAL MODULES =======================  -->
566
567     <sect2 id="hierarchical-modules">
568       <title>Hierarchical Modules</title>
569
570       <para>GHC supports a small extension to the syntax of module
571       names: a module name is allowed to contain a dot
572       <literal>&lsquo;.&rsquo;</literal>.  This is also known as the
573       &ldquo;hierarchical module namespace&rdquo; extension, because
574       it extends the normally flat Haskell module namespace into a
575       more flexible hierarchy of modules.</para>
576
577       <para>This extension has very little impact on the language
578       itself; modules names are <emphasis>always</emphasis> fully
579       qualified, so you can just think of the fully qualified module
580       name as <quote>the module name</quote>.  In particular, this
581       means that the full module name must be given after the
582       <literal>module</literal> keyword at the beginning of the
583       module; for example, the module <literal>A.B.C</literal> must
584       begin</para>
585
586 <programlisting>module A.B.C</programlisting>
587
588
589       <para>It is a common strategy to use the <literal>as</literal>
590       keyword to save some typing when using qualified names with
591       hierarchical modules.  For example:</para>
592
593 <programlisting>
594 import qualified Control.Monad.ST.Strict as ST
595 </programlisting>
596
597       <para>For details on how GHC searches for source and interface
598       files in the presence of hierarchical modules, see <xref
599       linkend="search-path"/>.</para>
600
601       <para>GHC comes with a large collection of libraries arranged
602       hierarchically; see the accompanying <ulink
603       url="../libraries/index.html">library
604       documentation</ulink>.  More libraries to install are available
605       from <ulink
606       url="http://hackage.haskell.org/packages/hackage.html">HackageDB</ulink>.</para>
607     </sect2>
608
609     <!-- ====================== PATTERN GUARDS =======================  -->
610
611 <sect2 id="pattern-guards">
612 <title>Pattern guards</title>
613
614 <para>
615 <indexterm><primary>Pattern guards (Glasgow extension)</primary></indexterm>
616 The discussion that follows is an abbreviated version of Simon Peyton Jones's original <ulink url="http://research.microsoft.com/~simonpj/Haskell/guards.html">proposal</ulink>. (Note that the proposal was written before pattern guards were implemented, so refers to them as unimplemented.)
617 </para>
618
619 <para>
620 Suppose we have an abstract data type of finite maps, with a
621 lookup operation:
622
623 <programlisting>
624 lookup :: FiniteMap -> Int -> Maybe Int
625 </programlisting>
626
627 The lookup returns <function>Nothing</function> if the supplied key is not in the domain of the mapping, and <function>(Just v)</function> otherwise,
628 where <varname>v</varname> is the value that the key maps to.  Now consider the following definition:
629 </para>
630
631 <programlisting>
632 clunky env var1 var2 | ok1 &amp;&amp; ok2 = val1 + val2
633 | otherwise  = var1 + var2
634 where
635   m1 = lookup env var1
636   m2 = lookup env var2
637   ok1 = maybeToBool m1
638   ok2 = maybeToBool m2
639   val1 = expectJust m1
640   val2 = expectJust m2
641 </programlisting>
642
643 <para>
644 The auxiliary functions are 
645 </para>
646
647 <programlisting>
648 maybeToBool :: Maybe a -&gt; Bool
649 maybeToBool (Just x) = True
650 maybeToBool Nothing  = False
651
652 expectJust :: Maybe a -&gt; a
653 expectJust (Just x) = x
654 expectJust Nothing  = error "Unexpected Nothing"
655 </programlisting>
656
657 <para>
658 What is <function>clunky</function> doing? The guard <literal>ok1 &amp;&amp;
659 ok2</literal> checks that both lookups succeed, using
660 <function>maybeToBool</function> to convert the <function>Maybe</function>
661 types to booleans. The (lazily evaluated) <function>expectJust</function>
662 calls extract the values from the results of the lookups, and binds the
663 returned values to <varname>val1</varname> and <varname>val2</varname>
664 respectively.  If either lookup fails, then clunky takes the
665 <literal>otherwise</literal> case and returns the sum of its arguments.
666 </para>
667
668 <para>
669 This is certainly legal Haskell, but it is a tremendously verbose and
670 un-obvious way to achieve the desired effect.  Arguably, a more direct way
671 to write clunky would be to use case expressions:
672 </para>
673
674 <programlisting>
675 clunky env var1 var2 = case lookup env var1 of
676   Nothing -&gt; fail
677   Just val1 -&gt; case lookup env var2 of
678     Nothing -&gt; fail
679     Just val2 -&gt; val1 + val2
680 where
681   fail = var1 + var2
682 </programlisting>
683
684 <para>
685 This is a bit shorter, but hardly better.  Of course, we can rewrite any set
686 of pattern-matching, guarded equations as case expressions; that is
687 precisely what the compiler does when compiling equations! The reason that
688 Haskell provides guarded equations is because they allow us to write down
689 the cases we want to consider, one at a time, independently of each other. 
690 This structure is hidden in the case version.  Two of the right-hand sides
691 are really the same (<function>fail</function>), and the whole expression
692 tends to become more and more indented. 
693 </para>
694
695 <para>
696 Here is how I would write clunky:
697 </para>
698
699 <programlisting>
700 clunky env var1 var2
701   | Just val1 &lt;- lookup env var1
702   , Just val2 &lt;- lookup env var2
703   = val1 + val2
704 ...other equations for clunky...
705 </programlisting>
706
707 <para>
708 The semantics should be clear enough.  The qualifiers are matched in order. 
709 For a <literal>&lt;-</literal> qualifier, which I call a pattern guard, the
710 right hand side is evaluated and matched against the pattern on the left. 
711 If the match fails then the whole guard fails and the next equation is
712 tried.  If it succeeds, then the appropriate binding takes place, and the
713 next qualifier is matched, in the augmented environment.  Unlike list
714 comprehensions, however, the type of the expression to the right of the
715 <literal>&lt;-</literal> is the same as the type of the pattern to its
716 left.  The bindings introduced by pattern guards scope over all the
717 remaining guard qualifiers, and over the right hand side of the equation.
718 </para>
719
720 <para>
721 Just as with list comprehensions, boolean expressions can be freely mixed
722 with among the pattern guards.  For example:
723 </para>
724
725 <programlisting>
726 f x | [y] &lt;- x
727     , y > 3
728     , Just z &lt;- h y
729     = ...
730 </programlisting>
731
732 <para>
733 Haskell's current guards therefore emerge as a special case, in which the
734 qualifier list has just one element, a boolean expression.
735 </para>
736 </sect2>
737
738     <!-- ===================== View patterns ===================  -->
739
740 <sect2 id="view-patterns">
741 <title>View patterns
742 </title>
743
744 <para>
745 View patterns are enabled by the flag <literal>-XViewPatterns</literal>.
746 More information and examples of view patterns can be found on the
747 <ulink url="http://hackage.haskell.org/trac/ghc/wiki/ViewPatterns">Wiki
748 page</ulink>.
749 </para>
750
751 <para>
752 View patterns are somewhat like pattern guards that can be nested inside
753 of other patterns.  They are a convenient way of pattern-matching
754 against values of abstract types. For example, in a programming language
755 implementation, we might represent the syntax of the types of the
756 language as follows:
757
758 <programlisting>
759 type Typ
760  
761 data TypView = Unit
762              | Arrow Typ Typ
763
764 view :: Type -> TypeView
765
766 -- additional operations for constructing Typ's ...
767 </programlisting>
768
769 The representation of Typ is held abstract, permitting implementations
770 to use a fancy representation (e.g., hash-consing to manage sharing).
771
772 Without view patterns, using this signature a little inconvenient: 
773 <programlisting>
774 size :: Typ -> Integer
775 size t = case view t of
776   Unit -> 1
777   Arrow t1 t2 -> size t1 + size t2
778 </programlisting>
779
780 It is necessary to iterate the case, rather than using an equational
781 function definition. And the situation is even worse when the matching
782 against <literal>t</literal> is buried deep inside another pattern.
783 </para>
784
785 <para>
786 View patterns permit calling the view function inside the pattern and
787 matching against the result: 
788 <programlisting>
789 size (view -> Unit) = 1
790 size (view -> Arrow t1 t2) = size t1 + size t2
791 </programlisting>
792
793 That is, we add a new form of pattern, written
794 <replaceable>expression</replaceable> <literal>-></literal>
795 <replaceable>pattern</replaceable> that means "apply the expression to
796 whatever we're trying to match against, and then match the result of
797 that application against the pattern". The expression can be any Haskell
798 expression of function type, and view patterns can be used wherever
799 patterns are used.
800 </para>
801
802 <para>
803 The semantics of a pattern <literal>(</literal>
804 <replaceable>exp</replaceable> <literal>-></literal>
805 <replaceable>pat</replaceable> <literal>)</literal> are as follows:
806
807 <itemizedlist>
808
809 <listitem> Scoping:
810
811 <para>The variables bound by the view pattern are the variables bound by
812 <replaceable>pat</replaceable>.
813 </para>
814
815 <para>
816 Any variables in <replaceable>exp</replaceable> are bound occurrences,
817 but variables bound "to the left" in a pattern are in scope.  This
818 feature permits, for example, one argument to a function to be used in
819 the view of another argument.  For example, the function
820 <literal>clunky</literal> from <xref linkend="pattern-guards" /> can be
821 written using view patterns as follows:
822
823 <programlisting>
824 clunky env (lookup env -> Just val1) (lookup env -> Just val2) = val1 + val2
825 ...other equations for clunky...
826 </programlisting>
827 </para>
828
829 <para>
830 More precisely, the scoping rules are: 
831 <itemizedlist>
832 <listitem>
833 <para>
834 In a single pattern, variables bound by patterns to the left of a view
835 pattern expression are in scope. For example:
836 <programlisting>
837 example :: Maybe ((String -> Integer,Integer), String) -> Bool
838 example Just ((f,_), f -> 4) = True
839 </programlisting>
840
841 Additionally, in function definitions, variables bound by matching earlier curried
842 arguments may be used in view pattern expressions in later arguments:
843 <programlisting>
844 example :: (String -> Integer) -> String -> Bool
845 example f (f -> 4) = True
846 </programlisting>
847 That is, the scoping is the same as it would be if the curried arguments
848 were collected into a tuple.  
849 </para>
850 </listitem>
851
852 <listitem>
853 <para>
854 In mutually recursive bindings, such as <literal>let</literal>,
855 <literal>where</literal>, or the top level, view patterns in one
856 declaration may not mention variables bound by other declarations.  That
857 is, each declaration must be self-contained.  For example, the following
858 program is not allowed:
859 <programlisting>
860 let {(x -> y) = e1 ;
861      (y -> x) = e2 } in x
862 </programlisting>
863
864 (We may lift this
865 restriction in the future; the only cost is that type checking patterns
866 would get a little more complicated.)  
867
868
869 </para>
870 </listitem>
871 </itemizedlist>
872
873 </para>
874 </listitem>
875
876 <listitem><para> Typing: If <replaceable>exp</replaceable> has type
877 <replaceable>T1</replaceable> <literal>-></literal>
878 <replaceable>T2</replaceable> and <replaceable>pat</replaceable> matches
879 a <replaceable>T2</replaceable>, then the whole view pattern matches a
880 <replaceable>T1</replaceable>.
881 </para></listitem>
882
883 <listitem><para> Matching: To the equations in Section 3.17.3 of the
884 <ulink url="http://www.haskell.org/onlinereport/">Haskell 98
885 Report</ulink>, add the following:
886 <programlisting>
887 case v of { (e -> p) -> e1 ; _ -> e2 } 
888  = 
889 case (e v) of { p -> e1 ; _ -> e2 }
890 </programlisting>
891 That is, to match a variable <replaceable>v</replaceable> against a pattern
892 <literal>(</literal> <replaceable>exp</replaceable>
893 <literal>-></literal> <replaceable>pat</replaceable>
894 <literal>)</literal>, evaluate <literal>(</literal>
895 <replaceable>exp</replaceable> <replaceable> v</replaceable>
896 <literal>)</literal> and match the result against
897 <replaceable>pat</replaceable>.  
898 </para></listitem>
899
900 <listitem><para> Efficiency: When the same view function is applied in
901 multiple branches of a function definition or a case expression (e.g.,
902 in <literal>size</literal> above), GHC makes an attempt to collect these
903 applications into a single nested case expression, so that the view
904 function is only applied once.  Pattern compilation in GHC follows the
905 matrix algorithm described in Chapter 4 of <ulink
906 url="http://research.microsoft.com/~simonpj/Papers/slpj-book-1987/">The
907 Implementation of Functional Programming Languages</ulink>.  When the
908 top rows of the first column of a matrix are all view patterns with the
909 "same" expression, these patterns are transformed into a single nested
910 case.  This includes, for example, adjacent view patterns that line up
911 in a tuple, as in
912 <programlisting>
913 f ((view -> A, p1), p2) = e1
914 f ((view -> B, p3), p4) = e2
915 </programlisting>
916 </para>
917
918 <para> The current notion of when two view pattern expressions are "the
919 same" is very restricted: it is not even full syntactic equality.
920 However, it does include variables, literals, applications, and tuples;
921 e.g., two instances of <literal>view ("hi", "there")</literal> will be
922 collected.  However, the current implementation does not compare up to
923 alpha-equivalence, so two instances of <literal>(x, view x ->
924 y)</literal> will not be coalesced.
925 </para>
926
927 </listitem>
928
929 </itemizedlist>
930 </para>
931
932 </sect2>
933
934     <!-- ===================== Recursive do-notation ===================  -->
935
936 <sect2 id="mdo-notation">
937 <title>The recursive do-notation
938 </title>
939
940 <para> The recursive do-notation (also known as mdo-notation) is implemented as described in
941 <ulink url="http://citeseer.ist.psu.edu/erk02recursive.html">A recursive do for Haskell</ulink>,
942 by Levent Erkok, John Launchbury,
943 Haskell Workshop 2002, pages: 29-37. Pittsburgh, Pennsylvania. 
944 This paper is essential reading for anyone making non-trivial use of mdo-notation,
945 and we do not repeat it here.
946 </para>
947 <para>
948 The do-notation of Haskell does not allow <emphasis>recursive bindings</emphasis>,
949 that is, the variables bound in a do-expression are visible only in the textually following 
950 code block. Compare this to a let-expression, where bound variables are visible in the entire binding
951 group. It turns out that several applications can benefit from recursive bindings in
952 the do-notation, and this extension provides the necessary syntactic support.
953 </para>
954 <para>
955 Here is a simple (yet contrived) example:
956 </para>
957 <programlisting>
958 import Control.Monad.Fix
959
960 justOnes = mdo xs &lt;- Just (1:xs)
961                return xs
962 </programlisting>
963 <para>
964 As you can guess <literal>justOnes</literal> will evaluate to <literal>Just [1,1,1,...</literal>.
965 </para>
966
967 <para>
968 The Control.Monad.Fix library introduces the <literal>MonadFix</literal> class. It's definition is:
969 </para>
970 <programlisting>
971 class Monad m => MonadFix m where
972    mfix :: (a -> m a) -> m a
973 </programlisting>
974 <para>
975 The function <literal>mfix</literal>
976 dictates how the required recursion operation should be performed.  For example, 
977 <literal>justOnes</literal> desugars as follows:
978 <programlisting>
979 justOnes = mfix (\xs' -&gt; do { xs &lt;- Just (1:xs'); return xs }
980 </programlisting>
981 For full details of the way in which mdo is typechecked and desugared, see 
982 the paper <ulink url="http://citeseer.ist.psu.edu/erk02recursive.html">A recursive do for Haskell</ulink>.
983 In particular, GHC implements the segmentation technique described in Section 3.2 of the paper.
984 </para>
985 <para>
986 If recursive bindings are required for a monad,
987 then that monad must be declared an instance of the <literal>MonadFix</literal> class.
988 The following instances of <literal>MonadFix</literal> are automatically provided: List, Maybe, IO. 
989 Furthermore, the Control.Monad.ST and Control.Monad.ST.Lazy modules provide the instances of the MonadFix class 
990 for Haskell's internal state monad (strict and lazy, respectively).
991 </para>
992 <para>
993 Here are some important points in using the recursive-do notation:
994 <itemizedlist>
995 <listitem><para>
996 The recursive version of the do-notation uses the keyword <literal>mdo</literal> (rather
997 than <literal>do</literal>).
998 </para></listitem>
999
1000 <listitem><para>
1001 It is enabled with the flag <literal>-XRecursiveDo</literal>, which is in turn implied by
1002 <literal>-fglasgow-exts</literal>.
1003 </para></listitem>
1004
1005 <listitem><para>
1006 Unlike ordinary do-notation, but like <literal>let</literal> and <literal>where</literal> bindings,
1007 name shadowing is not allowed; that is, all the names bound in a single <literal>mdo</literal> must
1008 be distinct (Section 3.3 of the paper).
1009 </para></listitem>
1010
1011 <listitem><para>
1012 Variables bound by a <literal>let</literal> statement in an <literal>mdo</literal>
1013 are monomorphic in the <literal>mdo</literal> (Section 3.1 of the paper).  However
1014 GHC breaks the <literal>mdo</literal> into segments to enhance polymorphism,
1015 and improve termination (Section 3.2 of the paper).
1016 </para></listitem>
1017 </itemizedlist>
1018 </para>
1019
1020 <para>
1021 The web page: <ulink url="http://www.cse.ogi.edu/PacSoft/projects/rmb/">http://www.cse.ogi.edu/PacSoft/projects/rmb/</ulink>
1022 contains up to date information on recursive monadic bindings.
1023 </para>
1024
1025 <para>
1026 Historical note: The old implementation of the mdo-notation (and most
1027 of the existing documents) used the name
1028 <literal>MonadRec</literal> for the class and the corresponding library.
1029 This name is not supported by GHC.
1030 </para>
1031
1032 </sect2>
1033
1034
1035    <!-- ===================== PARALLEL LIST COMPREHENSIONS ===================  -->
1036
1037   <sect2 id="parallel-list-comprehensions">
1038     <title>Parallel List Comprehensions</title>
1039     <indexterm><primary>list comprehensions</primary><secondary>parallel</secondary>
1040     </indexterm>
1041     <indexterm><primary>parallel list comprehensions</primary>
1042     </indexterm>
1043
1044     <para>Parallel list comprehensions are a natural extension to list
1045     comprehensions.  List comprehensions can be thought of as a nice
1046     syntax for writing maps and filters.  Parallel comprehensions
1047     extend this to include the zipWith family.</para>
1048
1049     <para>A parallel list comprehension has multiple independent
1050     branches of qualifier lists, each separated by a `|' symbol.  For
1051     example, the following zips together two lists:</para>
1052
1053 <programlisting>
1054    [ (x, y) | x &lt;- xs | y &lt;- ys ] 
1055 </programlisting>
1056
1057     <para>The behavior of parallel list comprehensions follows that of
1058     zip, in that the resulting list will have the same length as the
1059     shortest branch.</para>
1060
1061     <para>We can define parallel list comprehensions by translation to
1062     regular comprehensions.  Here's the basic idea:</para>
1063
1064     <para>Given a parallel comprehension of the form: </para>
1065
1066 <programlisting>
1067    [ e | p1 &lt;- e11, p2 &lt;- e12, ... 
1068        | q1 &lt;- e21, q2 &lt;- e22, ... 
1069        ... 
1070    ] 
1071 </programlisting>
1072
1073     <para>This will be translated to: </para>
1074
1075 <programlisting>
1076    [ e | ((p1,p2), (q1,q2), ...) &lt;- zipN [(p1,p2) | p1 &lt;- e11, p2 &lt;- e12, ...] 
1077                                          [(q1,q2) | q1 &lt;- e21, q2 &lt;- e22, ...] 
1078                                          ... 
1079    ] 
1080 </programlisting>
1081
1082     <para>where `zipN' is the appropriate zip for the given number of
1083     branches.</para>
1084
1085   </sect2>
1086   
1087   <!-- ===================== TRANSFORM LIST COMPREHENSIONS ===================  -->
1088
1089   <sect2 id="generalised-list-comprehensions">
1090     <title>Generalised (SQL-Like) List Comprehensions</title>
1091     <indexterm><primary>list comprehensions</primary><secondary>generalised</secondary>
1092     </indexterm>
1093     <indexterm><primary>extended list comprehensions</primary>
1094     </indexterm>
1095     <indexterm><primary>group</primary></indexterm>
1096     <indexterm><primary>sql</primary></indexterm>
1097
1098
1099     <para>Generalised list comprehensions are a further enhancement to the
1100     list comprehension syntatic sugar to allow operations such as sorting
1101     and grouping which are familiar from SQL.   They are fully described in the
1102         paper <ulink url="http://research.microsoft.com/~simonpj/papers/list-comp">
1103           Comprehensive comprehensions: comprehensions with "order by" and "group by"</ulink>,
1104     except that the syntax we use differs slightly from the paper.</para>
1105 <para>Here is an example: 
1106 <programlisting>
1107 employees = [ ("Simon", "MS", 80)
1108 , ("Erik", "MS", 100)
1109 , ("Phil", "Ed", 40)
1110 , ("Gordon", "Ed", 45)
1111 , ("Paul", "Yale", 60)]
1112
1113 output = [ (the dept, sum salary)
1114 | (name, dept, salary) &lt;- employees
1115 , then group by dept
1116 , then sortWith by (sum salary)
1117 , then take 5 ]
1118 </programlisting>
1119 In this example, the list <literal>output</literal> would take on 
1120     the value:
1121     
1122 <programlisting>
1123 [("Yale", 60), ("Ed", 85), ("MS", 180)]
1124 </programlisting>
1125 </para>
1126 <para>There are three new keywords: <literal>group</literal>, <literal>by</literal>, and <literal>using</literal>.
1127 (The function <literal>sortWith</literal> is not a keyword; it is an ordinary
1128 function that is exported by <literal>GHC.Exts</literal>.)</para>
1129
1130 <para>There are five new forms of comprehension qualifier,
1131 all introduced by the (existing) keyword <literal>then</literal>:
1132     <itemizedlist>
1133     <listitem>
1134     
1135 <programlisting>
1136 then f
1137 </programlisting>
1138
1139     This statement requires that <literal>f</literal> have the type <literal>
1140     forall a. [a] -> [a]</literal>. You can see an example of it's use in the
1141     motivating example, as this form is used to apply <literal>take 5</literal>.
1142     
1143     </listitem>
1144     
1145     
1146     <listitem>
1147 <para>
1148 <programlisting>
1149 then f by e
1150 </programlisting>
1151
1152     This form is similar to the previous one, but allows you to create a function
1153     which will be passed as the first argument to f. As a consequence f must have 
1154     the type <literal>forall a. (a -> t) -> [a] -> [a]</literal>. As you can see
1155     from the type, this function lets f &quot;project out&quot; some information 
1156     from the elements of the list it is transforming.</para>
1157
1158     <para>An example is shown in the opening example, where <literal>sortWith</literal> 
1159     is supplied with a function that lets it find out the <literal>sum salary</literal> 
1160     for any item in the list comprehension it transforms.</para>
1161
1162     </listitem>
1163
1164
1165     <listitem>
1166
1167 <programlisting>
1168 then group by e using f
1169 </programlisting>
1170
1171     <para>This is the most general of the grouping-type statements. In this form,
1172     f is required to have type <literal>forall a. (a -> t) -> [a] -> [[a]]</literal>.
1173     As with the <literal>then f by e</literal> case above, the first argument
1174     is a function supplied to f by the compiler which lets it compute e on every
1175     element of the list being transformed. However, unlike the non-grouping case,
1176     f additionally partitions the list into a number of sublists: this means that
1177     at every point after this statement, binders occurring before it in the comprehension
1178     refer to <emphasis>lists</emphasis> of possible values, not single values. To help understand
1179     this, let's look at an example:</para>
1180     
1181 <programlisting>
1182 -- This works similarly to groupWith in GHC.Exts, but doesn't sort its input first
1183 groupRuns :: Eq b => (a -> b) -> [a] -> [[a]]
1184 groupRuns f = groupBy (\x y -> f x == f y)
1185
1186 output = [ (the x, y)
1187 | x &lt;- ([1..3] ++ [1..2])
1188 , y &lt;- [4..6]
1189 , then group by x using groupRuns ]
1190 </programlisting>
1191
1192     <para>This results in the variable <literal>output</literal> taking on the value below:</para>
1193
1194 <programlisting>
1195 [(1, [4, 5, 6]), (2, [4, 5, 6]), (3, [4, 5, 6]), (1, [4, 5, 6]), (2, [4, 5, 6])]
1196 </programlisting>
1197
1198     <para>Note that we have used the <literal>the</literal> function to change the type 
1199     of x from a list to its original numeric type. The variable y, in contrast, is left 
1200     unchanged from the list form introduced by the grouping.</para>
1201
1202     </listitem>
1203
1204     <listitem>
1205
1206 <programlisting>
1207 then group by e
1208 </programlisting>
1209
1210     <para>This form of grouping is essentially the same as the one described above. However,
1211     since no function to use for the grouping has been supplied it will fall back on the
1212     <literal>groupWith</literal> function defined in 
1213     <ulink url="../libraries/base/GHC-Exts.html"><literal>GHC.Exts</literal></ulink>. This
1214     is the form of the group statement that we made use of in the opening example.</para>
1215
1216     </listitem>
1217     
1218     
1219     <listitem>
1220
1221 <programlisting>
1222 then group using f
1223 </programlisting>
1224
1225     <para>With this form of the group statement, f is required to simply have the type
1226     <literal>forall a. [a] -> [[a]]</literal>, which will be used to group up the
1227     comprehension so far directly. An example of this form is as follows:</para>
1228     
1229 <programlisting>
1230 output = [ x
1231 | y &lt;- [1..5]
1232 , x &lt;- "hello"
1233 , then group using inits]
1234 </programlisting>
1235
1236     <para>This will yield a list containing every prefix of the word "hello" written out 5 times:</para>
1237
1238 <programlisting>
1239 ["","h","he","hel","hell","hello","helloh","hellohe","hellohel","hellohell","hellohello","hellohelloh",...]
1240 </programlisting>
1241
1242     </listitem>
1243 </itemizedlist>
1244 </para>
1245   </sect2>
1246
1247    <!-- ===================== REBINDABLE SYNTAX ===================  -->
1248
1249 <sect2 id="rebindable-syntax">
1250 <title>Rebindable syntax</title>
1251
1252       <para>GHC allows most kinds of built-in syntax to be rebound by
1253       the user, to facilitate replacing the <literal>Prelude</literal>
1254       with a home-grown version, for example.</para>
1255
1256             <para>You may want to define your own numeric class
1257             hierarchy.  It completely defeats that purpose if the
1258             literal "1" means "<literal>Prelude.fromInteger
1259             1</literal>", which is what the Haskell Report specifies.
1260             So the <option>-XNoImplicitPrelude</option> flag causes
1261             the following pieces of built-in syntax to refer to
1262             <emphasis>whatever is in scope</emphasis>, not the Prelude
1263             versions:
1264
1265             <itemizedlist>
1266               <listitem>
1267                 <para>An integer literal <literal>368</literal> means
1268                 "<literal>fromInteger (368::Integer)</literal>", rather than
1269                 "<literal>Prelude.fromInteger (368::Integer)</literal>".
1270 </para> </listitem>         
1271
1272       <listitem><para>Fractional literals are handed in just the same way,
1273           except that the translation is 
1274               <literal>fromRational (3.68::Rational)</literal>.
1275 </para> </listitem>         
1276
1277           <listitem><para>The equality test in an overloaded numeric pattern
1278               uses whatever <literal>(==)</literal> is in scope.
1279 </para> </listitem>         
1280
1281           <listitem><para>The subtraction operation, and the
1282           greater-than-or-equal test, in <literal>n+k</literal> patterns
1283               use whatever <literal>(-)</literal> and <literal>(>=)</literal> are in scope.
1284               </para></listitem>
1285
1286               <listitem>
1287                 <para>Negation (e.g. "<literal>- (f x)</literal>")
1288                 means "<literal>negate (f x)</literal>", both in numeric
1289                 patterns, and expressions.
1290               </para></listitem>
1291
1292               <listitem>
1293           <para>"Do" notation is translated using whatever
1294               functions <literal>(>>=)</literal>,
1295               <literal>(>>)</literal>, and <literal>fail</literal>,
1296               are in scope (not the Prelude
1297               versions).  List comprehensions, mdo (<xref linkend="mdo-notation"/>), and parallel array
1298               comprehensions, are unaffected.  </para></listitem>
1299
1300               <listitem>
1301                 <para>Arrow
1302                 notation (see <xref linkend="arrow-notation"/>)
1303                 uses whatever <literal>arr</literal>,
1304                 <literal>(>>>)</literal>, <literal>first</literal>,
1305                 <literal>app</literal>, <literal>(|||)</literal> and
1306                 <literal>loop</literal> functions are in scope. But unlike the
1307                 other constructs, the types of these functions must match the
1308                 Prelude types very closely.  Details are in flux; if you want
1309                 to use this, ask!
1310               </para></listitem>
1311             </itemizedlist>
1312 In all cases (apart from arrow notation), the static semantics should be that of the desugared form,
1313 even if that is a little unexpected. For example, the 
1314 static semantics of the literal <literal>368</literal>
1315 is exactly that of <literal>fromInteger (368::Integer)</literal>; it's fine for
1316 <literal>fromInteger</literal> to have any of the types:
1317 <programlisting>
1318 fromInteger :: Integer -> Integer
1319 fromInteger :: forall a. Foo a => Integer -> a
1320 fromInteger :: Num a => a -> Integer
1321 fromInteger :: Integer -> Bool -> Bool
1322 </programlisting>
1323 </para>
1324                 
1325              <para>Be warned: this is an experimental facility, with
1326              fewer checks than usual.  Use <literal>-dcore-lint</literal>
1327              to typecheck the desugared program.  If Core Lint is happy
1328              you should be all right.</para>
1329
1330 </sect2>
1331
1332 <sect2 id="postfix-operators">
1333 <title>Postfix operators</title>
1334
1335 <para>
1336 GHC allows a small extension to the syntax of left operator sections, which
1337 allows you to define postfix operators.  The extension is this:  the left section
1338 <programlisting>
1339   (e !)
1340 </programlisting>
1341 is equivalent (from the point of view of both type checking and execution) to the expression
1342 <programlisting>
1343   ((!) e)
1344 </programlisting>
1345 (for any expression <literal>e</literal> and operator <literal>(!)</literal>.
1346 The strict Haskell 98 interpretation is that the section is equivalent to
1347 <programlisting>
1348   (\y -> (!) e y)
1349 </programlisting>
1350 That is, the operator must be a function of two arguments.  GHC allows it to
1351 take only one argument, and that in turn allows you to write the function
1352 postfix.
1353 </para>
1354 <para>Since this extension goes beyond Haskell 98, it should really be enabled
1355 by a flag; but in fact it is enabled all the time.  (No Haskell 98 programs
1356 change their behaviour, of course.)
1357 </para>
1358 <para>The extension does not extend to the left-hand side of function
1359 definitions; you must define such a function in prefix form.</para>
1360
1361 </sect2>
1362
1363 <sect2 id="disambiguate-fields">
1364 <title>Record field disambiguation</title>
1365 <para>
1366 In record construction and record pattern matching
1367 it is entirely unambiguous which field is referred to, even if there are two different
1368 data types in scope with a common field name.  For example:
1369 <programlisting>
1370 module M where
1371   data S = MkS { x :: Int, y :: Bool }
1372
1373 module Foo where
1374   import M
1375
1376   data T = MkT { x :: Int }
1377   
1378   ok1 (MkS { x = n }) = n+1   -- Unambiguous
1379
1380   ok2 n = MkT { x = n+1 }     -- Unambiguous
1381
1382   bad1 k = k { x = 3 }  -- Ambiguous
1383   bad2 k = x k          -- Ambiguous
1384 </programlisting>
1385 Even though there are two <literal>x</literal>'s in scope,
1386 it is clear that the <literal>x</literal> in the pattern in the
1387 definition of <literal>ok1</literal> can only mean the field
1388 <literal>x</literal> from type <literal>S</literal>. Similarly for
1389 the function <literal>ok2</literal>.  However, in the record update
1390 in <literal>bad1</literal> and the record selection in <literal>bad2</literal>
1391 it is not clear which of the two types is intended.
1392 </para>
1393 <para>
1394 Haskell 98 regards all four as ambiguous, but with the
1395 <option>-fdisambiguate-record-fields</option> flag, GHC will accept
1396 the former two.  The rules are precisely the same as those for instance
1397 declarations in Haskell 98, where the method names on the left-hand side 
1398 of the method bindings in an instance declaration refer unambiguously
1399 to the method of that class (provided they are in scope at all), even
1400 if there are other variables in scope with the same name.
1401 This reduces the clutter of qualified names when you import two
1402 records from different modules that use the same field name.
1403 </para>
1404 </sect2>
1405
1406     <!-- ===================== Record puns ===================  -->
1407
1408 <sect2 id="record-puns">
1409 <title>Record puns
1410 </title>
1411
1412 <para>
1413 Record puns are enabled by the flag <literal>-XRecordPuns</literal>.
1414 </para>
1415
1416 <para>
1417 When using records, it is common to write a pattern that binds a
1418 variable with the same name as a record field, such as:
1419
1420 <programlisting>
1421 data C = C {a :: Int}
1422 f (C {a = a}) = a
1423 </programlisting>
1424 </para>
1425
1426 <para>
1427 Record punning permits the variable name to be elided, so one can simply
1428 write
1429
1430 <programlisting>
1431 f (C {a}) = a
1432 </programlisting>
1433
1434 to mean the same pattern as above.  That is, in a record pattern, the
1435 pattern <literal>a</literal> expands into the pattern <literal>a =
1436 a</literal> for the same name <literal>a</literal>.  
1437 </para>
1438
1439 <para>
1440 Note that puns and other patterns can be mixed in the same record:
1441 <programlisting>
1442 data C = C {a :: Int, b :: Int}
1443 f (C {a, b = 4}) = a
1444 </programlisting>
1445 and that puns can be used wherever record patterns occur (e.g. in
1446 <literal>let</literal> bindings or at the top-level).  
1447 </para>
1448
1449 <para>
1450 Record punning can also be used in an expression, writing, for example,
1451 <programlisting>
1452 let a = 1 in C {a}
1453 </programlisting>
1454 instead of 
1455 <programlisting>
1456 let a = 1 in C {a = a}
1457 </programlisting>
1458
1459 Note that this expansion is purely syntactic, so the record pun
1460 expression refers to the nearest enclosing variable that is spelled the
1461 same as the field name.
1462 </para>
1463
1464 </sect2>
1465
1466     <!-- ===================== Record wildcards ===================  -->
1467
1468 <sect2 id="record-wildcards">
1469 <title>Record wildcards
1470 </title>
1471
1472 <para>
1473 Record wildcards are enabled by the flag <literal>-XRecordWildCards</literal>.
1474 </para>
1475
1476 <para>
1477 For records with many fields, it can be tiresome to write out each field
1478 individually in a record pattern, as in
1479 <programlisting>
1480 data C = C {a :: Int, b :: Int, c :: Int, d :: Int}
1481 f (C {a = 1, b = b, c = c, d = d}) = b + c + d
1482 </programlisting>
1483 </para>
1484
1485 <para>
1486 Record wildcard syntax permits a (<literal>..</literal>) in a record
1487 pattern, where each elided field <literal>f</literal> is replaced by the
1488 pattern <literal>f = f</literal>.  For example, the above pattern can be
1489 written as
1490 <programlisting>
1491 f (C {a = 1, ..}) = b + c + d
1492 </programlisting>
1493 </para>
1494
1495 <para>
1496 Note that wildcards can be mixed with other patterns, including puns
1497 (<xref linkend="record-puns"/>); for example, in a pattern <literal>C {a
1498 = 1, b, ..})</literal>.  Additionally, record wildcards can be used
1499 wherever record patterns occur, including in <literal>let</literal>
1500 bindings and at the top-level.  For example, the top-level binding
1501 <programlisting>
1502 C {a = 1, ..} = e
1503 </programlisting>
1504 defines <literal>b</literal>, <literal>c</literal>, and
1505 <literal>d</literal>.
1506 </para>
1507
1508 <para>
1509 Record wildcards can also be used in expressions, writing, for example,
1510
1511 <programlisting>
1512 let {a = 1; b = 2; c = 3; d = 4} in C {..}
1513 </programlisting>
1514
1515 in place of
1516
1517 <programlisting>
1518 let {a = 1; b = 2; c = 3; d = 4} in C {a=a, b=b, c=c, d=d}
1519 </programlisting>
1520
1521 Note that this expansion is purely syntactic, so the record wildcard
1522 expression refers to the nearest enclosing variables that are spelled
1523 the same as the omitted field names.
1524 </para>
1525
1526 </sect2>
1527
1528     <!-- ===================== Local fixity declarations ===================  -->
1529
1530 <sect2 id="local-fixity-declarations">
1531 <title>Local Fixity Declarations
1532 </title>
1533
1534 <para>A careful reading of the Haskell 98 Report reveals that fixity
1535 declarations (<literal>infix</literal>, <literal>infixl</literal>, and
1536 <literal>infixr</literal>) are permitted to appear inside local bindings
1537 such those introduced by <literal>let</literal> and
1538 <literal>where</literal>.  However, the Haskell Report does not specify
1539 the semantics of such bindings very precisely.
1540 </para>
1541
1542 <para>In GHC, a fixity declaration may accompany a local binding:
1543 <programlisting>
1544 let f = ...
1545     infixr 3 `f`
1546 in 
1547     ...
1548 </programlisting>
1549 and the fixity declaration applies wherever the binding is in scope.
1550 For example, in a <literal>let</literal>, it applies in the right-hand
1551 sides of other <literal>let</literal>-bindings and the body of the
1552 <literal>let</literal>C. Or, in recursive <literal>do</literal>
1553 expressions (<xref linkend="mdo-notation"/>), the local fixity
1554 declarations of a <literal>let</literal> statement scope over other
1555 statements in the group, just as the bound name does.
1556 </para>
1557
1558 <para>
1559 Moreover, a local fixity declaration *must* accompany a local binding of
1560 that name: it is not possible to revise the fixity of name bound
1561 elsewhere, as in
1562 <programlisting>
1563 let infixr 9 $ in ...
1564 </programlisting>
1565
1566 Because local fixity declarations are technically Haskell 98, no flag is
1567 necessary to enable them.
1568 </para>
1569 </sect2>
1570
1571 </sect1>
1572
1573
1574 <!-- TYPE SYSTEM EXTENSIONS -->
1575 <sect1 id="data-type-extensions">
1576 <title>Extensions to data types and type synonyms</title>
1577
1578 <sect2 id="nullary-types">
1579 <title>Data types with no constructors</title>
1580
1581 <para>With the <option>-fglasgow-exts</option> flag, GHC lets you declare
1582 a data type with no constructors.  For example:</para>
1583
1584 <programlisting>
1585   data S      -- S :: *
1586   data T a    -- T :: * -> *
1587 </programlisting>
1588
1589 <para>Syntactically, the declaration lacks the "= constrs" part.  The 
1590 type can be parameterised over types of any kind, but if the kind is
1591 not <literal>*</literal> then an explicit kind annotation must be used
1592 (see <xref linkend="kinding"/>).</para>
1593
1594 <para>Such data types have only one value, namely bottom.
1595 Nevertheless, they can be useful when defining "phantom types".</para>
1596 </sect2>
1597
1598 <sect2 id="infix-tycons">
1599 <title>Infix type constructors, classes, and type variables</title>
1600
1601 <para>
1602 GHC allows type constructors, classes, and type variables to be operators, and
1603 to be written infix, very much like expressions.  More specifically:
1604 <itemizedlist>
1605 <listitem><para>
1606   A type constructor or class can be an operator, beginning with a colon; e.g. <literal>:*:</literal>.
1607   The lexical syntax is the same as that for data constructors.
1608   </para></listitem>
1609 <listitem><para>
1610   Data type and type-synonym declarations can be written infix, parenthesised
1611   if you want further arguments.  E.g.
1612 <screen>
1613   data a :*: b = Foo a b
1614   type a :+: b = Either a b
1615   class a :=: b where ...
1616
1617   data (a :**: b) x = Baz a b x
1618   type (a :++: b) y = Either (a,b) y
1619 </screen>
1620   </para></listitem>
1621 <listitem><para>
1622   Types, and class constraints, can be written infix.  For example
1623   <screen>
1624         x :: Int :*: Bool
1625         f :: (a :=: b) => a -> b
1626   </screen>
1627   </para></listitem>
1628 <listitem><para>
1629   A type variable can be an (unqualified) operator e.g. <literal>+</literal>.
1630   The lexical syntax is the same as that for variable operators, excluding "(.)",
1631   "(!)", and "(*)".  In a binding position, the operator must be
1632   parenthesised.  For example:
1633 <programlisting>
1634    type T (+) = Int + Int
1635    f :: T Either
1636    f = Left 3
1637  
1638    liftA2 :: Arrow (~>)
1639           => (a -> b -> c) -> (e ~> a) -> (e ~> b) -> (e ~> c)
1640    liftA2 = ...
1641 </programlisting>
1642   </para></listitem>
1643 <listitem><para>
1644   Back-quotes work
1645   as for expressions, both for type constructors and type variables;  e.g. <literal>Int `Either` Bool</literal>, or
1646   <literal>Int `a` Bool</literal>.  Similarly, parentheses work the same; e.g.  <literal>(:*:) Int Bool</literal>.
1647   </para></listitem>
1648 <listitem><para>
1649   Fixities may be declared for type constructors, or classes, just as for data constructors.  However,
1650   one cannot distinguish between the two in a fixity declaration; a fixity declaration
1651   sets the fixity for a data constructor and the corresponding type constructor.  For example:
1652 <screen>
1653   infixl 7 T, :*:
1654 </screen>
1655   sets the fixity for both type constructor <literal>T</literal> and data constructor <literal>T</literal>,
1656   and similarly for <literal>:*:</literal>.
1657   <literal>Int `a` Bool</literal>.
1658   </para></listitem>
1659 <listitem><para>
1660   Function arrow is <literal>infixr</literal> with fixity 0.  (This might change; I'm not sure what it should be.)
1661   </para></listitem>
1662
1663 </itemizedlist>
1664 </para>
1665 </sect2>
1666
1667 <sect2 id="type-synonyms">
1668 <title>Liberalised type synonyms</title>
1669
1670 <para>
1671 Type synonyms are like macros at the type level, and
1672 GHC does validity checking on types <emphasis>only after expanding type synonyms</emphasis>.
1673 That means that GHC can be very much more liberal about type synonyms than Haskell 98:
1674 <itemizedlist>
1675 <listitem> <para>You can write a <literal>forall</literal> (including overloading)
1676 in a type synonym, thus:
1677 <programlisting>
1678   type Discard a = forall b. Show b => a -> b -> (a, String)
1679
1680   f :: Discard a
1681   f x y = (x, show y)
1682
1683   g :: Discard Int -> (Int,String)    -- A rank-2 type
1684   g f = f 3 True
1685 </programlisting>
1686 </para>
1687 </listitem>
1688
1689 <listitem><para>
1690 You can write an unboxed tuple in a type synonym:
1691 <programlisting>
1692   type Pr = (# Int, Int #)
1693
1694   h :: Int -> Pr
1695   h x = (# x, x #)
1696 </programlisting>
1697 </para></listitem>
1698
1699 <listitem><para>
1700 You can apply a type synonym to a forall type:
1701 <programlisting>
1702   type Foo a = a -> a -> Bool
1703  
1704   f :: Foo (forall b. b->b)
1705 </programlisting>
1706 After expanding the synonym, <literal>f</literal> has the legal (in GHC) type:
1707 <programlisting>
1708   f :: (forall b. b->b) -> (forall b. b->b) -> Bool
1709 </programlisting>
1710 </para></listitem>
1711
1712 <listitem><para>
1713 You can apply a type synonym to a partially applied type synonym:
1714 <programlisting>
1715   type Generic i o = forall x. i x -> o x
1716   type Id x = x
1717   
1718   foo :: Generic Id []
1719 </programlisting>
1720 After expanding the synonym, <literal>foo</literal> has the legal (in GHC) type:
1721 <programlisting>
1722   foo :: forall x. x -> [x]
1723 </programlisting>
1724 </para></listitem>
1725
1726 </itemizedlist>
1727 </para>
1728
1729 <para>
1730 GHC currently does kind checking before expanding synonyms (though even that
1731 could be changed.)
1732 </para>
1733 <para>
1734 After expanding type synonyms, GHC does validity checking on types, looking for
1735 the following mal-formedness which isn't detected simply by kind checking:
1736 <itemizedlist>
1737 <listitem><para>
1738 Type constructor applied to a type involving for-alls.
1739 </para></listitem>
1740 <listitem><para>
1741 Unboxed tuple on left of an arrow.
1742 </para></listitem>
1743 <listitem><para>
1744 Partially-applied type synonym.
1745 </para></listitem>
1746 </itemizedlist>
1747 So, for example,
1748 this will be rejected:
1749 <programlisting>
1750   type Pr = (# Int, Int #)
1751
1752   h :: Pr -> Int
1753   h x = ...
1754 </programlisting>
1755 because GHC does not allow  unboxed tuples on the left of a function arrow.
1756 </para>
1757 </sect2>
1758
1759
1760 <sect2 id="existential-quantification">
1761 <title>Existentially quantified data constructors
1762 </title>
1763
1764 <para>
1765 The idea of using existential quantification in data type declarations
1766 was suggested by Perry, and implemented in Hope+ (Nigel Perry, <emphasis>The Implementation
1767 of Practical Functional Programming Languages</emphasis>, PhD Thesis, University of
1768 London, 1991). It was later formalised by Laufer and Odersky
1769 (<emphasis>Polymorphic type inference and abstract data types</emphasis>,
1770 TOPLAS, 16(5), pp1411-1430, 1994).
1771 It's been in Lennart
1772 Augustsson's <command>hbc</command> Haskell compiler for several years, and
1773 proved very useful.  Here's the idea.  Consider the declaration:
1774 </para>
1775
1776 <para>
1777
1778 <programlisting>
1779   data Foo = forall a. MkFoo a (a -> Bool)
1780            | Nil
1781 </programlisting>
1782
1783 </para>
1784
1785 <para>
1786 The data type <literal>Foo</literal> has two constructors with types:
1787 </para>
1788
1789 <para>
1790
1791 <programlisting>
1792   MkFoo :: forall a. a -> (a -> Bool) -> Foo
1793   Nil   :: Foo
1794 </programlisting>
1795
1796 </para>
1797
1798 <para>
1799 Notice that the type variable <literal>a</literal> in the type of <function>MkFoo</function>
1800 does not appear in the data type itself, which is plain <literal>Foo</literal>.
1801 For example, the following expression is fine:
1802 </para>
1803
1804 <para>
1805
1806 <programlisting>
1807   [MkFoo 3 even, MkFoo 'c' isUpper] :: [Foo]
1808 </programlisting>
1809
1810 </para>
1811
1812 <para>
1813 Here, <literal>(MkFoo 3 even)</literal> packages an integer with a function
1814 <function>even</function> that maps an integer to <literal>Bool</literal>; and <function>MkFoo 'c'
1815 isUpper</function> packages a character with a compatible function.  These
1816 two things are each of type <literal>Foo</literal> and can be put in a list.
1817 </para>
1818
1819 <para>
1820 What can we do with a value of type <literal>Foo</literal>?.  In particular,
1821 what happens when we pattern-match on <function>MkFoo</function>?
1822 </para>
1823
1824 <para>
1825
1826 <programlisting>
1827   f (MkFoo val fn) = ???
1828 </programlisting>
1829
1830 </para>
1831
1832 <para>
1833 Since all we know about <literal>val</literal> and <function>fn</function> is that they
1834 are compatible, the only (useful) thing we can do with them is to
1835 apply <function>fn</function> to <literal>val</literal> to get a boolean.  For example:
1836 </para>
1837
1838 <para>
1839
1840 <programlisting>
1841   f :: Foo -> Bool
1842   f (MkFoo val fn) = fn val
1843 </programlisting>
1844
1845 </para>
1846
1847 <para>
1848 What this allows us to do is to package heterogeneous values
1849 together with a bunch of functions that manipulate them, and then treat
1850 that collection of packages in a uniform manner.  You can express
1851 quite a bit of object-oriented-like programming this way.
1852 </para>
1853
1854 <sect3 id="existential">
1855 <title>Why existential?
1856 </title>
1857
1858 <para>
1859 What has this to do with <emphasis>existential</emphasis> quantification?
1860 Simply that <function>MkFoo</function> has the (nearly) isomorphic type
1861 </para>
1862
1863 <para>
1864
1865 <programlisting>
1866   MkFoo :: (exists a . (a, a -> Bool)) -> Foo
1867 </programlisting>
1868
1869 </para>
1870
1871 <para>
1872 But Haskell programmers can safely think of the ordinary
1873 <emphasis>universally</emphasis> quantified type given above, thereby avoiding
1874 adding a new existential quantification construct.
1875 </para>
1876
1877 </sect3>
1878
1879 <sect3 id="existential-with-context">
1880 <title>Existentials and type classes</title>
1881
1882 <para>
1883 An easy extension is to allow
1884 arbitrary contexts before the constructor.  For example:
1885 </para>
1886
1887 <para>
1888
1889 <programlisting>
1890 data Baz = forall a. Eq a => Baz1 a a
1891          | forall b. Show b => Baz2 b (b -> b)
1892 </programlisting>
1893
1894 </para>
1895
1896 <para>
1897 The two constructors have the types you'd expect:
1898 </para>
1899
1900 <para>
1901
1902 <programlisting>
1903 Baz1 :: forall a. Eq a => a -> a -> Baz
1904 Baz2 :: forall b. Show b => b -> (b -> b) -> Baz
1905 </programlisting>
1906
1907 </para>
1908
1909 <para>
1910 But when pattern matching on <function>Baz1</function> the matched values can be compared
1911 for equality, and when pattern matching on <function>Baz2</function> the first matched
1912 value can be converted to a string (as well as applying the function to it).
1913 So this program is legal:
1914 </para>
1915
1916 <para>
1917
1918 <programlisting>
1919   f :: Baz -> String
1920   f (Baz1 p q) | p == q    = "Yes"
1921                | otherwise = "No"
1922   f (Baz2 v fn)            = show (fn v)
1923 </programlisting>
1924
1925 </para>
1926
1927 <para>
1928 Operationally, in a dictionary-passing implementation, the
1929 constructors <function>Baz1</function> and <function>Baz2</function> must store the
1930 dictionaries for <literal>Eq</literal> and <literal>Show</literal> respectively, and
1931 extract it on pattern matching.
1932 </para>
1933
1934 </sect3>
1935
1936 <sect3 id="existential-records">
1937 <title>Record Constructors</title>
1938
1939 <para>
1940 GHC allows existentials to be used with records syntax as well.  For example:
1941
1942 <programlisting>
1943 data Counter a = forall self. NewCounter
1944     { _this    :: self
1945     , _inc     :: self -> self
1946     , _display :: self -> IO ()
1947     , tag      :: a
1948     }
1949 </programlisting>
1950 Here <literal>tag</literal> is a public field, with a well-typed selector
1951 function <literal>tag :: Counter a -> a</literal>.  The <literal>self</literal>
1952 type is hidden from the outside; any attempt to apply <literal>_this</literal>,
1953 <literal>_inc</literal> or <literal>_display</literal> as functions will raise a
1954 compile-time error.  In other words, <emphasis>GHC defines a record selector function
1955 only for fields whose type does not mention the existentially-quantified variables</emphasis>.
1956 (This example used an underscore in the fields for which record selectors
1957 will not be defined, but that is only programming style; GHC ignores them.)
1958 </para>
1959
1960 <para>
1961 To make use of these hidden fields, we need to create some helper functions:
1962
1963 <programlisting>
1964 inc :: Counter a -> Counter a
1965 inc (NewCounter x i d t) = NewCounter
1966     { _this = i x, _inc = i, _display = d, tag = t } 
1967
1968 display :: Counter a -> IO ()
1969 display NewCounter{ _this = x, _display = d } = d x
1970 </programlisting>
1971
1972 Now we can define counters with different underlying implementations:
1973
1974 <programlisting>
1975 counterA :: Counter String 
1976 counterA = NewCounter
1977     { _this = 0, _inc = (1+), _display = print, tag = "A" }
1978
1979 counterB :: Counter String 
1980 counterB = NewCounter
1981     { _this = "", _inc = ('#':), _display = putStrLn, tag = "B" }
1982
1983 main = do
1984     display (inc counterA)         -- prints "1"
1985     display (inc (inc counterB))   -- prints "##"
1986 </programlisting>
1987
1988 At the moment, record update syntax is only supported for Haskell 98 data types,
1989 so the following function does <emphasis>not</emphasis> work:
1990
1991 <programlisting>
1992 -- This is invalid; use explicit NewCounter instead for now
1993 setTag :: Counter a -> a -> Counter a
1994 setTag obj t = obj{ tag = t }
1995 </programlisting>
1996
1997 </para>
1998
1999 </sect3>
2000
2001
2002 <sect3>
2003 <title>Restrictions</title>
2004
2005 <para>
2006 There are several restrictions on the ways in which existentially-quantified
2007 constructors can be use.
2008 </para>
2009
2010 <para>
2011
2012 <itemizedlist>
2013 <listitem>
2014
2015 <para>
2016  When pattern matching, each pattern match introduces a new,
2017 distinct, type for each existential type variable.  These types cannot
2018 be unified with any other type, nor can they escape from the scope of
2019 the pattern match.  For example, these fragments are incorrect:
2020
2021
2022 <programlisting>
2023 f1 (MkFoo a f) = a
2024 </programlisting>
2025
2026
2027 Here, the type bound by <function>MkFoo</function> "escapes", because <literal>a</literal>
2028 is the result of <function>f1</function>.  One way to see why this is wrong is to
2029 ask what type <function>f1</function> has:
2030
2031
2032 <programlisting>
2033   f1 :: Foo -> a             -- Weird!
2034 </programlisting>
2035
2036
2037 What is this "<literal>a</literal>" in the result type? Clearly we don't mean
2038 this:
2039
2040
2041 <programlisting>
2042   f1 :: forall a. Foo -> a   -- Wrong!
2043 </programlisting>
2044
2045
2046 The original program is just plain wrong.  Here's another sort of error
2047
2048
2049 <programlisting>
2050   f2 (Baz1 a b) (Baz1 p q) = a==q
2051 </programlisting>
2052
2053
2054 It's ok to say <literal>a==b</literal> or <literal>p==q</literal>, but
2055 <literal>a==q</literal> is wrong because it equates the two distinct types arising
2056 from the two <function>Baz1</function> constructors.
2057
2058
2059 </para>
2060 </listitem>
2061 <listitem>
2062
2063 <para>
2064 You can't pattern-match on an existentially quantified
2065 constructor in a <literal>let</literal> or <literal>where</literal> group of
2066 bindings. So this is illegal:
2067
2068
2069 <programlisting>
2070   f3 x = a==b where { Baz1 a b = x }
2071 </programlisting>
2072
2073 Instead, use a <literal>case</literal> expression:
2074
2075 <programlisting>
2076   f3 x = case x of Baz1 a b -> a==b
2077 </programlisting>
2078
2079 In general, you can only pattern-match
2080 on an existentially-quantified constructor in a <literal>case</literal> expression or
2081 in the patterns of a function definition.
2082
2083 The reason for this restriction is really an implementation one.
2084 Type-checking binding groups is already a nightmare without
2085 existentials complicating the picture.  Also an existential pattern
2086 binding at the top level of a module doesn't make sense, because it's
2087 not clear how to prevent the existentially-quantified type "escaping".
2088 So for now, there's a simple-to-state restriction.  We'll see how
2089 annoying it is.
2090
2091 </para>
2092 </listitem>
2093 <listitem>
2094
2095 <para>
2096 You can't use existential quantification for <literal>newtype</literal>
2097 declarations.  So this is illegal:
2098
2099
2100 <programlisting>
2101   newtype T = forall a. Ord a => MkT a
2102 </programlisting>
2103
2104
2105 Reason: a value of type <literal>T</literal> must be represented as a
2106 pair of a dictionary for <literal>Ord t</literal> and a value of type
2107 <literal>t</literal>.  That contradicts the idea that
2108 <literal>newtype</literal> should have no concrete representation.
2109 You can get just the same efficiency and effect by using
2110 <literal>data</literal> instead of <literal>newtype</literal>.  If
2111 there is no overloading involved, then there is more of a case for
2112 allowing an existentially-quantified <literal>newtype</literal>,
2113 because the <literal>data</literal> version does carry an
2114 implementation cost, but single-field existentially quantified
2115 constructors aren't much use.  So the simple restriction (no
2116 existential stuff on <literal>newtype</literal>) stands, unless there
2117 are convincing reasons to change it.
2118
2119
2120 </para>
2121 </listitem>
2122 <listitem>
2123
2124 <para>
2125  You can't use <literal>deriving</literal> to define instances of a
2126 data type with existentially quantified data constructors.
2127
2128 Reason: in most cases it would not make sense. For example:;
2129
2130 <programlisting>
2131 data T = forall a. MkT [a] deriving( Eq )
2132 </programlisting>
2133
2134 To derive <literal>Eq</literal> in the standard way we would need to have equality
2135 between the single component of two <function>MkT</function> constructors:
2136
2137 <programlisting>
2138 instance Eq T where
2139   (MkT a) == (MkT b) = ???
2140 </programlisting>
2141
2142 But <varname>a</varname> and <varname>b</varname> have distinct types, and so can't be compared.
2143 It's just about possible to imagine examples in which the derived instance
2144 would make sense, but it seems altogether simpler simply to prohibit such
2145 declarations.  Define your own instances!
2146 </para>
2147 </listitem>
2148
2149 </itemizedlist>
2150
2151 </para>
2152
2153 </sect3>
2154 </sect2>
2155
2156 <!-- ====================== Generalised algebraic data types =======================  -->
2157
2158 <sect2 id="gadt-style">
2159 <title>Declaring data types with explicit constructor signatures</title>
2160
2161 <para>GHC allows you to declare an algebraic data type by 
2162 giving the type signatures of constructors explicitly.  For example:
2163 <programlisting>
2164   data Maybe a where
2165       Nothing :: Maybe a
2166       Just    :: a -> Maybe a
2167 </programlisting>
2168 The form is called a "GADT-style declaration"
2169 because Generalised Algebraic Data Types, described in <xref linkend="gadt"/>, 
2170 can only be declared using this form.</para>
2171 <para>Notice that GADT-style syntax generalises existential types (<xref linkend="existential-quantification"/>).  
2172 For example, these two declarations are equivalent:
2173 <programlisting>
2174   data Foo = forall a. MkFoo a (a -> Bool)
2175   data Foo' where { MKFoo :: a -> (a->Bool) -> Foo' }
2176 </programlisting>
2177 </para>
2178 <para>Any data type that can be declared in standard Haskell-98 syntax 
2179 can also be declared using GADT-style syntax.
2180 The choice is largely stylistic, but GADT-style declarations differ in one important respect:
2181 they treat class constraints on the data constructors differently.
2182 Specifically, if the constructor is given a type-class context, that
2183 context is made available by pattern matching.  For example:
2184 <programlisting>
2185   data Set a where
2186     MkSet :: Eq a => [a] -> Set a
2187
2188   makeSet :: Eq a => [a] -> Set a
2189   makeSet xs = MkSet (nub xs)
2190
2191   insert :: a -> Set a -> Set a
2192   insert a (MkSet as) | a `elem` as = MkSet as
2193                       | otherwise   = MkSet (a:as)
2194 </programlisting>
2195 A use of <literal>MkSet</literal> as a constructor (e.g. in the definition of <literal>makeSet</literal>) 
2196 gives rise to a <literal>(Eq a)</literal>
2197 constraint, as you would expect.  The new feature is that pattern-matching on <literal>MkSet</literal>
2198 (as in the definition of <literal>insert</literal>) makes <emphasis>available</emphasis> an <literal>(Eq a)</literal>
2199 context.  In implementation terms, the <literal>MkSet</literal> constructor has a hidden field that stores
2200 the <literal>(Eq a)</literal> dictionary that is passed to <literal>MkSet</literal>; so
2201 when pattern-matching that dictionary becomes available for the right-hand side of the match.
2202 In the example, the equality dictionary is used to satisfy the equality constraint 
2203 generated by the call to <literal>elem</literal>, so that the type of
2204 <literal>insert</literal> itself has no <literal>Eq</literal> constraint.
2205 </para>
2206 <para>
2207 For example, one possible application is to reify dictionaries:
2208 <programlisting>
2209    data NumInst a where
2210      MkNumInst :: Num a => NumInst a
2211
2212    intInst :: NumInst Int
2213    intInst = MkNumInst
2214
2215    plus :: NumInst a -> a -> a -> a
2216    plus MkNumInst p q = p + q
2217 </programlisting>
2218 Here, a value of type <literal>NumInst a</literal> is equivalent 
2219 to an explicit <literal>(Num a)</literal> dictionary.
2220 </para>
2221 <para>
2222 All this applies to constructors declared using the syntax of <xref linkend="existential-with-context"/>.
2223 For example, the <literal>NumInst</literal> data type above could equivalently be declared 
2224 like this:
2225 <programlisting>
2226    data NumInst a 
2227       = Num a => MkNumInst (NumInst a)
2228 </programlisting>
2229 Notice that, unlike the situation when declaring an existential, there is 
2230 no <literal>forall</literal>, because the <literal>Num</literal> constrains the
2231 data type's universally quantified type variable <literal>a</literal>.  
2232 A constructor may have both universal and existential type variables: for example,
2233 the following two declarations are equivalent:
2234 <programlisting>
2235    data T1 a 
2236         = forall b. (Num a, Eq b) => MkT1 a b
2237    data T2 a where
2238         MkT2 :: (Num a, Eq b) => a -> b -> T2 a
2239 </programlisting>
2240 </para>
2241 <para>All this behaviour contrasts with Haskell 98's peculiar treatment of 
2242 contexts on a data type declaration (Section 4.2.1 of the Haskell 98 Report).
2243 In Haskell 98 the definition
2244 <programlisting>
2245   data Eq a => Set' a = MkSet' [a]
2246 </programlisting>
2247 gives <literal>MkSet'</literal> the same type as <literal>MkSet</literal> above.  But instead of 
2248 <emphasis>making available</emphasis> an <literal>(Eq a)</literal> constraint, pattern-matching
2249 on <literal>MkSet'</literal> <emphasis>requires</emphasis> an <literal>(Eq a)</literal> constraint!
2250 GHC faithfully implements this behaviour, odd though it is.  But for GADT-style declarations,
2251 GHC's behaviour is much more useful, as well as much more intuitive.
2252 </para>
2253
2254 <para>
2255 The rest of this section gives further details about GADT-style data
2256 type declarations.
2257
2258 <itemizedlist>
2259 <listitem><para>
2260 The result type of each data constructor must begin with the type constructor being defined.
2261 If the result type of all constructors 
2262 has the form <literal>T a1 ... an</literal>, where <literal>a1 ... an</literal>
2263 are distinct type variables, then the data type is <emphasis>ordinary</emphasis>;
2264 otherwise is a <emphasis>generalised</emphasis> data type (<xref linkend="gadt"/>).
2265 </para></listitem>
2266
2267 <listitem><para>
2268 The type signature of
2269 each constructor is independent, and is implicitly universally quantified as usual. 
2270 Different constructors may have different universally-quantified type variables
2271 and different type-class constraints.  
2272 For example, this is fine:
2273 <programlisting>
2274   data T a where
2275     T1 :: Eq b => b -> T b
2276     T2 :: (Show c, Ix c) => c -> [c] -> T c
2277 </programlisting>
2278 </para></listitem>
2279
2280 <listitem><para>
2281 Unlike a Haskell-98-style 
2282 data type declaration, the type variable(s) in the "<literal>data Set a where</literal>" header 
2283 have no scope.  Indeed, one can write a kind signature instead:
2284 <programlisting>
2285   data Set :: * -> * where ...
2286 </programlisting>
2287 or even a mixture of the two:
2288 <programlisting>
2289   data Foo a :: (* -> *) -> * where ...
2290 </programlisting>
2291 The type variables (if given) may be explicitly kinded, so we could also write the header for <literal>Foo</literal>
2292 like this:
2293 <programlisting>
2294   data Foo a (b :: * -> *) where ...
2295 </programlisting>
2296 </para></listitem>
2297
2298
2299 <listitem><para>
2300 You can use strictness annotations, in the obvious places
2301 in the constructor type:
2302 <programlisting>
2303   data Term a where
2304       Lit    :: !Int -> Term Int
2305       If     :: Term Bool -> !(Term a) -> !(Term a) -> Term a
2306       Pair   :: Term a -> Term b -> Term (a,b)
2307 </programlisting>
2308 </para></listitem>
2309
2310 <listitem><para>
2311 You can use a <literal>deriving</literal> clause on a GADT-style data type
2312 declaration.   For example, these two declarations are equivalent
2313 <programlisting>
2314   data Maybe1 a where {
2315       Nothing1 :: Maybe1 a ;
2316       Just1    :: a -> Maybe1 a
2317     } deriving( Eq, Ord )
2318
2319   data Maybe2 a = Nothing2 | Just2 a 
2320        deriving( Eq, Ord )
2321 </programlisting>
2322 </para></listitem>
2323
2324 <listitem><para>
2325 You can use record syntax on a GADT-style data type declaration:
2326
2327 <programlisting>
2328   data Person where
2329       Adult { name :: String, children :: [Person] } :: Person
2330       Child { name :: String } :: Person
2331 </programlisting>
2332 As usual, for every constructor that has a field <literal>f</literal>, the type of
2333 field <literal>f</literal> must be the same (modulo alpha conversion).
2334 </para>
2335 <para>
2336 At the moment, record updates are not yet possible with GADT-style declarations, 
2337 so support is limited to record construction, selection and pattern matching.
2338 For example
2339 <programlisting>
2340   aPerson = Adult { name = "Fred", children = [] }
2341
2342   shortName :: Person -> Bool
2343   hasChildren (Adult { children = kids }) = not (null kids)
2344   hasChildren (Child {})                  = False
2345 </programlisting>
2346 </para></listitem>
2347
2348 <listitem><para> 
2349 As in the case of existentials declared using the Haskell-98-like record syntax 
2350 (<xref linkend="existential-records"/>),
2351 record-selector functions are generated only for those fields that have well-typed
2352 selectors.  
2353 Here is the example of that section, in GADT-style syntax:
2354 <programlisting>
2355 data Counter a where
2356     NewCounter { _this    :: self
2357                , _inc     :: self -> self
2358                , _display :: self -> IO ()
2359                , tag      :: a
2360                }
2361         :: Counter a
2362 </programlisting>
2363 As before, only one selector function is generated here, that for <literal>tag</literal>.
2364 Nevertheless, you can still use all the field names in pattern matching and record construction.
2365 </para></listitem>
2366 </itemizedlist></para>
2367 </sect2>
2368
2369 <sect2 id="gadt">
2370 <title>Generalised Algebraic Data Types (GADTs)</title>
2371
2372 <para>Generalised Algebraic Data Types generalise ordinary algebraic data types 
2373 by allowing constructors to have richer return types.  Here is an example:
2374 <programlisting>
2375   data Term a where
2376       Lit    :: Int -> Term Int
2377       Succ   :: Term Int -> Term Int
2378       IsZero :: Term Int -> Term Bool   
2379       If     :: Term Bool -> Term a -> Term a -> Term a
2380       Pair   :: Term a -> Term b -> Term (a,b)
2381 </programlisting>
2382 Notice that the return type of the constructors is not always <literal>Term a</literal>, as is the
2383 case with ordinary data types.  This generality allows us to 
2384 write a well-typed <literal>eval</literal> function
2385 for these <literal>Terms</literal>:
2386 <programlisting>
2387   eval :: Term a -> a
2388   eval (Lit i)      = i
2389   eval (Succ t)     = 1 + eval t
2390   eval (IsZero t)   = eval t == 0
2391   eval (If b e1 e2) = if eval b then eval e1 else eval e2
2392   eval (Pair e1 e2) = (eval e1, eval e2)
2393 </programlisting>
2394 The key point about GADTs is that <emphasis>pattern matching causes type refinement</emphasis>.  
2395 For example, in the right hand side of the equation
2396 <programlisting>
2397   eval :: Term a -> a
2398   eval (Lit i) =  ...
2399 </programlisting>
2400 the type <literal>a</literal> is refined to <literal>Int</literal>.  That's the whole point!
2401 A precise specification of the type rules is beyond what this user manual aspires to, 
2402 but the design closely follows that described in
2403 the paper <ulink
2404 url="http://research.microsoft.com/%7Esimonpj/papers/gadt/">Simple
2405 unification-based type inference for GADTs</ulink>,
2406 (ICFP 2006).
2407 The general principle is this: <emphasis>type refinement is only carried out 
2408 based on user-supplied type annotations</emphasis>.
2409 So if no type signature is supplied for <literal>eval</literal>, no type refinement happens, 
2410 and lots of obscure error messages will
2411 occur.  However, the refinement is quite general.  For example, if we had:
2412 <programlisting>
2413   eval :: Term a -> a -> a
2414   eval (Lit i) j =  i+j
2415 </programlisting>
2416 the pattern match causes the type <literal>a</literal> to be refined to <literal>Int</literal> (because of the type
2417 of the constructor <literal>Lit</literal>), and that refinement also applies to the type of <literal>j</literal>, and
2418 the result type of the <literal>case</literal> expression.  Hence the addition <literal>i+j</literal> is legal.
2419 </para>
2420 <para>
2421 These and many other examples are given in papers by Hongwei Xi, and
2422 Tim Sheard. There is a longer introduction
2423 <ulink url="http://www.haskell.org/haskellwiki/GADT">on the wiki</ulink>,
2424 and Ralf Hinze's
2425 <ulink url="http://www.informatik.uni-bonn.de/~ralf/publications/With.pdf">Fun with phantom types</ulink> also has a number of examples. Note that papers
2426 may use different notation to that implemented in GHC.
2427 </para>
2428 <para>
2429 The rest of this section outlines the extensions to GHC that support GADTs.   The extension is enabled with 
2430 <option>-XGADTs</option>.  The <option>-XGADTs</option> flag also sets <option>-XRelaxedPolyRec</option>.
2431 <itemizedlist>
2432 <listitem><para>
2433 A GADT can only be declared using GADT-style syntax (<xref linkend="gadt-style"/>); 
2434 the old Haskell-98 syntax for data declarations always declares an ordinary data type.
2435 The result type of each constructor must begin with the type constructor being defined,
2436 but for a GADT the arguments to the type constructor can be arbitrary monotypes.  
2437 For example, in the <literal>Term</literal> data
2438 type above, the type of each constructor must end with <literal>Term ty</literal>, but
2439 the <literal>ty</literal> may not be a type variable (e.g. the <literal>Lit</literal>
2440 constructor).
2441 </para></listitem>
2442
2443 <listitem><para>
2444 You cannot use a <literal>deriving</literal> clause for a GADT; only for
2445 an ordinary data type.
2446 </para></listitem>
2447
2448 <listitem><para>
2449 As mentioned in <xref linkend="gadt-style"/>, record syntax is supported.
2450 For example:
2451 <programlisting>
2452   data Term a where
2453       Lit    { val  :: Int }      :: Term Int
2454       Succ   { num  :: Term Int } :: Term Int
2455       Pred   { num  :: Term Int } :: Term Int
2456       IsZero { arg  :: Term Int } :: Term Bool  
2457       Pair   { arg1 :: Term a
2458              , arg2 :: Term b
2459              }                    :: Term (a,b)
2460       If     { cnd  :: Term Bool
2461              , tru  :: Term a
2462              , fls  :: Term a
2463              }                    :: Term a
2464 </programlisting>
2465 However, for GADTs there is the following additional constraint: 
2466 every constructor that has a field <literal>f</literal> must have
2467 the same result type (modulo alpha conversion)
2468 Hence, in the above example, we cannot merge the <literal>num</literal> 
2469 and <literal>arg</literal> fields above into a 
2470 single name.  Although their field types are both <literal>Term Int</literal>,
2471 their selector functions actually have different types:
2472
2473 <programlisting>
2474   num :: Term Int -> Term Int
2475   arg :: Term Bool -> Term Int
2476 </programlisting>
2477 </para></listitem>
2478
2479 </itemizedlist>
2480 </para>
2481
2482 </sect2>
2483 </sect1>
2484
2485 <!-- ====================== End of Generalised algebraic data types =======================  -->
2486
2487 <sect1 id="deriving">
2488 <title>Extensions to the "deriving" mechanism</title>
2489
2490 <sect2 id="deriving-inferred">
2491 <title>Inferred context for deriving clauses</title>
2492
2493 <para>
2494 The Haskell Report is vague about exactly when a <literal>deriving</literal> clause is
2495 legal.  For example:
2496 <programlisting>
2497   data T0 f a = MkT0 a         deriving( Eq )
2498   data T1 f a = MkT1 (f a)     deriving( Eq )
2499   data T2 f a = MkT2 (f (f a)) deriving( Eq )
2500 </programlisting>
2501 The natural generated <literal>Eq</literal> code would result in these instance declarations:
2502 <programlisting>
2503   instance Eq a         => Eq (T0 f a) where ...
2504   instance Eq (f a)     => Eq (T1 f a) where ...
2505   instance Eq (f (f a)) => Eq (T2 f a) where ...
2506 </programlisting>
2507 The first of these is obviously fine. The second is still fine, although less obviously. 
2508 The third is not Haskell 98, and risks losing termination of instances.
2509 </para>
2510 <para>
2511 GHC takes a conservative position: it accepts the first two, but not the third.  The  rule is this:
2512 each constraint in the inferred instance context must consist only of type variables, 
2513 with no repetitions.
2514 </para>
2515 <para>
2516 This rule is applied regardless of flags.  If you want a more exotic context, you can write
2517 it yourself, using the <link linkend="stand-alone-deriving">standalone deriving mechanism</link>.
2518 </para>
2519 </sect2>
2520
2521 <sect2 id="stand-alone-deriving">
2522 <title>Stand-alone deriving declarations</title>
2523
2524 <para>
2525 GHC now allows stand-alone <literal>deriving</literal> declarations, enabled by <literal>-XStandaloneDeriving</literal>:
2526 <programlisting>
2527   data Foo a = Bar a | Baz String
2528
2529   deriving instance Eq a => Eq (Foo a)
2530 </programlisting>
2531 The syntax is identical to that of an ordinary instance declaration apart from (a) the keyword
2532 <literal>deriving</literal>, and (b) the absence of the <literal>where</literal> part.
2533 You must supply a context (in the example the context is <literal>(Eq a)</literal>), 
2534 exactly as you would in an ordinary instance declaration.
2535 (In contrast the context is inferred in a <literal>deriving</literal> clause 
2536 attached to a data type declaration.) These <literal>deriving instance</literal>
2537 rules obey the same rules concerning form and termination as ordinary instance declarations,
2538 controlled by the same flags; see <xref linkend="instance-decls"/>. </para>
2539
2540 <para>The stand-alone syntax is generalised for newtypes in exactly the same
2541 way that ordinary <literal>deriving</literal> clauses are generalised (<xref linkend="newtype-deriving"/>).
2542 For example:
2543 <programlisting>
2544   newtype Foo a = MkFoo (State Int a)
2545
2546   deriving instance MonadState Int Foo
2547 </programlisting>
2548 GHC always treats the <emphasis>last</emphasis> parameter of the instance
2549 (<literal>Foo</literal> in this example) as the type whose instance is being derived.
2550 </para>
2551
2552 </sect2>
2553
2554
2555 <sect2 id="deriving-typeable">
2556 <title>Deriving clause for classes <literal>Typeable</literal> and <literal>Data</literal></title>
2557
2558 <para>
2559 Haskell 98 allows the programmer to add "<literal>deriving( Eq, Ord )</literal>" to a data type 
2560 declaration, to generate a standard instance declaration for classes specified in the <literal>deriving</literal> clause.  
2561 In Haskell 98, the only classes that may appear in the <literal>deriving</literal> clause are the standard
2562 classes <literal>Eq</literal>, <literal>Ord</literal>, 
2563 <literal>Enum</literal>, <literal>Ix</literal>, <literal>Bounded</literal>, <literal>Read</literal>, and <literal>Show</literal>.
2564 </para>
2565 <para>
2566 GHC extends this list with two more classes that may be automatically derived 
2567 (provided the <option>-XDeriveDataTypeable</option> flag is specified):
2568 <literal>Typeable</literal>, and <literal>Data</literal>.  These classes are defined in the library
2569 modules <literal>Data.Typeable</literal> and <literal>Data.Generics</literal> respectively, and the
2570 appropriate class must be in scope before it can be mentioned in the <literal>deriving</literal> clause.
2571 </para>
2572 <para>An instance of <literal>Typeable</literal> can only be derived if the
2573 data type has seven or fewer type parameters, all of kind <literal>*</literal>.
2574 The reason for this is that the <literal>Typeable</literal> class is derived using the scheme
2575 described in
2576 <ulink url="http://research.microsoft.com/%7Esimonpj/papers/hmap/gmap2.ps">
2577 Scrap More Boilerplate: Reflection, Zips, and Generalised Casts
2578 </ulink>.
2579 (Section 7.4 of the paper describes the multiple <literal>Typeable</literal> classes that
2580 are used, and only <literal>Typeable1</literal> up to
2581 <literal>Typeable7</literal> are provided in the library.)
2582 In other cases, there is nothing to stop the programmer writing a <literal>TypableX</literal>
2583 class, whose kind suits that of the data type constructor, and
2584 then writing the data type instance by hand.
2585 </para>
2586 </sect2>
2587
2588 <sect2 id="newtype-deriving">
2589 <title>Generalised derived instances for newtypes</title>
2590
2591 <para>
2592 When you define an abstract type using <literal>newtype</literal>, you may want
2593 the new type to inherit some instances from its representation. In
2594 Haskell 98, you can inherit instances of <literal>Eq</literal>, <literal>Ord</literal>,
2595 <literal>Enum</literal> and <literal>Bounded</literal> by deriving them, but for any
2596 other classes you have to write an explicit instance declaration. For
2597 example, if you define
2598
2599 <programlisting>
2600   newtype Dollars = Dollars Int 
2601 </programlisting>
2602
2603 and you want to use arithmetic on <literal>Dollars</literal>, you have to
2604 explicitly define an instance of <literal>Num</literal>:
2605
2606 <programlisting>
2607   instance Num Dollars where
2608     Dollars a + Dollars b = Dollars (a+b)
2609     ...
2610 </programlisting>
2611 All the instance does is apply and remove the <literal>newtype</literal>
2612 constructor. It is particularly galling that, since the constructor
2613 doesn't appear at run-time, this instance declaration defines a
2614 dictionary which is <emphasis>wholly equivalent</emphasis> to the <literal>Int</literal>
2615 dictionary, only slower!
2616 </para>
2617
2618
2619 <sect3> <title> Generalising the deriving clause </title>
2620 <para>
2621 GHC now permits such instances to be derived instead, 
2622 using the flag <option>-XGeneralizedNewtypeDeriving</option>,
2623 so one can write 
2624 <programlisting>
2625   newtype Dollars = Dollars Int deriving (Eq,Show,Num)
2626 </programlisting>
2627
2628 and the implementation uses the <emphasis>same</emphasis> <literal>Num</literal> dictionary
2629 for <literal>Dollars</literal> as for <literal>Int</literal>. Notionally, the compiler
2630 derives an instance declaration of the form
2631
2632 <programlisting>
2633   instance Num Int => Num Dollars
2634 </programlisting>
2635
2636 which just adds or removes the <literal>newtype</literal> constructor according to the type.
2637 </para>
2638 <para>
2639
2640 We can also derive instances of constructor classes in a similar
2641 way. For example, suppose we have implemented state and failure monad
2642 transformers, such that
2643
2644 <programlisting>
2645   instance Monad m => Monad (State s m) 
2646   instance Monad m => Monad (Failure m)
2647 </programlisting>
2648 In Haskell 98, we can define a parsing monad by 
2649 <programlisting>
2650   type Parser tok m a = State [tok] (Failure m) a
2651 </programlisting>
2652
2653 which is automatically a monad thanks to the instance declarations
2654 above. With the extension, we can make the parser type abstract,
2655 without needing to write an instance of class <literal>Monad</literal>, via
2656
2657 <programlisting>
2658   newtype Parser tok m a = Parser (State [tok] (Failure m) a)
2659                          deriving Monad
2660 </programlisting>
2661 In this case the derived instance declaration is of the form 
2662 <programlisting>
2663   instance Monad (State [tok] (Failure m)) => Monad (Parser tok m) 
2664 </programlisting>
2665
2666 Notice that, since <literal>Monad</literal> is a constructor class, the
2667 instance is a <emphasis>partial application</emphasis> of the new type, not the
2668 entire left hand side. We can imagine that the type declaration is
2669 "eta-converted" to generate the context of the instance
2670 declaration.
2671 </para>
2672 <para>
2673
2674 We can even derive instances of multi-parameter classes, provided the
2675 newtype is the last class parameter. In this case, a ``partial
2676 application'' of the class appears in the <literal>deriving</literal>
2677 clause. For example, given the class
2678
2679 <programlisting>
2680   class StateMonad s m | m -> s where ... 
2681   instance Monad m => StateMonad s (State s m) where ... 
2682 </programlisting>
2683 then we can derive an instance of <literal>StateMonad</literal> for <literal>Parser</literal>s by 
2684 <programlisting>
2685   newtype Parser tok m a = Parser (State [tok] (Failure m) a)
2686                          deriving (Monad, StateMonad [tok])
2687 </programlisting>
2688
2689 The derived instance is obtained by completing the application of the
2690 class to the new type:
2691
2692 <programlisting>
2693   instance StateMonad [tok] (State [tok] (Failure m)) =>
2694            StateMonad [tok] (Parser tok m)
2695 </programlisting>
2696 </para>
2697 <para>
2698
2699 As a result of this extension, all derived instances in newtype
2700  declarations are treated uniformly (and implemented just by reusing
2701 the dictionary for the representation type), <emphasis>except</emphasis>
2702 <literal>Show</literal> and <literal>Read</literal>, which really behave differently for
2703 the newtype and its representation.
2704 </para>
2705 </sect3>
2706
2707 <sect3> <title> A more precise specification </title>
2708 <para>
2709 Derived instance declarations are constructed as follows. Consider the
2710 declaration (after expansion of any type synonyms)
2711
2712 <programlisting>
2713   newtype T v1...vn = T' (t vk+1...vn) deriving (c1...cm) 
2714 </programlisting>
2715
2716 where 
2717  <itemizedlist>
2718 <listitem><para>
2719   The <literal>ci</literal> are partial applications of
2720   classes of the form <literal>C t1'...tj'</literal>, where the arity of <literal>C</literal>
2721   is exactly <literal>j+1</literal>.  That is, <literal>C</literal> lacks exactly one type argument.
2722 </para></listitem>
2723 <listitem><para>
2724   The <literal>k</literal> is chosen so that <literal>ci (T v1...vk)</literal> is well-kinded.
2725 </para></listitem>
2726 <listitem><para>
2727   The type <literal>t</literal> is an arbitrary type.
2728 </para></listitem>
2729 <listitem><para>
2730   The type variables <literal>vk+1...vn</literal> do not occur in <literal>t</literal>, 
2731   nor in the <literal>ci</literal>, and
2732 </para></listitem>
2733 <listitem><para>
2734   None of the <literal>ci</literal> is <literal>Read</literal>, <literal>Show</literal>, 
2735                 <literal>Typeable</literal>, or <literal>Data</literal>.  These classes
2736                 should not "look through" the type or its constructor.  You can still
2737                 derive these classes for a newtype, but it happens in the usual way, not 
2738                 via this new mechanism.  
2739 </para></listitem>
2740 </itemizedlist>
2741 Then, for each <literal>ci</literal>, the derived instance
2742 declaration is:
2743 <programlisting>
2744   instance ci t => ci (T v1...vk)
2745 </programlisting>
2746 As an example which does <emphasis>not</emphasis> work, consider 
2747 <programlisting>
2748   newtype NonMonad m s = NonMonad (State s m s) deriving Monad 
2749 </programlisting>
2750 Here we cannot derive the instance 
2751 <programlisting>
2752   instance Monad (State s m) => Monad (NonMonad m) 
2753 </programlisting>
2754
2755 because the type variable <literal>s</literal> occurs in <literal>State s m</literal>,
2756 and so cannot be "eta-converted" away. It is a good thing that this
2757 <literal>deriving</literal> clause is rejected, because <literal>NonMonad m</literal> is
2758 not, in fact, a monad --- for the same reason. Try defining
2759 <literal>>>=</literal> with the correct type: you won't be able to.
2760 </para>
2761 <para>
2762
2763 Notice also that the <emphasis>order</emphasis> of class parameters becomes
2764 important, since we can only derive instances for the last one. If the
2765 <literal>StateMonad</literal> class above were instead defined as
2766
2767 <programlisting>
2768   class StateMonad m s | m -> s where ... 
2769 </programlisting>
2770
2771 then we would not have been able to derive an instance for the
2772 <literal>Parser</literal> type above. We hypothesise that multi-parameter
2773 classes usually have one "main" parameter for which deriving new
2774 instances is most interesting.
2775 </para>
2776 <para>Lastly, all of this applies only for classes other than
2777 <literal>Read</literal>, <literal>Show</literal>, <literal>Typeable</literal>, 
2778 and <literal>Data</literal>, for which the built-in derivation applies (section
2779 4.3.3. of the Haskell Report).
2780 (For the standard classes <literal>Eq</literal>, <literal>Ord</literal>,
2781 <literal>Ix</literal>, and <literal>Bounded</literal> it is immaterial whether
2782 the standard method is used or the one described here.)
2783 </para>
2784 </sect3>
2785 </sect2>
2786 </sect1>
2787
2788
2789 <!-- TYPE SYSTEM EXTENSIONS -->
2790 <sect1 id="type-class-extensions">
2791 <title>Class and instances declarations</title>
2792
2793 <sect2 id="multi-param-type-classes">
2794 <title>Class declarations</title>
2795
2796 <para>
2797 This section, and the next one, documents GHC's type-class extensions.
2798 There's lots of background in the paper <ulink
2799 url="http://research.microsoft.com/~simonpj/Papers/type-class-design-space/">Type
2800 classes: exploring the design space</ulink> (Simon Peyton Jones, Mark
2801 Jones, Erik Meijer).
2802 </para>
2803 <para>
2804 All the extensions are enabled by the <option>-fglasgow-exts</option> flag.
2805 </para>
2806
2807 <sect3>
2808 <title>Multi-parameter type classes</title>
2809 <para>
2810 Multi-parameter type classes are permitted. For example:
2811
2812
2813 <programlisting>
2814   class Collection c a where
2815     union :: c a -> c a -> c a
2816     ...etc.
2817 </programlisting>
2818
2819 </para>
2820 </sect3>
2821
2822 <sect3>
2823 <title>The superclasses of a class declaration</title>
2824
2825 <para>
2826 There are no restrictions on the context in a class declaration
2827 (which introduces superclasses), except that the class hierarchy must
2828 be acyclic.  So these class declarations are OK:
2829
2830
2831 <programlisting>
2832   class Functor (m k) => FiniteMap m k where
2833     ...
2834
2835   class (Monad m, Monad (t m)) => Transform t m where
2836     lift :: m a -> (t m) a
2837 </programlisting>
2838
2839
2840 </para>
2841 <para>
2842 As in Haskell 98, The class hierarchy must be acyclic.  However, the definition
2843 of "acyclic" involves only the superclass relationships.  For example,
2844 this is OK:
2845
2846
2847 <programlisting>
2848   class C a where {
2849     op :: D b => a -> b -> b
2850   }
2851
2852   class C a => D a where { ... }
2853 </programlisting>
2854
2855
2856 Here, <literal>C</literal> is a superclass of <literal>D</literal>, but it's OK for a
2857 class operation <literal>op</literal> of <literal>C</literal> to mention <literal>D</literal>.  (It
2858 would not be OK for <literal>D</literal> to be a superclass of <literal>C</literal>.)
2859 </para>
2860 </sect3>
2861
2862
2863
2864
2865 <sect3 id="class-method-types">
2866 <title>Class method types</title>
2867
2868 <para>
2869 Haskell 98 prohibits class method types to mention constraints on the
2870 class type variable, thus:
2871 <programlisting>
2872   class Seq s a where
2873     fromList :: [a] -> s a
2874     elem     :: Eq a => a -> s a -> Bool
2875 </programlisting>
2876 The type of <literal>elem</literal> is illegal in Haskell 98, because it
2877 contains the constraint <literal>Eq a</literal>, constrains only the 
2878 class type variable (in this case <literal>a</literal>).
2879 GHC lifts this restriction (flag <option>-XConstrainedClassMethods</option>).
2880 </para>
2881
2882
2883 </sect3>
2884 </sect2>
2885
2886 <sect2 id="functional-dependencies">
2887 <title>Functional dependencies
2888 </title>
2889
2890 <para> Functional dependencies are implemented as described by Mark Jones
2891 in &ldquo;<ulink url="http://citeseer.ist.psu.edu/jones00type.html">Type Classes with Functional Dependencies</ulink>&rdquo;, Mark P. Jones, 
2892 In Proceedings of the 9th European Symposium on Programming, 
2893 ESOP 2000, Berlin, Germany, March 2000, Springer-Verlag LNCS 1782,
2894 .
2895 </para>
2896 <para>
2897 Functional dependencies are introduced by a vertical bar in the syntax of a 
2898 class declaration;  e.g. 
2899 <programlisting>
2900   class (Monad m) => MonadState s m | m -> s where ...
2901
2902   class Foo a b c | a b -> c where ...
2903 </programlisting>
2904 There should be more documentation, but there isn't (yet).  Yell if you need it.
2905 </para>
2906
2907 <sect3><title>Rules for functional dependencies </title>
2908 <para>
2909 In a class declaration, all of the class type variables must be reachable (in the sense 
2910 mentioned in <xref linkend="type-restrictions"/>)
2911 from the free variables of each method type.
2912 For example:
2913
2914 <programlisting>
2915   class Coll s a where
2916     empty  :: s
2917     insert :: s -> a -> s
2918 </programlisting>
2919
2920 is not OK, because the type of <literal>empty</literal> doesn't mention
2921 <literal>a</literal>.  Functional dependencies can make the type variable
2922 reachable:
2923 <programlisting>
2924   class Coll s a | s -> a where
2925     empty  :: s
2926     insert :: s -> a -> s
2927 </programlisting>
2928
2929 Alternatively <literal>Coll</literal> might be rewritten
2930
2931 <programlisting>
2932   class Coll s a where
2933     empty  :: s a
2934     insert :: s a -> a -> s a
2935 </programlisting>
2936
2937
2938 which makes the connection between the type of a collection of
2939 <literal>a</literal>'s (namely <literal>(s a)</literal>) and the element type <literal>a</literal>.
2940 Occasionally this really doesn't work, in which case you can split the
2941 class like this:
2942
2943
2944 <programlisting>
2945   class CollE s where
2946     empty  :: s
2947
2948   class CollE s => Coll s a where
2949     insert :: s -> a -> s
2950 </programlisting>
2951 </para>
2952 </sect3>
2953
2954
2955 <sect3>
2956 <title>Background on functional dependencies</title>
2957
2958 <para>The following description of the motivation and use of functional dependencies is taken
2959 from the Hugs user manual, reproduced here (with minor changes) by kind
2960 permission of Mark Jones.
2961 </para>
2962 <para> 
2963 Consider the following class, intended as part of a
2964 library for collection types:
2965 <programlisting>
2966    class Collects e ce where
2967        empty  :: ce
2968        insert :: e -> ce -> ce
2969        member :: e -> ce -> Bool
2970 </programlisting>
2971 The type variable e used here represents the element type, while ce is the type
2972 of the container itself. Within this framework, we might want to define
2973 instances of this class for lists or characteristic functions (both of which
2974 can be used to represent collections of any equality type), bit sets (which can
2975 be used to represent collections of characters), or hash tables (which can be
2976 used to represent any collection whose elements have a hash function). Omitting
2977 standard implementation details, this would lead to the following declarations: 
2978 <programlisting>
2979    instance Eq e => Collects e [e] where ...
2980    instance Eq e => Collects e (e -> Bool) where ...
2981    instance Collects Char BitSet where ...
2982    instance (Hashable e, Collects a ce)
2983               => Collects e (Array Int ce) where ...
2984 </programlisting>
2985 All this looks quite promising; we have a class and a range of interesting
2986 implementations. Unfortunately, there are some serious problems with the class
2987 declaration. First, the empty function has an ambiguous type: 
2988 <programlisting>
2989    empty :: Collects e ce => ce
2990 </programlisting>
2991 By "ambiguous" we mean that there is a type variable e that appears on the left
2992 of the <literal>=&gt;</literal> symbol, but not on the right. The problem with
2993 this is that, according to the theoretical foundations of Haskell overloading,
2994 we cannot guarantee a well-defined semantics for any term with an ambiguous
2995 type.
2996 </para>
2997 <para>
2998 We can sidestep this specific problem by removing the empty member from the
2999 class declaration. However, although the remaining members, insert and member,
3000 do not have ambiguous types, we still run into problems when we try to use
3001 them. For example, consider the following two functions: 
3002 <programlisting>
3003    f x y = insert x . insert y
3004    g     = f True 'a'
3005 </programlisting>
3006 for which GHC infers the following types: 
3007 <programlisting>
3008    f :: (Collects a c, Collects b c) => a -> b -> c -> c
3009    g :: (Collects Bool c, Collects Char c) => c -> c
3010 </programlisting>
3011 Notice that the type for f allows the two parameters x and y to be assigned
3012 different types, even though it attempts to insert each of the two values, one
3013 after the other, into the same collection. If we're trying to model collections
3014 that contain only one type of value, then this is clearly an inaccurate
3015 type. Worse still, the definition for g is accepted, without causing a type
3016 error. As a result, the error in this code will not be flagged at the point
3017 where it appears. Instead, it will show up only when we try to use g, which
3018 might even be in a different module.
3019 </para>
3020
3021 <sect4><title>An attempt to use constructor classes</title>
3022
3023 <para>
3024 Faced with the problems described above, some Haskell programmers might be
3025 tempted to use something like the following version of the class declaration: 
3026 <programlisting>
3027    class Collects e c where
3028       empty  :: c e
3029       insert :: e -> c e -> c e
3030       member :: e -> c e -> Bool
3031 </programlisting>
3032 The key difference here is that we abstract over the type constructor c that is
3033 used to form the collection type c e, and not over that collection type itself,
3034 represented by ce in the original class declaration. This avoids the immediate
3035 problems that we mentioned above: empty has type <literal>Collects e c => c
3036 e</literal>, which is not ambiguous. 
3037 </para>
3038 <para>
3039 The function f from the previous section has a more accurate type: 
3040 <programlisting>
3041    f :: (Collects e c) => e -> e -> c e -> c e
3042 </programlisting>
3043 The function g from the previous section is now rejected with a type error as
3044 we would hope because the type of f does not allow the two arguments to have
3045 different types. 
3046 This, then, is an example of a multiple parameter class that does actually work
3047 quite well in practice, without ambiguity problems.
3048 There is, however, a catch. This version of the Collects class is nowhere near
3049 as general as the original class seemed to be: only one of the four instances
3050 for <literal>Collects</literal>
3051 given above can be used with this version of Collects because only one of
3052 them---the instance for lists---has a collection type that can be written in
3053 the form c e, for some type constructor c, and element type e.
3054 </para>
3055 </sect4>
3056
3057 <sect4><title>Adding functional dependencies</title>
3058
3059 <para>
3060 To get a more useful version of the Collects class, Hugs provides a mechanism
3061 that allows programmers to specify dependencies between the parameters of a
3062 multiple parameter class (For readers with an interest in theoretical
3063 foundations and previous work: The use of dependency information can be seen
3064 both as a generalization of the proposal for `parametric type classes' that was
3065 put forward by Chen, Hudak, and Odersky, or as a special case of Mark Jones's
3066 later framework for "improvement" of qualified types. The
3067 underlying ideas are also discussed in a more theoretical and abstract setting
3068 in a manuscript [implparam], where they are identified as one point in a
3069 general design space for systems of implicit parameterization.).
3070
3071 To start with an abstract example, consider a declaration such as: 
3072 <programlisting>
3073    class C a b where ...
3074 </programlisting>
3075 which tells us simply that C can be thought of as a binary relation on types
3076 (or type constructors, depending on the kinds of a and b). Extra clauses can be
3077 included in the definition of classes to add information about dependencies
3078 between parameters, as in the following examples: 
3079 <programlisting>
3080    class D a b | a -> b where ...
3081    class E a b | a -> b, b -> a where ...
3082 </programlisting>
3083 The notation <literal>a -&gt; b</literal> used here between the | and where
3084 symbols --- not to be
3085 confused with a function type --- indicates that the a parameter uniquely
3086 determines the b parameter, and might be read as "a determines b." Thus D is
3087 not just a relation, but actually a (partial) function. Similarly, from the two
3088 dependencies that are included in the definition of E, we can see that E
3089 represents a (partial) one-one mapping between types.
3090 </para>
3091 <para>
3092 More generally, dependencies take the form <literal>x1 ... xn -&gt; y1 ... ym</literal>,
3093 where x1, ..., xn, and y1, ..., yn are type variables with n&gt;0 and
3094 m&gt;=0, meaning that the y parameters are uniquely determined by the x
3095 parameters. Spaces can be used as separators if more than one variable appears
3096 on any single side of a dependency, as in <literal>t -&gt; a b</literal>. Note that a class may be
3097 annotated with multiple dependencies using commas as separators, as in the
3098 definition of E above. Some dependencies that we can write in this notation are
3099 redundant, and will be rejected because they don't serve any useful
3100 purpose, and may instead indicate an error in the program. Examples of
3101 dependencies like this include  <literal>a -&gt; a </literal>,  
3102 <literal>a -&gt; a a </literal>,  
3103 <literal>a -&gt; </literal>, etc. There can also be
3104 some redundancy if multiple dependencies are given, as in  
3105 <literal>a-&gt;b</literal>, 
3106  <literal>b-&gt;c </literal>,  <literal>a-&gt;c </literal>, and
3107 in which some subset implies the remaining dependencies. Examples like this are
3108 not treated as errors. Note that dependencies appear only in class
3109 declarations, and not in any other part of the language. In particular, the
3110 syntax for instance declarations, class constraints, and types is completely
3111 unchanged.
3112 </para>
3113 <para>
3114 By including dependencies in a class declaration, we provide a mechanism for
3115 the programmer to specify each multiple parameter class more precisely. The
3116 compiler, on the other hand, is responsible for ensuring that the set of
3117 instances that are in scope at any given point in the program is consistent
3118 with any declared dependencies. For example, the following pair of instance
3119 declarations cannot appear together in the same scope because they violate the
3120 dependency for D, even though either one on its own would be acceptable: 
3121 <programlisting>
3122    instance D Bool Int where ...
3123    instance D Bool Char where ...
3124 </programlisting>
3125 Note also that the following declaration is not allowed, even by itself: 
3126 <programlisting>
3127    instance D [a] b where ...
3128 </programlisting>
3129 The problem here is that this instance would allow one particular choice of [a]
3130 to be associated with more than one choice for b, which contradicts the
3131 dependency specified in the definition of D. More generally, this means that,
3132 in any instance of the form: 
3133 <programlisting>
3134    instance D t s where ...
3135 </programlisting>
3136 for some particular types t and s, the only variables that can appear in s are
3137 the ones that appear in t, and hence, if the type t is known, then s will be
3138 uniquely determined.
3139 </para>
3140 <para>
3141 The benefit of including dependency information is that it allows us to define
3142 more general multiple parameter classes, without ambiguity problems, and with
3143 the benefit of more accurate types. To illustrate this, we return to the
3144 collection class example, and annotate the original definition of <literal>Collects</literal>
3145 with a simple dependency: 
3146 <programlisting>
3147    class Collects e ce | ce -> e where
3148       empty  :: ce
3149       insert :: e -> ce -> ce
3150       member :: e -> ce -> Bool
3151 </programlisting>
3152 The dependency <literal>ce -&gt; e</literal> here specifies that the type e of elements is uniquely
3153 determined by the type of the collection ce. Note that both parameters of
3154 Collects are of kind *; there are no constructor classes here. Note too that
3155 all of the instances of Collects that we gave earlier can be used
3156 together with this new definition.
3157 </para>
3158 <para>
3159 What about the ambiguity problems that we encountered with the original
3160 definition? The empty function still has type Collects e ce => ce, but it is no
3161 longer necessary to regard that as an ambiguous type: Although the variable e
3162 does not appear on the right of the => symbol, the dependency for class
3163 Collects tells us that it is uniquely determined by ce, which does appear on
3164 the right of the => symbol. Hence the context in which empty is used can still
3165 give enough information to determine types for both ce and e, without
3166 ambiguity. More generally, we need only regard a type as ambiguous if it
3167 contains a variable on the left of the => that is not uniquely determined
3168 (either directly or indirectly) by the variables on the right.
3169 </para>
3170 <para>
3171 Dependencies also help to produce more accurate types for user defined
3172 functions, and hence to provide earlier detection of errors, and less cluttered
3173 types for programmers to work with. Recall the previous definition for a
3174 function f: 
3175 <programlisting>
3176    f x y = insert x y = insert x . insert y
3177 </programlisting>
3178 for which we originally obtained a type: 
3179 <programlisting>
3180    f :: (Collects a c, Collects b c) => a -> b -> c -> c
3181 </programlisting>
3182 Given the dependency information that we have for Collects, however, we can
3183 deduce that a and b must be equal because they both appear as the second
3184 parameter in a Collects constraint with the same first parameter c. Hence we
3185 can infer a shorter and more accurate type for f: 
3186 <programlisting>
3187    f :: (Collects a c) => a -> a -> c -> c
3188 </programlisting>
3189 In a similar way, the earlier definition of g will now be flagged as a type error.
3190 </para>
3191 <para>
3192 Although we have given only a few examples here, it should be clear that the
3193 addition of dependency information can help to make multiple parameter classes
3194 more useful in practice, avoiding ambiguity problems, and allowing more general
3195 sets of instance declarations.
3196 </para>
3197 </sect4>
3198 </sect3>
3199 </sect2>
3200
3201 <sect2 id="instance-decls">
3202 <title>Instance declarations</title>
3203
3204 <sect3 id="instance-rules">
3205 <title>Relaxed rules for instance declarations</title>
3206
3207 <para>An instance declaration has the form
3208 <screen>
3209   instance ( <replaceable>assertion</replaceable><subscript>1</subscript>, ..., <replaceable>assertion</replaceable><subscript>n</subscript>) =&gt; <replaceable>class</replaceable> <replaceable>type</replaceable><subscript>1</subscript> ... <replaceable>type</replaceable><subscript>m</subscript> where ...
3210 </screen>
3211 The part before the "<literal>=&gt;</literal>" is the
3212 <emphasis>context</emphasis>, while the part after the
3213 "<literal>=&gt;</literal>" is the <emphasis>head</emphasis> of the instance declaration.
3214 </para>
3215
3216 <para>
3217 In Haskell 98 the head of an instance declaration
3218 must be of the form <literal>C (T a1 ... an)</literal>, where
3219 <literal>C</literal> is the class, <literal>T</literal> is a type constructor,
3220 and the <literal>a1 ... an</literal> are distinct type variables.
3221 Furthermore, the assertions in the context of the instance declaration
3222 must be of the form <literal>C a</literal> where <literal>a</literal>
3223 is a type variable that occurs in the head.
3224 </para>
3225 <para>
3226 The <option>-XFlexibleInstances</option> flag loosens these restrictions
3227 considerably.  Firstly, multi-parameter type classes are permitted.  Secondly,
3228 the context and head of the instance declaration can each consist of arbitrary
3229 (well-kinded) assertions <literal>(C t1 ... tn)</literal> subject only to the
3230 following rules:
3231 <orderedlist>
3232 <listitem><para>
3233 The Paterson Conditions: for each assertion in the context
3234 <orderedlist>
3235 <listitem><para>No type variable has more occurrences in the assertion than in the head</para></listitem>
3236 <listitem><para>The assertion has fewer constructors and variables (taken together
3237       and counting repetitions) than the head</para></listitem>
3238 </orderedlist>
3239 </para></listitem>
3240
3241 <listitem><para>The Coverage Condition.  For each functional dependency,
3242 <replaceable>tvs</replaceable><subscript>left</subscript> <literal>-&gt;</literal>
3243 <replaceable>tvs</replaceable><subscript>right</subscript>,  of the class,
3244 every type variable in
3245 S(<replaceable>tvs</replaceable><subscript>right</subscript>) must appear in 
3246 S(<replaceable>tvs</replaceable><subscript>left</subscript>), where S is the
3247 substitution mapping each type variable in the class declaration to the
3248 corresponding type in the instance declaration.
3249 </para></listitem>
3250 </orderedlist>
3251 These restrictions ensure that context reduction terminates: each reduction
3252 step makes the problem smaller by at least one
3253 constructor.  Both the Paterson Conditions and the Coverage Condition are lifted 
3254 if you give the <option>-fallow-undecidable-instances</option> 
3255 flag (<xref linkend="undecidable-instances"/>).
3256 You can find lots of background material about the reason for these
3257 restrictions in the paper <ulink
3258 url="http://research.microsoft.com/%7Esimonpj/papers/fd%2Dchr/">
3259 Understanding functional dependencies via Constraint Handling Rules</ulink>.
3260 </para>
3261 <para>
3262 For example, these are OK:
3263 <programlisting>
3264   instance C Int [a]          -- Multiple parameters
3265   instance Eq (S [a])         -- Structured type in head
3266
3267       -- Repeated type variable in head
3268   instance C4 a a => C4 [a] [a] 
3269   instance Stateful (ST s) (MutVar s)
3270
3271       -- Head can consist of type variables only
3272   instance C a
3273   instance (Eq a, Show b) => C2 a b
3274
3275       -- Non-type variables in context
3276   instance Show (s a) => Show (Sized s a)
3277   instance C2 Int a => C3 Bool [a]
3278   instance C2 Int a => C3 [a] b
3279 </programlisting>
3280 But these are not:
3281 <programlisting>
3282       -- Context assertion no smaller than head
3283   instance C a => C a where ...
3284       -- (C b b) has more more occurrences of b than the head
3285   instance C b b => Foo [b] where ...
3286 </programlisting>
3287 </para>
3288
3289 <para>
3290 The same restrictions apply to instances generated by
3291 <literal>deriving</literal> clauses.  Thus the following is accepted:
3292 <programlisting>
3293   data MinHeap h a = H a (h a)
3294     deriving (Show)
3295 </programlisting>
3296 because the derived instance
3297 <programlisting>
3298   instance (Show a, Show (h a)) => Show (MinHeap h a)
3299 </programlisting>
3300 conforms to the above rules.
3301 </para>
3302
3303 <para>
3304 A useful idiom permitted by the above rules is as follows.
3305 If one allows overlapping instance declarations then it's quite
3306 convenient to have a "default instance" declaration that applies if
3307 something more specific does not:
3308 <programlisting>
3309   instance C a where
3310     op = ... -- Default
3311 </programlisting>
3312 </para>
3313 </sect3>
3314
3315 <sect3 id="undecidable-instances">
3316 <title>Undecidable instances</title>
3317
3318 <para>
3319 Sometimes even the rules of <xref linkend="instance-rules"/> are too onerous.
3320 For example, sometimes you might want to use the following to get the
3321 effect of a "class synonym":
3322 <programlisting>
3323   class (C1 a, C2 a, C3 a) => C a where { }
3324
3325   instance (C1 a, C2 a, C3 a) => C a where { }
3326 </programlisting>
3327 This allows you to write shorter signatures:
3328 <programlisting>
3329   f :: C a => ...
3330 </programlisting>
3331 instead of
3332 <programlisting>
3333   f :: (C1 a, C2 a, C3 a) => ...
3334 </programlisting>
3335 The restrictions on functional dependencies (<xref
3336 linkend="functional-dependencies"/>) are particularly troublesome.
3337 It is tempting to introduce type variables in the context that do not appear in
3338 the head, something that is excluded by the normal rules. For example:
3339 <programlisting>
3340   class HasConverter a b | a -> b where
3341      convert :: a -> b
3342    
3343   data Foo a = MkFoo a
3344
3345   instance (HasConverter a b,Show b) => Show (Foo a) where
3346      show (MkFoo value) = show (convert value)
3347 </programlisting>
3348 This is dangerous territory, however. Here, for example, is a program that would make the
3349 typechecker loop:
3350 <programlisting>
3351   class D a
3352   class F a b | a->b
3353   instance F [a] [[a]]
3354   instance (D c, F a c) => D [a]   -- 'c' is not mentioned in the head
3355 </programlisting>
3356 Similarly, it can be tempting to lift the coverage condition:
3357 <programlisting>
3358   class Mul a b c | a b -> c where
3359         (.*.) :: a -> b -> c
3360
3361   instance Mul Int Int Int where (.*.) = (*)
3362   instance Mul Int Float Float where x .*. y = fromIntegral x * y
3363   instance Mul a b c => Mul a [b] [c] where x .*. v = map (x.*.) v
3364 </programlisting>
3365 The third instance declaration does not obey the coverage condition;
3366 and indeed the (somewhat strange) definition:
3367 <programlisting>
3368   f = \ b x y -> if b then x .*. [y] else y
3369 </programlisting>
3370 makes instance inference go into a loop, because it requires the constraint
3371 <literal>(Mul a [b] b)</literal>.
3372 </para>
3373 <para>
3374 Nevertheless, GHC allows you to experiment with more liberal rules.  If you use
3375 the experimental flag <option>-XUndecidableInstances</option>
3376 <indexterm><primary>-XUndecidableInstances</primary></indexterm>, 
3377 both the Paterson Conditions and the Coverage Condition
3378 (described in <xref linkend="instance-rules"/>) are lifted.  Termination is ensured by having a
3379 fixed-depth recursion stack.  If you exceed the stack depth you get a
3380 sort of backtrace, and the opportunity to increase the stack depth
3381 with <option>-fcontext-stack=</option><emphasis>N</emphasis>.
3382 </para>
3383
3384 </sect3>
3385
3386
3387 <sect3 id="instance-overlap">
3388 <title>Overlapping instances</title>
3389 <para>
3390 In general, <emphasis>GHC requires that that it be unambiguous which instance
3391 declaration
3392 should be used to resolve a type-class constraint</emphasis>. This behaviour
3393 can be modified by two flags: <option>-XOverlappingInstances</option>
3394 <indexterm><primary>-XOverlappingInstances
3395 </primary></indexterm> 
3396 and <option>-XIncoherentInstances</option>
3397 <indexterm><primary>-XIncoherentInstances
3398 </primary></indexterm>, as this section discusses.  Both these
3399 flags are dynamic flags, and can be set on a per-module basis, using 
3400 an <literal>OPTIONS_GHC</literal> pragma if desired (<xref linkend="source-file-options"/>).</para>
3401 <para>
3402 When GHC tries to resolve, say, the constraint <literal>C Int Bool</literal>,
3403 it tries to match every instance declaration against the
3404 constraint,
3405 by instantiating the head of the instance declaration.  For example, consider
3406 these declarations:
3407 <programlisting>
3408   instance context1 => C Int a     where ...  -- (A)
3409   instance context2 => C a   Bool  where ...  -- (B)
3410   instance context3 => C Int [a]   where ...  -- (C)
3411   instance context4 => C Int [Int] where ...  -- (D)
3412 </programlisting>
3413 The instances (A) and (B) match the constraint <literal>C Int Bool</literal>, 
3414 but (C) and (D) do not.  When matching, GHC takes
3415 no account of the context of the instance declaration
3416 (<literal>context1</literal> etc).
3417 GHC's default behaviour is that <emphasis>exactly one instance must match the
3418 constraint it is trying to resolve</emphasis>.  
3419 It is fine for there to be a <emphasis>potential</emphasis> of overlap (by
3420 including both declarations (A) and (B), say); an error is only reported if a 
3421 particular constraint matches more than one.
3422 </para>
3423
3424 <para>
3425 The <option>-XOverlappingInstances</option> flag instructs GHC to allow
3426 more than one instance to match, provided there is a most specific one.  For
3427 example, the constraint <literal>C Int [Int]</literal> matches instances (A),
3428 (C) and (D), but the last is more specific, and hence is chosen.  If there is no
3429 most-specific match, the program is rejected.
3430 </para>
3431 <para>
3432 However, GHC is conservative about committing to an overlapping instance.  For example:
3433 <programlisting>
3434   f :: [b] -> [b]
3435   f x = ...
3436 </programlisting>
3437 Suppose that from the RHS of <literal>f</literal> we get the constraint
3438 <literal>C Int [b]</literal>.  But
3439 GHC does not commit to instance (C), because in a particular
3440 call of <literal>f</literal>, <literal>b</literal> might be instantiate 
3441 to <literal>Int</literal>, in which case instance (D) would be more specific still.
3442 So GHC rejects the program.  
3443 (If you add the flag <option>-XIncoherentInstances</option>,
3444 GHC will instead pick (C), without complaining about 
3445 the problem of subsequent instantiations.)
3446 </para>
3447 <para>
3448 Notice that we gave a type signature to <literal>f</literal>, so GHC had to
3449 <emphasis>check</emphasis> that <literal>f</literal> has the specified type.  
3450 Suppose instead we do not give a type signature, asking GHC to <emphasis>infer</emphasis>
3451 it instead.  In this case, GHC will refrain from
3452 simplifying the constraint <literal>C Int [Int]</literal> (for the same reason
3453 as before) but, rather than rejecting the program, it will infer the type
3454 <programlisting>
3455   f :: C Int b => [b] -> [b]
3456 </programlisting>
3457 That postpones the question of which instance to pick to the 
3458 call site for <literal>f</literal>
3459 by which time more is known about the type <literal>b</literal>.
3460 </para>
3461 <para>
3462 The willingness to be overlapped or incoherent is a property of 
3463 the <emphasis>instance declaration</emphasis> itself, controlled by the
3464 presence or otherwise of the <option>-XOverlappingInstances</option> 
3465 and <option>-XIncoherentInstances</option> flags when that module is
3466 being defined.  Neither flag is required in a module that imports and uses the
3467 instance declaration.  Specifically, during the lookup process:
3468 <itemizedlist>
3469 <listitem><para>
3470 An instance declaration is ignored during the lookup process if (a) a more specific
3471 match is found, and (b) the instance declaration was compiled with 
3472 <option>-XOverlappingInstances</option>.  The flag setting for the
3473 more-specific instance does not matter.
3474 </para></listitem>
3475 <listitem><para>
3476 Suppose an instance declaration does not match the constraint being looked up, but
3477 does unify with it, so that it might match when the constraint is further 
3478 instantiated.  Usually GHC will regard this as a reason for not committing to
3479 some other constraint.  But if the instance declaration was compiled with
3480 <option>-XIncoherentInstances</option>, GHC will skip the "does-it-unify?" 
3481 check for that declaration.
3482 </para></listitem>
3483 </itemizedlist>
3484 These rules make it possible for a library author to design a library that relies on 
3485 overlapping instances without the library client having to know.  
3486 </para>
3487 <para>
3488 If an instance declaration is compiled without
3489 <option>-XOverlappingInstances</option>,
3490 then that instance can never be overlapped.  This could perhaps be
3491 inconvenient.  Perhaps the rule should instead say that the
3492 <emphasis>overlapping</emphasis> instance declaration should be compiled in
3493 this way, rather than the <emphasis>overlapped</emphasis> one.  Perhaps overlap
3494 at a usage site should be permitted regardless of how the instance declarations
3495 are compiled, if the <option>-XOverlappingInstances</option> flag is
3496 used at the usage site.  (Mind you, the exact usage site can occasionally be
3497 hard to pin down.)  We are interested to receive feedback on these points.
3498 </para>
3499 <para>The <option>-XIncoherentInstances</option> flag implies the
3500 <option>-XOverlappingInstances</option> flag, but not vice versa.
3501 </para>
3502 </sect3>
3503
3504 <sect3>
3505 <title>Type synonyms in the instance head</title>
3506
3507 <para>
3508 <emphasis>Unlike Haskell 98, instance heads may use type
3509 synonyms</emphasis>.  (The instance "head" is the bit after the "=>" in an instance decl.)
3510 As always, using a type synonym is just shorthand for
3511 writing the RHS of the type synonym definition.  For example:
3512
3513
3514 <programlisting>
3515   type Point = (Int,Int)
3516   instance C Point   where ...
3517   instance C [Point] where ...
3518 </programlisting>
3519
3520
3521 is legal.  However, if you added
3522
3523
3524 <programlisting>
3525   instance C (Int,Int) where ...
3526 </programlisting>
3527
3528
3529 as well, then the compiler will complain about the overlapping
3530 (actually, identical) instance declarations.  As always, type synonyms
3531 must be fully applied.  You cannot, for example, write:
3532
3533
3534 <programlisting>
3535   type P a = [[a]]
3536   instance Monad P where ...
3537 </programlisting>
3538
3539
3540 This design decision is independent of all the others, and easily
3541 reversed, but it makes sense to me.
3542
3543 </para>
3544 </sect3>
3545
3546
3547 </sect2>
3548
3549 <sect2 id="overloaded-strings">
3550 <title>Overloaded string literals
3551 </title>
3552
3553 <para>
3554 GHC supports <emphasis>overloaded string literals</emphasis>.  Normally a
3555 string literal has type <literal>String</literal>, but with overloaded string
3556 literals enabled (with <literal>-XOverloadedStrings</literal>)
3557  a string literal has type <literal>(IsString a) => a</literal>.
3558 </para>
3559 <para>
3560 This means that the usual string syntax can be used, e.g., for packed strings
3561 and other variations of string like types.  String literals behave very much
3562 like integer literals, i.e., they can be used in both expressions and patterns.
3563 If used in a pattern the literal with be replaced by an equality test, in the same
3564 way as an integer literal is.
3565 </para>
3566 <para>
3567 The class <literal>IsString</literal> is defined as:
3568 <programlisting>
3569 class IsString a where
3570     fromString :: String -> a
3571 </programlisting>
3572 The only predefined instance is the obvious one to make strings work as usual:
3573 <programlisting>
3574 instance IsString [Char] where
3575     fromString cs = cs
3576 </programlisting>
3577 The class <literal>IsString</literal> is not in scope by default.  If you want to mention
3578 it explicitly (for example, to give an instance declaration for it), you can import it
3579 from module <literal>GHC.Exts</literal>.
3580 </para>
3581 <para>
3582 Haskell's defaulting mechanism is extended to cover string literals, when <option>-XOverloadedStrings</option> is specified.
3583 Specifically:
3584 <itemizedlist>
3585 <listitem><para>
3586 Each type in a default declaration must be an 
3587 instance of <literal>Num</literal> <emphasis>or</emphasis> of <literal>IsString</literal>.
3588 </para></listitem>
3589
3590 <listitem><para>
3591 The standard defaulting rule (<ulink url="http://www.haskell.org/onlinereport/decls.html#sect4.3.4">Haskell Report, Section 4.3.4</ulink>)
3592 is extended thus: defaulting applies when all the unresolved constraints involve standard classes
3593 <emphasis>or</emphasis> <literal>IsString</literal>; and at least one is a numeric class
3594 <emphasis>or</emphasis> <literal>IsString</literal>.
3595 </para></listitem>
3596 </itemizedlist>
3597 </para>
3598 <para>
3599 A small example:
3600 <programlisting>
3601 module Main where
3602
3603 import GHC.Exts( IsString(..) )
3604
3605 newtype MyString = MyString String deriving (Eq, Show)
3606 instance IsString MyString where
3607     fromString = MyString
3608
3609 greet :: MyString -> MyString
3610 greet "hello" = "world"
3611 greet other = other
3612
3613 main = do
3614     print $ greet "hello"
3615     print $ greet "fool"
3616 </programlisting>
3617 </para>
3618 <para>
3619 Note that deriving <literal>Eq</literal> is necessary for the pattern matching
3620 to work since it gets translated into an equality comparison.
3621 </para>
3622 </sect2>
3623
3624 </sect1>
3625
3626 <sect1 id="other-type-extensions">
3627 <title>Other type system extensions</title>
3628
3629 <sect2 id="type-restrictions">
3630 <title>Type signatures</title>
3631
3632 <sect3 id="flexible-contexts"><title>The context of a type signature</title>
3633 <para>
3634 Unlike Haskell 98, constraints in types do <emphasis>not</emphasis> have to be of
3635 the form <emphasis>(class type-variable)</emphasis> or
3636 <emphasis>(class (type-variable type-variable ...))</emphasis>.  Thus,
3637 these type signatures are perfectly OK
3638 <programlisting>
3639   g :: Eq [a] => ...
3640   g :: Ord (T a ()) => ...
3641 </programlisting>
3642 </para>
3643 <para>
3644 GHC imposes the following restrictions on the constraints in a type signature.
3645 Consider the type:
3646
3647 <programlisting>
3648   forall tv1..tvn (c1, ...,cn) => type
3649 </programlisting>
3650
3651 (Here, we write the "foralls" explicitly, although the Haskell source
3652 language omits them; in Haskell 98, all the free type variables of an
3653 explicit source-language type signature are universally quantified,
3654 except for the class type variables in a class declaration.  However,
3655 in GHC, you can give the foralls if you want.  See <xref linkend="universal-quantification"/>).
3656 </para>
3657
3658 <para>
3659
3660 <orderedlist>
3661 <listitem>
3662
3663 <para>
3664  <emphasis>Each universally quantified type variable
3665 <literal>tvi</literal> must be reachable from <literal>type</literal></emphasis>.
3666
3667 A type variable <literal>a</literal> is "reachable" if it appears
3668 in the same constraint as either a type variable free in
3669 <literal>type</literal>, or another reachable type variable.  
3670 A value with a type that does not obey 
3671 this reachability restriction cannot be used without introducing
3672 ambiguity; that is why the type is rejected.
3673 Here, for example, is an illegal type:
3674
3675
3676 <programlisting>
3677   forall a. Eq a => Int
3678 </programlisting>
3679
3680
3681 When a value with this type was used, the constraint <literal>Eq tv</literal>
3682 would be introduced where <literal>tv</literal> is a fresh type variable, and
3683 (in the dictionary-translation implementation) the value would be
3684 applied to a dictionary for <literal>Eq tv</literal>.  The difficulty is that we
3685 can never know which instance of <literal>Eq</literal> to use because we never
3686 get any more information about <literal>tv</literal>.
3687 </para>
3688 <para>
3689 Note
3690 that the reachability condition is weaker than saying that <literal>a</literal> is
3691 functionally dependent on a type variable free in
3692 <literal>type</literal> (see <xref
3693 linkend="functional-dependencies"/>).  The reason for this is there
3694 might be a "hidden" dependency, in a superclass perhaps.  So
3695 "reachable" is a conservative approximation to "functionally dependent".
3696 For example, consider:
3697 <programlisting>
3698   class C a b | a -> b where ...
3699   class C a b => D a b where ...
3700   f :: forall a b. D a b => a -> a
3701 </programlisting>
3702 This is fine, because in fact <literal>a</literal> does functionally determine <literal>b</literal>
3703 but that is not immediately apparent from <literal>f</literal>'s type.
3704 </para>
3705 </listitem>
3706 <listitem>
3707
3708 <para>
3709  <emphasis>Every constraint <literal>ci</literal> must mention at least one of the
3710 universally quantified type variables <literal>tvi</literal></emphasis>.
3711
3712 For example, this type is OK because <literal>C a b</literal> mentions the
3713 universally quantified type variable <literal>b</literal>:
3714
3715
3716 <programlisting>
3717   forall a. C a b => burble
3718 </programlisting>
3719
3720
3721 The next type is illegal because the constraint <literal>Eq b</literal> does not
3722 mention <literal>a</literal>:
3723
3724
3725 <programlisting>
3726   forall a. Eq b => burble
3727 </programlisting>
3728
3729
3730 The reason for this restriction is milder than the other one.  The
3731 excluded types are never useful or necessary (because the offending
3732 context doesn't need to be witnessed at this point; it can be floated
3733 out).  Furthermore, floating them out increases sharing. Lastly,
3734 excluding them is a conservative choice; it leaves a patch of
3735 territory free in case we need it later.
3736
3737 </para>
3738 </listitem>
3739
3740 </orderedlist>
3741
3742 </para>
3743 </sect3>
3744
3745
3746
3747 </sect2>
3748
3749 <sect2 id="implicit-parameters">
3750 <title>Implicit parameters</title>
3751
3752 <para> Implicit parameters are implemented as described in 
3753 "Implicit parameters: dynamic scoping with static types", 
3754 J Lewis, MB Shields, E Meijer, J Launchbury,
3755 27th ACM Symposium on Principles of Programming Languages (POPL'00),
3756 Boston, Jan 2000.
3757 </para>
3758
3759 <para>(Most of the following, still rather incomplete, documentation is
3760 due to Jeff Lewis.)</para>
3761
3762 <para>Implicit parameter support is enabled with the option
3763 <option>-XImplicitParams</option>.</para>
3764
3765 <para>
3766 A variable is called <emphasis>dynamically bound</emphasis> when it is bound by the calling
3767 context of a function and <emphasis>statically bound</emphasis> when bound by the callee's
3768 context. In Haskell, all variables are statically bound. Dynamic
3769 binding of variables is a notion that goes back to Lisp, but was later
3770 discarded in more modern incarnations, such as Scheme. Dynamic binding
3771 can be very confusing in an untyped language, and unfortunately, typed
3772 languages, in particular Hindley-Milner typed languages like Haskell,
3773 only support static scoping of variables.
3774 </para>
3775 <para>
3776 However, by a simple extension to the type class system of Haskell, we
3777 can support dynamic binding. Basically, we express the use of a
3778 dynamically bound variable as a constraint on the type. These
3779 constraints lead to types of the form <literal>(?x::t') => t</literal>, which says "this
3780 function uses a dynamically-bound variable <literal>?x</literal> 
3781 of type <literal>t'</literal>". For
3782 example, the following expresses the type of a sort function,
3783 implicitly parameterized by a comparison function named <literal>cmp</literal>.
3784 <programlisting>
3785   sort :: (?cmp :: a -> a -> Bool) => [a] -> [a]
3786 </programlisting>
3787 The dynamic binding constraints are just a new form of predicate in the type class system.
3788 </para>
3789 <para>
3790 An implicit parameter occurs in an expression using the special form <literal>?x</literal>, 
3791 where <literal>x</literal> is
3792 any valid identifier (e.g. <literal>ord ?x</literal> is a valid expression). 
3793 Use of this construct also introduces a new
3794 dynamic-binding constraint in the type of the expression. 
3795 For example, the following definition
3796 shows how we can define an implicitly parameterized sort function in
3797 terms of an explicitly parameterized <literal>sortBy</literal> function:
3798 <programlisting>
3799   sortBy :: (a -> a -> Bool) -> [a] -> [a]
3800
3801   sort   :: (?cmp :: a -> a -> Bool) => [a] -> [a]
3802   sort    = sortBy ?cmp
3803 </programlisting>
3804 </para>
3805
3806 <sect3>
3807 <title>Implicit-parameter type constraints</title>
3808 <para>
3809 Dynamic binding constraints behave just like other type class
3810 constraints in that they are automatically propagated. Thus, when a
3811 function is used, its implicit parameters are inherited by the
3812 function that called it. For example, our <literal>sort</literal> function might be used
3813 to pick out the least value in a list:
3814 <programlisting>
3815   least   :: (?cmp :: a -> a -> Bool) => [a] -> a
3816   least xs = head (sort xs)
3817 </programlisting>
3818 Without lifting a finger, the <literal>?cmp</literal> parameter is
3819 propagated to become a parameter of <literal>least</literal> as well. With explicit
3820 parameters, the default is that parameters must always be explicit
3821 propagated. With implicit parameters, the default is to always
3822 propagate them.
3823 </para>
3824 <para>
3825 An implicit-parameter type constraint differs from other type class constraints in the
3826 following way: All uses of a particular implicit parameter must have
3827 the same type. This means that the type of <literal>(?x, ?x)</literal> 
3828 is <literal>(?x::a) => (a,a)</literal>, and not 
3829 <literal>(?x::a, ?x::b) => (a, b)</literal>, as would be the case for type
3830 class constraints.
3831 </para>
3832
3833 <para> You can't have an implicit parameter in the context of a class or instance
3834 declaration.  For example, both these declarations are illegal:
3835 <programlisting>
3836   class (?x::Int) => C a where ...
3837   instance (?x::a) => Foo [a] where ...
3838 </programlisting>
3839 Reason: exactly which implicit parameter you pick up depends on exactly where
3840 you invoke a function. But the ``invocation'' of instance declarations is done
3841 behind the scenes by the compiler, so it's hard to figure out exactly where it is done.
3842 Easiest thing is to outlaw the offending types.</para>
3843 <para>
3844 Implicit-parameter constraints do not cause ambiguity.  For example, consider:
3845 <programlisting>
3846    f :: (?x :: [a]) => Int -> Int
3847    f n = n + length ?x
3848
3849    g :: (Read a, Show a) => String -> String
3850    g s = show (read s)
3851 </programlisting>
3852 Here, <literal>g</literal> has an ambiguous type, and is rejected, but <literal>f</literal>
3853 is fine.  The binding for <literal>?x</literal> at <literal>f</literal>'s call site is 
3854 quite unambiguous, and fixes the type <literal>a</literal>.
3855 </para>
3856 </sect3>
3857
3858 <sect3>
3859 <title>Implicit-parameter bindings</title>
3860
3861 <para>
3862 An implicit parameter is <emphasis>bound</emphasis> using the standard
3863 <literal>let</literal> or <literal>where</literal> binding forms.
3864 For example, we define the <literal>min</literal> function by binding
3865 <literal>cmp</literal>.
3866 <programlisting>
3867   min :: [a] -> a
3868   min  = let ?cmp = (&lt;=) in least
3869 </programlisting>
3870 </para>
3871 <para>
3872 A group of implicit-parameter bindings may occur anywhere a normal group of Haskell
3873 bindings can occur, except at top level.  That is, they can occur in a <literal>let</literal> 
3874 (including in a list comprehension, or do-notation, or pattern guards), 
3875 or a <literal>where</literal> clause.
3876 Note the following points:
3877 <itemizedlist>
3878 <listitem><para>
3879 An implicit-parameter binding group must be a
3880 collection of simple bindings to implicit-style variables (no
3881 function-style bindings, and no type signatures); these bindings are
3882 neither polymorphic or recursive.  
3883 </para></listitem>
3884 <listitem><para>
3885 You may not mix implicit-parameter bindings with ordinary bindings in a 
3886 single <literal>let</literal>
3887 expression; use two nested <literal>let</literal>s instead.
3888 (In the case of <literal>where</literal> you are stuck, since you can't nest <literal>where</literal> clauses.)
3889 </para></listitem>
3890
3891 <listitem><para>
3892 You may put multiple implicit-parameter bindings in a
3893 single binding group; but they are <emphasis>not</emphasis> treated
3894 as a mutually recursive group (as ordinary <literal>let</literal> bindings are).
3895 Instead they are treated as a non-recursive group, simultaneously binding all the implicit
3896 parameter.  The bindings are not nested, and may be re-ordered without changing
3897 the meaning of the program.
3898 For example, consider:
3899 <programlisting>
3900   f t = let { ?x = t; ?y = ?x+(1::Int) } in ?x + ?y
3901 </programlisting>
3902 The use of <literal>?x</literal> in the binding for <literal>?y</literal> does not "see"
3903 the binding for <literal>?x</literal>, so the type of <literal>f</literal> is
3904 <programlisting>
3905   f :: (?x::Int) => Int -> Int
3906 </programlisting>
3907 </para></listitem>
3908 </itemizedlist>
3909 </para>
3910
3911 </sect3>
3912
3913 <sect3><title>Implicit parameters and polymorphic recursion</title>
3914
3915 <para>
3916 Consider these two definitions:
3917 <programlisting>
3918   len1 :: [a] -> Int
3919   len1 xs = let ?acc = 0 in len_acc1 xs
3920
3921   len_acc1 [] = ?acc
3922   len_acc1 (x:xs) = let ?acc = ?acc + (1::Int) in len_acc1 xs
3923
3924   ------------
3925
3926   len2 :: [a] -> Int
3927   len2 xs = let ?acc = 0 in len_acc2 xs
3928
3929   len_acc2 :: (?acc :: Int) => [a] -> Int
3930   len_acc2 [] = ?acc
3931   len_acc2 (x:xs) = let ?acc = ?acc + (1::Int) in len_acc2 xs
3932 </programlisting>
3933 The only difference between the two groups is that in the second group
3934 <literal>len_acc</literal> is given a type signature.
3935 In the former case, <literal>len_acc1</literal> is monomorphic in its own
3936 right-hand side, so the implicit parameter <literal>?acc</literal> is not
3937 passed to the recursive call.  In the latter case, because <literal>len_acc2</literal>
3938 has a type signature, the recursive call is made to the
3939 <emphasis>polymorphic</emphasis> version, which takes <literal>?acc</literal>
3940 as an implicit parameter.  So we get the following results in GHCi:
3941 <programlisting>
3942   Prog> len1 "hello"
3943   0
3944   Prog> len2 "hello"
3945   5
3946 </programlisting>
3947 Adding a type signature dramatically changes the result!  This is a rather
3948 counter-intuitive phenomenon, worth watching out for.
3949 </para>
3950 </sect3>
3951
3952 <sect3><title>Implicit parameters and monomorphism</title>
3953
3954 <para>GHC applies the dreaded Monomorphism Restriction (section 4.5.5 of the
3955 Haskell Report) to implicit parameters.  For example, consider:
3956 <programlisting>
3957  f :: Int -> Int
3958   f v = let ?x = 0     in
3959         let y = ?x + v in
3960         let ?x = 5     in
3961         y
3962 </programlisting>
3963 Since the binding for <literal>y</literal> falls under the Monomorphism
3964 Restriction it is not generalised, so the type of <literal>y</literal> is
3965 simply <literal>Int</literal>, not <literal>(?x::Int) => Int</literal>.
3966 Hence, <literal>(f 9)</literal> returns result <literal>9</literal>.
3967 If you add a type signature for <literal>y</literal>, then <literal>y</literal>
3968 will get type <literal>(?x::Int) => Int</literal>, so the occurrence of
3969 <literal>y</literal> in the body of the <literal>let</literal> will see the
3970 inner binding of <literal>?x</literal>, so <literal>(f 9)</literal> will return
3971 <literal>14</literal>.
3972 </para>
3973 </sect3>
3974 </sect2>
3975
3976     <!--   ======================= COMMENTED OUT ========================
3977
3978     We intend to remove linear implicit parameters, so I'm at least removing
3979     them from the 6.6 user manual
3980
3981 <sect2 id="linear-implicit-parameters">
3982 <title>Linear implicit parameters</title>
3983 <para>
3984 Linear implicit parameters are an idea developed by Koen Claessen,
3985 Mark Shields, and Simon PJ.  They address the long-standing
3986 problem that monads seem over-kill for certain sorts of problem, notably:
3987 </para>
3988 <itemizedlist>
3989 <listitem> <para> distributing a supply of unique names </para> </listitem>
3990 <listitem> <para> distributing a supply of random numbers </para> </listitem>
3991 <listitem> <para> distributing an oracle (as in QuickCheck) </para> </listitem>
3992 </itemizedlist>
3993
3994 <para>
3995 Linear implicit parameters are just like ordinary implicit parameters,
3996 except that they are "linear"; that is, they cannot be copied, and
3997 must be explicitly "split" instead.  Linear implicit parameters are
3998 written '<literal>%x</literal>' instead of '<literal>?x</literal>'.  
3999 (The '/' in the '%' suggests the split!)
4000 </para>
4001 <para>
4002 For example:
4003 <programlisting>
4004     import GHC.Exts( Splittable )
4005
4006     data NameSupply = ...
4007     
4008     splitNS :: NameSupply -> (NameSupply, NameSupply)
4009     newName :: NameSupply -> Name
4010
4011     instance Splittable NameSupply where
4012         split = splitNS
4013
4014
4015     f :: (%ns :: NameSupply) => Env -> Expr -> Expr
4016     f env (Lam x e) = Lam x' (f env e)
4017                     where
4018                       x'   = newName %ns
4019                       env' = extend env x x'
4020     ...more equations for f...
4021 </programlisting>
4022 Notice that the implicit parameter %ns is consumed 
4023 <itemizedlist>
4024 <listitem> <para> once by the call to <literal>newName</literal> </para> </listitem>
4025 <listitem> <para> once by the recursive call to <literal>f</literal> </para></listitem>
4026 </itemizedlist>
4027 </para>
4028 <para>
4029 So the translation done by the type checker makes
4030 the parameter explicit:
4031 <programlisting>
4032     f :: NameSupply -> Env -> Expr -> Expr
4033     f ns env (Lam x e) = Lam x' (f ns1 env e)
4034                        where
4035                          (ns1,ns2) = splitNS ns
4036                          x' = newName ns2
4037                          env = extend env x x'
4038 </programlisting>
4039 Notice the call to 'split' introduced by the type checker.
4040 How did it know to use 'splitNS'?  Because what it really did
4041 was to introduce a call to the overloaded function 'split',
4042 defined by the class <literal>Splittable</literal>:
4043 <programlisting>
4044         class Splittable a where
4045           split :: a -> (a,a)
4046 </programlisting>
4047 The instance for <literal>Splittable NameSupply</literal> tells GHC how to implement
4048 split for name supplies.  But we can simply write
4049 <programlisting>
4050         g x = (x, %ns, %ns)
4051 </programlisting>
4052 and GHC will infer
4053 <programlisting>
4054         g :: (Splittable a, %ns :: a) => b -> (b,a,a)
4055 </programlisting>
4056 The <literal>Splittable</literal> class is built into GHC.  It's exported by module 
4057 <literal>GHC.Exts</literal>.
4058 </para>
4059 <para>
4060 Other points:
4061 <itemizedlist>
4062 <listitem> <para> '<literal>?x</literal>' and '<literal>%x</literal>' 
4063 are entirely distinct implicit parameters: you 
4064   can use them together and they won't interfere with each other. </para>
4065 </listitem>
4066
4067 <listitem> <para> You can bind linear implicit parameters in 'with' clauses. </para> </listitem>
4068
4069 <listitem> <para>You cannot have implicit parameters (whether linear or not)
4070   in the context of a class or instance declaration. </para></listitem>
4071 </itemizedlist>
4072 </para>
4073
4074 <sect3><title>Warnings</title>
4075
4076 <para>
4077 The monomorphism restriction is even more important than usual.
4078 Consider the example above:
4079 <programlisting>
4080     f :: (%ns :: NameSupply) => Env -> Expr -> Expr
4081     f env (Lam x e) = Lam x' (f env e)
4082                     where
4083                       x'   = newName %ns
4084                       env' = extend env x x'
4085 </programlisting>
4086 If we replaced the two occurrences of x' by (newName %ns), which is
4087 usually a harmless thing to do, we get:
4088 <programlisting>
4089     f :: (%ns :: NameSupply) => Env -> Expr -> Expr
4090     f env (Lam x e) = Lam (newName %ns) (f env e)
4091                     where
4092                       env' = extend env x (newName %ns)
4093 </programlisting>
4094 But now the name supply is consumed in <emphasis>three</emphasis> places
4095 (the two calls to newName,and the recursive call to f), so
4096 the result is utterly different.  Urk!  We don't even have 
4097 the beta rule.
4098 </para>
4099 <para>
4100 Well, this is an experimental change.  With implicit
4101 parameters we have already lost beta reduction anyway, and
4102 (as John Launchbury puts it) we can't sensibly reason about
4103 Haskell programs without knowing their typing.
4104 </para>
4105
4106 </sect3>
4107
4108 <sect3><title>Recursive functions</title>
4109 <para>Linear implicit parameters can be particularly tricky when you have a recursive function
4110 Consider
4111 <programlisting>
4112         foo :: %x::T => Int -> [Int]
4113         foo 0 = []
4114         foo n = %x : foo (n-1)
4115 </programlisting>
4116 where T is some type in class Splittable.</para>
4117 <para>
4118 Do you get a list of all the same T's or all different T's
4119 (assuming that split gives two distinct T's back)?
4120 </para><para>
4121 If you supply the type signature, taking advantage of polymorphic
4122 recursion, you get what you'd probably expect.  Here's the
4123 translated term, where the implicit param is made explicit:
4124 <programlisting>
4125         foo x 0 = []
4126         foo x n = let (x1,x2) = split x
4127                   in x1 : foo x2 (n-1)
4128 </programlisting>
4129 But if you don't supply a type signature, GHC uses the Hindley
4130 Milner trick of using a single monomorphic instance of the function
4131 for the recursive calls. That is what makes Hindley Milner type inference
4132 work.  So the translation becomes
4133 <programlisting>
4134         foo x = let
4135                   foom 0 = []
4136                   foom n = x : foom (n-1)
4137                 in
4138                 foom
4139 </programlisting>
4140 Result: 'x' is not split, and you get a list of identical T's.  So the
4141 semantics of the program depends on whether or not foo has a type signature.
4142 Yikes!
4143 </para><para>
4144 You may say that this is a good reason to dislike linear implicit parameters
4145 and you'd be right.  That is why they are an experimental feature. 
4146 </para>
4147 </sect3>
4148
4149 </sect2>
4150
4151 ================ END OF Linear Implicit Parameters commented out -->
4152
4153 <sect2 id="kinding">
4154 <title>Explicitly-kinded quantification</title>
4155
4156 <para>
4157 Haskell infers the kind of each type variable.  Sometimes it is nice to be able
4158 to give the kind explicitly as (machine-checked) documentation, 
4159 just as it is nice to give a type signature for a function.  On some occasions,
4160 it is essential to do so.  For example, in his paper "Restricted Data Types in Haskell" (Haskell Workshop 1999)
4161 John Hughes had to define the data type:
4162 <screen>
4163      data Set cxt a = Set [a]
4164                     | Unused (cxt a -> ())
4165 </screen>
4166 The only use for the <literal>Unused</literal> constructor was to force the correct
4167 kind for the type variable <literal>cxt</literal>.
4168 </para>
4169 <para>
4170 GHC now instead allows you to specify the kind of a type variable directly, wherever
4171 a type variable is explicitly bound, with the flag <option>-XKindSignatures</option>.
4172 </para>
4173 <para>
4174 This flag enables kind signatures in the following places:
4175 <itemizedlist>
4176 <listitem><para><literal>data</literal> declarations:
4177 <screen>
4178   data Set (cxt :: * -> *) a = Set [a]
4179 </screen></para></listitem>
4180 <listitem><para><literal>type</literal> declarations:
4181 <screen>
4182   type T (f :: * -> *) = f Int
4183 </screen></para></listitem>
4184 <listitem><para><literal>class</literal> declarations:
4185 <screen>
4186   class (Eq a) => C (f :: * -> *) a where ...
4187 </screen></para></listitem>
4188 <listitem><para><literal>forall</literal>'s in type signatures:
4189 <screen>
4190   f :: forall (cxt :: * -> *). Set cxt Int
4191 </screen></para></listitem>
4192 </itemizedlist>
4193 </para>
4194
4195 <para>
4196 The parentheses are required.  Some of the spaces are required too, to
4197 separate the lexemes.  If you write <literal>(f::*->*)</literal> you
4198 will get a parse error, because "<literal>::*->*</literal>" is a
4199 single lexeme in Haskell.
4200 </para>
4201
4202 <para>
4203 As part of the same extension, you can put kind annotations in types
4204 as well.  Thus:
4205 <screen>
4206    f :: (Int :: *) -> Int
4207    g :: forall a. a -> (a :: *)
4208 </screen>
4209 The syntax is
4210 <screen>
4211    atype ::= '(' ctype '::' kind ')
4212 </screen>
4213 The parentheses are required.
4214 </para>
4215 </sect2>
4216
4217
4218 <sect2 id="universal-quantification">
4219 <title>Arbitrary-rank polymorphism
4220 </title>
4221
4222 <para>
4223 Haskell type signatures are implicitly quantified.  The new keyword <literal>forall</literal>
4224 allows us to say exactly what this means.  For example:
4225 </para>
4226 <para>
4227 <programlisting>
4228         g :: b -> b
4229 </programlisting>
4230 means this:
4231 <programlisting>
4232         g :: forall b. (b -> b)
4233 </programlisting>
4234 The two are treated identically.
4235 </para>
4236
4237 <para>
4238 However, GHC's type system supports <emphasis>arbitrary-rank</emphasis> 
4239 explicit universal quantification in
4240 types. 
4241 For example, all the following types are legal:
4242 <programlisting>
4243     f1 :: forall a b. a -> b -> a
4244     g1 :: forall a b. (Ord a, Eq  b) => a -> b -> a
4245
4246     f2 :: (forall a. a->a) -> Int -> Int
4247     g2 :: (forall a. Eq a => [a] -> a -> Bool) -> Int -> Int
4248
4249     f3 :: ((forall a. a->a) -> Int) -> Bool -> Bool
4250
4251     f4 :: Int -> (forall a. a -> a)
4252 </programlisting>
4253 Here, <literal>f1</literal> and <literal>g1</literal> are rank-1 types, and
4254 can be written in standard Haskell (e.g. <literal>f1 :: a->b->a</literal>).
4255 The <literal>forall</literal> makes explicit the universal quantification that
4256 is implicitly added by Haskell.
4257 </para>
4258 <para>
4259 The functions <literal>f2</literal> and <literal>g2</literal> have rank-2 types;
4260 the <literal>forall</literal> is on the left of a function arrow.  As <literal>g2</literal>
4261 shows, the polymorphic type on the left of the function arrow can be overloaded.
4262 </para>
4263 <para>
4264 The function <literal>f3</literal> has a rank-3 type;
4265 it has rank-2 types on the left of a function arrow.
4266 </para>
4267 <para>
4268 GHC has three flags to control higher-rank types:
4269 <itemizedlist>
4270 <listitem><para>
4271  <option>-XPolymorphicComponents</option>: data constructors (only) can have polymorphic argument types.
4272 </para></listitem>
4273 <listitem><para>
4274  <option>-XRank2Types</option>: any function (including data constructors) can have a rank-2 type.
4275 </para></listitem>
4276 <listitem><para>
4277  <option>-XRankNTypes</option>: any function (including data constructors) can have an arbitrary-rank type.
4278 That is,  you can nest <literal>forall</literal>s
4279 arbitrarily deep in function arrows.
4280 In particular, a forall-type (also called a "type scheme"),
4281 including an operational type class context, is legal:
4282 <itemizedlist>
4283 <listitem> <para> On the left or right (see <literal>f4</literal>, for example)
4284 of a function arrow </para> </listitem>
4285 <listitem> <para> As the argument of a constructor, or type of a field, in a data type declaration. For
4286 example, any of the <literal>f1,f2,f3,g1,g2</literal> above would be valid
4287 field type signatures.</para> </listitem>
4288 <listitem> <para> As the type of an implicit parameter </para> </listitem>
4289 <listitem> <para> In a pattern type signature (see <xref linkend="scoped-type-variables"/>) </para> </listitem>
4290 </itemizedlist>
4291 </para></listitem>
4292 </itemizedlist>
4293 Of course <literal>forall</literal> becomes a keyword; you can't use <literal>forall</literal> as
4294 a type variable any more!
4295 </para>
4296
4297
4298 <sect3 id="univ">
4299 <title>Examples
4300 </title>
4301
4302 <para>
4303 In a <literal>data</literal> or <literal>newtype</literal> declaration one can quantify
4304 the types of the constructor arguments.  Here are several examples:
4305 </para>
4306
4307 <para>
4308
4309 <programlisting>
4310 data T a = T1 (forall b. b -> b -> b) a
4311
4312 data MonadT m = MkMonad { return :: forall a. a -> m a,
4313                           bind   :: forall a b. m a -> (a -> m b) -> m b
4314                         }
4315
4316 newtype Swizzle = MkSwizzle (Ord a => [a] -> [a])
4317 </programlisting>
4318
4319 </para>
4320
4321 <para>
4322 The constructors have rank-2 types:
4323 </para>
4324
4325 <para>
4326
4327 <programlisting>
4328 T1 :: forall a. (forall b. b -> b -> b) -> a -> T a
4329 MkMonad :: forall m. (forall a. a -> m a)
4330                   -> (forall a b. m a -> (a -> m b) -> m b)
4331                   -> MonadT m
4332 MkSwizzle :: (Ord a => [a] -> [a]) -> Swizzle
4333 </programlisting>
4334
4335 </para>
4336
4337 <para>
4338 Notice that you don't need to use a <literal>forall</literal> if there's an
4339 explicit context.  For example in the first argument of the
4340 constructor <function>MkSwizzle</function>, an implicit "<literal>forall a.</literal>" is
4341 prefixed to the argument type.  The implicit <literal>forall</literal>
4342 quantifies all type variables that are not already in scope, and are
4343 mentioned in the type quantified over.
4344 </para>
4345
4346 <para>
4347 As for type signatures, implicit quantification happens for non-overloaded
4348 types too.  So if you write this:
4349
4350 <programlisting>
4351   data T a = MkT (Either a b) (b -> b)
4352 </programlisting>
4353
4354 it's just as if you had written this:
4355
4356 <programlisting>
4357   data T a = MkT (forall b. Either a b) (forall b. b -> b)
4358 </programlisting>
4359
4360 That is, since the type variable <literal>b</literal> isn't in scope, it's
4361 implicitly universally quantified.  (Arguably, it would be better
4362 to <emphasis>require</emphasis> explicit quantification on constructor arguments
4363 where that is what is wanted.  Feedback welcomed.)
4364 </para>
4365
4366 <para>
4367 You construct values of types <literal>T1, MonadT, Swizzle</literal> by applying
4368 the constructor to suitable values, just as usual.  For example,
4369 </para>
4370
4371 <para>
4372
4373 <programlisting>
4374     a1 :: T Int
4375     a1 = T1 (\xy->x) 3
4376     
4377     a2, a3 :: Swizzle
4378     a2 = MkSwizzle sort
4379     a3 = MkSwizzle reverse
4380     
4381     a4 :: MonadT Maybe
4382     a4 = let r x = Just x
4383              b m k = case m of
4384                        Just y -> k y
4385                        Nothing -> Nothing
4386          in
4387          MkMonad r b
4388
4389     mkTs :: (forall b. b -> b -> b) -> a -> [T a]
4390     mkTs f x y = [T1 f x, T1 f y]
4391 </programlisting>
4392
4393 </para>
4394
4395 <para>
4396 The type of the argument can, as usual, be more general than the type
4397 required, as <literal>(MkSwizzle reverse)</literal> shows.  (<function>reverse</function>
4398 does not need the <literal>Ord</literal> constraint.)
4399 </para>
4400
4401 <para>
4402 When you use pattern matching, the bound variables may now have
4403 polymorphic types.  For example:
4404 </para>
4405
4406 <para>
4407
4408 <programlisting>
4409     f :: T a -> a -> (a, Char)
4410     f (T1 w k) x = (w k x, w 'c' 'd')
4411
4412     g :: (Ord a, Ord b) => Swizzle -> [a] -> (a -> b) -> [b]
4413     g (MkSwizzle s) xs f = s (map f (s xs))
4414
4415     h :: MonadT m -> [m a] -> m [a]
4416     h m [] = return m []
4417     h m (x:xs) = bind m x          $ \y ->
4418                  bind m (h m xs)   $ \ys ->
4419                  return m (y:ys)
4420 </programlisting>
4421
4422 </para>
4423
4424 <para>
4425 In the function <function>h</function> we use the record selectors <literal>return</literal>
4426 and <literal>bind</literal> to extract the polymorphic bind and return functions
4427 from the <literal>MonadT</literal> data structure, rather than using pattern
4428 matching.
4429 </para>
4430 </sect3>
4431
4432 <sect3>
4433 <title>Type inference</title>
4434
4435 <para>
4436 In general, type inference for arbitrary-rank types is undecidable.
4437 GHC uses an algorithm proposed by Odersky and Laufer ("Putting type annotations to work", POPL'96)
4438 to get a decidable algorithm by requiring some help from the programmer.
4439 We do not yet have a formal specification of "some help" but the rule is this:
4440 </para>
4441 <para>
4442 <emphasis>For a lambda-bound or case-bound variable, x, either the programmer
4443 provides an explicit polymorphic type for x, or GHC's type inference will assume
4444 that x's type has no foralls in it</emphasis>.
4445 </para>
4446 <para>
4447 What does it mean to "provide" an explicit type for x?  You can do that by 
4448 giving a type signature for x directly, using a pattern type signature
4449 (<xref linkend="scoped-type-variables"/>), thus:
4450 <programlisting>
4451      \ f :: (forall a. a->a) -> (f True, f 'c')
4452 </programlisting>
4453 Alternatively, you can give a type signature to the enclosing
4454 context, which GHC can "push down" to find the type for the variable:
4455 <programlisting>
4456      (\ f -> (f True, f 'c')) :: (forall a. a->a) -> (Bool,Char)
4457 </programlisting>
4458 Here the type signature on the expression can be pushed inwards
4459 to give a type signature for f.  Similarly, and more commonly,
4460 one can give a type signature for the function itself:
4461 <programlisting>
4462      h :: (forall a. a->a) -> (Bool,Char)
4463      h f = (f True, f 'c')
4464 </programlisting>
4465 You don't need to give a type signature if the lambda bound variable
4466 is a constructor argument.  Here is an example we saw earlier:
4467 <programlisting>
4468     f :: T a -> a -> (a, Char)
4469     f (T1 w k) x = (w k x, w 'c' 'd')
4470 </programlisting>
4471 Here we do not need to give a type signature to <literal>w</literal>, because
4472 it is an argument of constructor <literal>T1</literal> and that tells GHC all
4473 it needs to know.
4474 </para>
4475
4476 </sect3>
4477
4478
4479 <sect3 id="implicit-quant">
4480 <title>Implicit quantification</title>
4481
4482 <para>
4483 GHC performs implicit quantification as follows.  <emphasis>At the top level (only) of 
4484 user-written types, if and only if there is no explicit <literal>forall</literal>,
4485 GHC finds all the type variables mentioned in the type that are not already
4486 in scope, and universally quantifies them.</emphasis>  For example, the following pairs are 
4487 equivalent:
4488 <programlisting>
4489   f :: a -> a
4490   f :: forall a. a -> a
4491
4492   g (x::a) = let
4493                 h :: a -> b -> b
4494                 h x y = y
4495              in ...
4496   g (x::a) = let
4497                 h :: forall b. a -> b -> b
4498                 h x y = y
4499              in ...
4500 </programlisting>
4501 </para>
4502 <para>
4503 Notice that GHC does <emphasis>not</emphasis> find the innermost possible quantification
4504 point.  For example:
4505 <programlisting>
4506   f :: (a -> a) -> Int
4507            -- MEANS
4508   f :: forall a. (a -> a) -> Int
4509            -- NOT
4510   f :: (forall a. a -> a) -> Int
4511
4512
4513   g :: (Ord a => a -> a) -> Int
4514            -- MEANS the illegal type
4515   g :: forall a. (Ord a => a -> a) -> Int
4516            -- NOT
4517   g :: (forall a. Ord a => a -> a) -> Int
4518 </programlisting>
4519 The latter produces an illegal type, which you might think is silly,
4520 but at least the rule is simple.  If you want the latter type, you
4521 can write your for-alls explicitly.  Indeed, doing so is strongly advised
4522 for rank-2 types.
4523 </para>
4524 </sect3>
4525 </sect2>
4526
4527
4528 <sect2 id="impredicative-polymorphism">
4529 <title>Impredicative polymorphism
4530 </title>
4531 <para>GHC supports <emphasis>impredicative polymorphism</emphasis>, 
4532 enabled with <option>-XImpredicativeTypes</option>.  
4533 This means
4534 that you can call a polymorphic function at a polymorphic type, and
4535 parameterise data structures over polymorphic types.  For example:
4536 <programlisting>
4537   f :: Maybe (forall a. [a] -> [a]) -> Maybe ([Int], [Char])
4538   f (Just g) = Just (g [3], g "hello")
4539   f Nothing  = Nothing
4540 </programlisting>
4541 Notice here that the <literal>Maybe</literal> type is parameterised by the
4542 <emphasis>polymorphic</emphasis> type <literal>(forall a. [a] ->
4543 [a])</literal>.
4544 </para>
4545 <para>The technical details of this extension are described in the paper
4546 <ulink url="http://research.microsoft.com/%7Esimonpj/papers/boxy/">Boxy types:
4547 type inference for higher-rank types and impredicativity</ulink>,
4548 which appeared at ICFP 2006.  
4549 </para>
4550 </sect2>
4551
4552 <sect2 id="scoped-type-variables">
4553 <title>Lexically scoped type variables
4554 </title>
4555
4556 <para>
4557 GHC supports <emphasis>lexically scoped type variables</emphasis>, without
4558 which some type signatures are simply impossible to write. For example:
4559 <programlisting>
4560 f :: forall a. [a] -> [a]
4561 f xs = ys ++ ys
4562      where
4563        ys :: [a]
4564        ys = reverse xs
4565 </programlisting>
4566 The type signature for <literal>f</literal> brings the type variable <literal>a</literal> into scope; it scopes over
4567 the entire definition of <literal>f</literal>.
4568 In particular, it is in scope at the type signature for <varname>ys</varname>. 
4569 In Haskell 98 it is not possible to declare
4570 a type for <varname>ys</varname>; a major benefit of scoped type variables is that
4571 it becomes possible to do so.
4572 </para>
4573 <para>Lexically-scoped type variables are enabled by
4574 <option>-XScopedTypeVariables</option>.  This flag implies <option>-XRelaxedPolyRec</option>.
4575 </para>
4576 <para>Note: GHC 6.6 contains substantial changes to the way that scoped type
4577 variables work, compared to earlier releases.  Read this section
4578 carefully!</para>
4579
4580 <sect3>
4581 <title>Overview</title>
4582
4583 <para>The design follows the following principles
4584 <itemizedlist>
4585 <listitem><para>A scoped type variable stands for a type <emphasis>variable</emphasis>, and not for
4586 a <emphasis>type</emphasis>. (This is a change from GHC's earlier
4587 design.)</para></listitem>
4588 <listitem><para>Furthermore, distinct lexical type variables stand for distinct
4589 type variables.  This means that every programmer-written type signature
4590 (including one that contains free scoped type variables) denotes a
4591 <emphasis>rigid</emphasis> type; that is, the type is fully known to the type
4592 checker, and no inference is involved.</para></listitem>
4593 <listitem><para>Lexical type variables may be alpha-renamed freely, without
4594 changing the program.</para></listitem>
4595 </itemizedlist>
4596 </para>
4597 <para>
4598 A <emphasis>lexically scoped type variable</emphasis> can be bound by:
4599 <itemizedlist>
4600 <listitem><para>A declaration type signature (<xref linkend="decl-type-sigs"/>)</para></listitem>
4601 <listitem><para>An expression type signature (<xref linkend="exp-type-sigs"/>)</para></listitem>
4602 <listitem><para>A pattern type signature (<xref linkend="pattern-type-sigs"/>)</para></listitem>
4603 <listitem><para>Class and instance declarations (<xref linkend="cls-inst-scoped-tyvars"/>)</para></listitem>
4604 </itemizedlist>
4605 </para>
4606 <para>
4607 In Haskell, a programmer-written type signature is implicitly quantified over
4608 its free type variables (<ulink
4609 url="http://www.haskell.org/onlinereport/decls.html#sect4.1.2">Section
4610 4.1.2</ulink> 
4611 of the Haskell Report).
4612 Lexically scoped type variables affect this implicit quantification rules
4613 as follows: any type variable that is in scope is <emphasis>not</emphasis> universally
4614 quantified. For example, if type variable <literal>a</literal> is in scope,
4615 then
4616 <programlisting>
4617   (e :: a -> a)     means     (e :: a -> a)
4618   (e :: b -> b)     means     (e :: forall b. b->b)
4619   (e :: a -> b)     means     (e :: forall b. a->b)
4620 </programlisting>
4621 </para>
4622
4623
4624 </sect3>
4625
4626
4627 <sect3 id="decl-type-sigs">
4628 <title>Declaration type signatures</title>
4629 <para>A declaration type signature that has <emphasis>explicit</emphasis>
4630 quantification (using <literal>forall</literal>) brings into scope the
4631 explicitly-quantified
4632 type variables, in the definition of the named function.  For example:
4633 <programlisting>
4634   f :: forall a. [a] -> [a]
4635   f (x:xs) = xs ++ [ x :: a ]
4636 </programlisting>
4637 The "<literal>forall a</literal>" brings "<literal>a</literal>" into scope in
4638 the definition of "<literal>f</literal>".
4639 </para>
4640 <para>This only happens if:
4641 <itemizedlist>
4642 <listitem><para> The quantification in <literal>f</literal>'s type
4643 signature is explicit.  For example:
4644 <programlisting>
4645   g :: [a] -> [a]
4646   g (x:xs) = xs ++ [ x :: a ]
4647 </programlisting>
4648 This program will be rejected, because "<literal>a</literal>" does not scope
4649 over the definition of "<literal>f</literal>", so "<literal>x::a</literal>"
4650 means "<literal>x::forall a. a</literal>" by Haskell's usual implicit
4651 quantification rules.
4652 </para></listitem>
4653 <listitem><para> The signature gives a type for a function binding or a bare variable binding, 
4654 not a pattern binding.
4655 For example:
4656 <programlisting>
4657   f1 :: forall a. [a] -> [a]
4658   f1 (x:xs) = xs ++ [ x :: a ]   -- OK
4659
4660   f2 :: forall a. [a] -> [a]
4661   f2 = \(x:xs) -> xs ++ [ x :: a ]   -- OK
4662
4663   f3 :: forall a. [a] -> [a] 
4664   Just f3 = Just (\(x:xs) -> xs ++ [ x :: a ])   -- Not OK!
4665 </programlisting>
4666 The binding for <literal>f3</literal> is a pattern binding, and so its type signature
4667 does not bring <literal>a</literal> into scope.   However <literal>f1</literal> is a
4668 function binding, and <literal>f2</literal> binds a bare variable; in both cases
4669 the type signature brings <literal>a</literal> into scope.
4670 </para></listitem>
4671 </itemizedlist>
4672 </para>
4673 </sect3>
4674
4675 <sect3 id="exp-type-sigs">
4676 <title>Expression type signatures</title>
4677
4678 <para>An expression type signature that has <emphasis>explicit</emphasis>
4679 quantification (using <literal>forall</literal>) brings into scope the
4680 explicitly-quantified
4681 type variables, in the annotated expression.  For example:
4682 <programlisting>
4683   f = runST ( (op >>= \(x :: STRef s Int) -> g x) :: forall s. ST s Bool )
4684 </programlisting>
4685 Here, the type signature <literal>forall a. ST s Bool</literal> brings the 
4686 type variable <literal>s</literal> into scope, in the annotated expression 
4687 <literal>(op >>= \(x :: STRef s Int) -> g x)</literal>.
4688 </para>
4689
4690 </sect3>
4691
4692 <sect3 id="pattern-type-sigs">
4693 <title>Pattern type signatures</title>
4694 <para>
4695 A type signature may occur in any pattern; this is a <emphasis>pattern type
4696 signature</emphasis>. 
4697 For example:
4698 <programlisting>
4699   -- f and g assume that 'a' is already in scope
4700   f = \(x::Int, y::a) -> x
4701   g (x::a) = x
4702   h ((x,y) :: (Int,Bool)) = (y,x)
4703 </programlisting>
4704 In the case where all the type variables in the pattern type signature are
4705 already in scope (i.e. bound by the enclosing context), matters are simple: the
4706 signature simply constrains the type of the pattern in the obvious way.
4707 </para>
4708 <para>
4709 Unlike expression and declaration type signatures, pattern type signatures are not implicitly generalised.
4710 The pattern in a <emphasis>pattern binding</emphasis> may only mention type variables
4711 that are already in scope.  For example:
4712 <programlisting>
4713   f :: forall a. [a] -> (Int, [a])
4714   f xs = (n, zs)
4715     where
4716       (ys::[a], n) = (reverse xs, length xs) -- OK
4717       zs::[a] = xs ++ ys                     -- OK
4718
4719       Just (v::b) = ...  -- Not OK; b is not in scope
4720 </programlisting>
4721 Here, the pattern signatures for <literal>ys</literal> and <literal>zs</literal>
4722 are fine, but the one for <literal>v</literal> is not because <literal>b</literal> is
4723 not in scope. 
4724 </para>
4725 <para>
4726 However, in all patterns <emphasis>other</emphasis> than pattern bindings, a pattern
4727 type signature may mention a type variable that is not in scope; in this case,
4728 <emphasis>the signature brings that type variable into scope</emphasis>.
4729 This is particularly important for existential data constructors.  For example:
4730 <programlisting>
4731   data T = forall a. MkT [a]
4732
4733   k :: T -> T
4734   k (MkT [t::a]) = MkT t3
4735                  where
4736                    t3::[a] = [t,t,t]
4737 </programlisting>
4738 Here, the pattern type signature <literal>(t::a)</literal> mentions a lexical type
4739 variable that is not already in scope.  Indeed, it <emphasis>cannot</emphasis> already be in scope,
4740 because it is bound by the pattern match.  GHC's rule is that in this situation
4741 (and only then), a pattern type signature can mention a type variable that is
4742 not already in scope; the effect is to bring it into scope, standing for the
4743 existentially-bound type variable.
4744 </para>
4745 <para>
4746 When a pattern type signature binds a type variable in this way, GHC insists that the 
4747 type variable is bound to a <emphasis>rigid</emphasis>, or fully-known, type variable.
4748 This means that any user-written type signature always stands for a completely known type.
4749 </para>
4750 <para>
4751 If all this seems a little odd, we think so too.  But we must have
4752 <emphasis>some</emphasis> way to bring such type variables into scope, else we
4753 could not name existentially-bound type variables in subsequent type signatures.
4754 </para>
4755 <para>
4756 This is (now) the <emphasis>only</emphasis> situation in which a pattern type 
4757 signature is allowed to mention a lexical variable that is not already in
4758 scope.
4759 For example, both <literal>f</literal> and <literal>g</literal> would be
4760 illegal if <literal>a</literal> was not already in scope.
4761 </para>
4762
4763
4764 </sect3>
4765
4766 <!-- ==================== Commented out part about result type signatures 
4767
4768 <sect3 id="result-type-sigs">
4769 <title>Result type signatures</title>
4770
4771 <para>
4772 The result type of a function, lambda, or case expression alternative can be given a signature, thus:
4773
4774 <programlisting>
4775   {- f assumes that 'a' is already in scope -}
4776   f x y :: [a] = [x,y,x]
4777
4778   g = \ x :: [Int] -> [3,4]
4779
4780   h :: forall a. [a] -> a
4781   h xs = case xs of
4782             (y:ys) :: a -> y
4783 </programlisting>
4784 The final <literal>:: [a]</literal> after the patterns of <literal>f</literal> gives the type of 
4785 the result of the function.  Similarly, the body of the lambda in the RHS of
4786 <literal>g</literal> is <literal>[Int]</literal>, and the RHS of the case
4787 alternative in <literal>h</literal> is <literal>a</literal>.
4788 </para>
4789 <para> A result type signature never brings new type variables into scope.</para>
4790 <para>
4791 There are a couple of syntactic wrinkles.  First, notice that all three
4792 examples would parse quite differently with parentheses:
4793 <programlisting>
4794   {- f assumes that 'a' is already in scope -}
4795   f x (y :: [a]) = [x,y,x]
4796
4797   g = \ (x :: [Int]) -> [3,4]
4798
4799   h :: forall a. [a] -> a
4800   h xs = case xs of
4801             ((y:ys) :: a) -> y
4802 </programlisting>
4803 Now the signature is on the <emphasis>pattern</emphasis>; and
4804 <literal>h</literal> would certainly be ill-typed (since the pattern
4805 <literal>(y:ys)</literal> cannot have the type <literal>a</literal>.
4806
4807 Second, to avoid ambiguity, the type after the &ldquo;<literal>::</literal>&rdquo; in a result
4808 pattern signature on a lambda or <literal>case</literal> must be atomic (i.e. a single
4809 token or a parenthesised type of some sort).  To see why,
4810 consider how one would parse this:
4811 <programlisting>
4812   \ x :: a -> b -> x
4813 </programlisting>
4814 </para>
4815 </sect3>
4816
4817  -->
4818
4819 <sect3 id="cls-inst-scoped-tyvars">
4820 <title>Class and instance declarations</title>
4821 <para>
4822
4823 The type variables in the head of a <literal>class</literal> or <literal>instance</literal> declaration
4824 scope over the methods defined in the <literal>where</literal> part.  For example:
4825
4826
4827 <programlisting>
4828   class C a where
4829     op :: [a] -> a
4830
4831     op xs = let ys::[a]
4832                 ys = reverse xs
4833             in
4834             head ys
4835 </programlisting>
4836 </para>
4837 </sect3>
4838
4839 </sect2>
4840
4841
4842 <sect2 id="typing-binds">
4843 <title>Generalised typing of mutually recursive bindings</title>
4844
4845 <para>
4846 The Haskell Report specifies that a group of bindings (at top level, or in a
4847 <literal>let</literal> or <literal>where</literal>) should be sorted into
4848 strongly-connected components, and then type-checked in dependency order
4849 (<ulink url="http://www.haskell.org/onlinereport/decls.html#sect4.5.1">Haskell
4850 Report, Section 4.5.1</ulink>).  
4851 As each group is type-checked, any binders of the group that
4852 have
4853 an explicit type signature are put in the type environment with the specified
4854 polymorphic type,
4855 and all others are monomorphic until the group is generalised 
4856 (<ulink url="http://www.haskell.org/onlinereport/decls.html#sect4.5.2">Haskell Report, Section 4.5.2</ulink>).
4857 </para>
4858
4859 <para>Following a suggestion of Mark Jones, in his paper
4860 <ulink url="http://citeseer.ist.psu.edu/424440.html">Typing Haskell in
4861 Haskell</ulink>,
4862 GHC implements a more general scheme.  If <option>-XRelaxedPolyRec</option> is
4863 specified:
4864 <emphasis>the dependency analysis ignores references to variables that have an explicit
4865 type signature</emphasis>.
4866 As a result of this refined dependency analysis, the dependency groups are smaller, and more bindings will
4867 typecheck.  For example, consider:
4868 <programlisting>
4869   f :: Eq a =&gt; a -> Bool
4870   f x = (x == x) || g True || g "Yes"
4871   
4872   g y = (y &lt;= y) || f True
4873 </programlisting>
4874 This is rejected by Haskell 98, but under Jones's scheme the definition for
4875 <literal>g</literal> is typechecked first, separately from that for
4876 <literal>f</literal>,
4877 because the reference to <literal>f</literal> in <literal>g</literal>'s right
4878 hand side is ignored by the dependency analysis.  Then <literal>g</literal>'s
4879 type is generalised, to get
4880 <programlisting>
4881   g :: Ord a =&gt; a -> Bool
4882 </programlisting>
4883 Now, the definition for <literal>f</literal> is typechecked, with this type for
4884 <literal>g</literal> in the type environment.
4885 </para>
4886
4887 <para>
4888 The same refined dependency analysis also allows the type signatures of 
4889 mutually-recursive functions to have different contexts, something that is illegal in
4890 Haskell 98 (Section 4.5.2, last sentence).  With
4891 <option>-XRelaxedPolyRec</option>
4892 GHC only insists that the type signatures of a <emphasis>refined</emphasis> group have identical
4893 type signatures; in practice this means that only variables bound by the same
4894 pattern binding must have the same context.  For example, this is fine:
4895 <programlisting>
4896   f :: Eq a =&gt; a -> Bool
4897   f x = (x == x) || g True
4898   
4899   g :: Ord a =&gt; a -> Bool
4900   g y = (y &lt;= y) || f True
4901 </programlisting>
4902 </para>
4903 </sect2>
4904
4905 <sect2 id="type-families">
4906 <title>Type families
4907 </title>
4908
4909 <para>
4910 GHC supports the definition of type families indexed by types.  They may be
4911 seen as an extension of Haskell 98's class-based overloading of values to
4912 types.  When type families are declared in classes, they are also known as
4913 associated types.
4914 </para>
4915 <para>
4916 There are two forms of type families: data families and type synonym families.
4917 Currently, only the former are fully implemented, while we are still working
4918 on the latter.  As a result, the specification of the language extension is
4919 also still to some degree in flux.  Hence, a more detailed description of
4920 the language extension and its use is currently available
4921 from <ulink url="http://www.haskell.org/haskellwiki/GHC/Indexed_types">the Haskell
4922 wiki page on type families</ulink>.  The material will be moved to this user's
4923 guide when it has stabilised.
4924 </para>
4925 <para>
4926 Type families are enabled by the flag <option>-XTypeFamilies</option>.
4927 </para>
4928
4929
4930 </sect2>
4931
4932 </sect1>
4933 <!-- ==================== End of type system extensions =================  -->
4934   
4935 <!-- ====================== TEMPLATE HASKELL =======================  -->
4936
4937 <sect1 id="template-haskell">
4938 <title>Template Haskell</title>
4939
4940 <para>Template Haskell allows you to do compile-time meta-programming in
4941 Haskell.  
4942 The background to
4943 the main technical innovations is discussed in "<ulink
4944 url="http://research.microsoft.com/~simonpj/papers/meta-haskell/">
4945 Template Meta-programming for Haskell</ulink>" (Proc Haskell Workshop 2002).
4946 </para>
4947 <para>
4948 There is a Wiki page about
4949 Template Haskell at <ulink url="http://www.haskell.org/haskellwiki/Template_Haskell">
4950 http://www.haskell.org/haskellwiki/Template_Haskell</ulink>, and that is the best place to look for
4951 further details.
4952 You may also 
4953 consult the <ulink
4954 url="http://www.haskell.org/ghc/docs/latest/html/libraries/index.html">online
4955 Haskell library reference material</ulink> 
4956 (look for module <literal>Language.Haskell.TH</literal>).
4957 Many changes to the original design are described in 
4958       <ulink url="http://research.microsoft.com/~simonpj/papers/meta-haskell/notes2.ps">
4959 Notes on Template Haskell version 2</ulink>.
4960 Not all of these changes are in GHC, however.
4961 </para>
4962
4963 <para> The first example from that paper is set out below (<xref linkend="th-example"/>) 
4964 as a worked example to help get you started. 
4965 </para>
4966
4967 <para>
4968 The documentation here describes the realisation of Template Haskell in GHC.  It is not detailed enough to 
4969 understand Template Haskell; see the <ulink url="http://haskell.org/haskellwiki/Template_Haskell">
4970 Wiki page</ulink>.
4971 </para>
4972
4973     <sect2>
4974       <title>Syntax</title>
4975
4976       <para> Template Haskell has the following new syntactic
4977       constructions.  You need to use the flag
4978       <option>-XTemplateHaskell</option>
4979         <indexterm><primary><option>-XTemplateHaskell</option></primary>
4980       </indexterm>to switch these syntactic extensions on
4981       (<option>-XTemplateHaskell</option> is no longer implied by
4982       <option>-fglasgow-exts</option>).</para>
4983
4984         <itemizedlist>
4985               <listitem><para>
4986                   A splice is written <literal>$x</literal>, where <literal>x</literal> is an
4987                   identifier, or <literal>$(...)</literal>, where the "..." is an arbitrary expression.
4988                   There must be no space between the "$" and the identifier or parenthesis.  This use
4989                   of "$" overrides its meaning as an infix operator, just as "M.x" overrides the meaning
4990                   of "." as an infix operator.  If you want the infix operator, put spaces around it.
4991                   </para>
4992               <para> A splice can occur in place of 
4993                   <itemizedlist>
4994                     <listitem><para> an expression; the spliced expression must
4995                     have type <literal>Q Exp</literal></para></listitem>
4996                     <listitem><para> a list of top-level declarations; the spliced expression must have type <literal>Q [Dec]</literal></para></listitem>
4997                     </itemizedlist>
4998                 </para>
4999             Inside a splice you can can only call functions defined in imported modules,
5000         not functions defined elsewhere in the same module.</listitem>
5001
5002
5003               <listitem><para>
5004                   A expression quotation is written in Oxford brackets, thus:
5005                   <itemizedlist>
5006                     <listitem><para> <literal>[| ... |]</literal>, where the "..." is an expression; 
5007                              the quotation has type <literal>Q Exp</literal>.</para></listitem>
5008                     <listitem><para> <literal>[d| ... |]</literal>, where the "..." is a list of top-level declarations;
5009                              the quotation has type <literal>Q [Dec]</literal>.</para></listitem>
5010                     <listitem><para> <literal>[t| ... |]</literal>, where the "..." is a type;
5011                              the quotation has type <literal>Q Typ</literal>.</para></listitem>
5012                   </itemizedlist></para></listitem>
5013
5014               <listitem><para>
5015                   A quasi-quotation can appear in either a pattern context or an
5016                   expression context and is also written in Oxford brackets:
5017                   <itemizedlist>
5018                     <listitem><para> <literal>[:<replaceable>varid</replaceable>| ... |]</literal>,
5019                         where the "..." is an arbitrary string; a full description of the
5020                         quasi-quotation facility is given in <xref linkend="th-quasiquotation"/>.</para></listitem>
5021                   </itemizedlist></para></listitem>
5022
5023               <listitem><para>
5024                   A name can be quoted with either one or two prefix single quotes:
5025                   <itemizedlist>
5026                     <listitem><para> <literal>'f</literal> has type <literal>Name</literal>, and names the function <literal>f</literal>.
5027                   Similarly <literal>'C</literal> has type <literal>Name</literal> and names the data constructor <literal>C</literal>.
5028                   In general <literal>'</literal><replaceable>thing</replaceable> interprets <replaceable>thing</replaceable> in an expression context.
5029                      </para></listitem> 
5030                     <listitem><para> <literal>''T</literal> has type <literal>Name</literal>, and names the type constructor  <literal>T</literal>.
5031                   That is, <literal>''</literal><replaceable>thing</replaceable> interprets <replaceable>thing</replaceable> in a type context.
5032                      </para></listitem> 
5033                   </itemizedlist>
5034                   These <literal>Names</literal> can be used to construct Template Haskell expressions, patterns, declarations etc.  They
5035                   may also be given as an argument to the <literal>reify</literal> function.
5036                  </para>
5037                 </listitem>
5038
5039                   
5040         </itemizedlist>
5041 (Compared to the original paper, there are many differences of detail.
5042 The syntax for a declaration splice uses "<literal>$</literal>" not "<literal>splice</literal>".
5043 The type of the enclosed expression must be  <literal>Q [Dec]</literal>, not  <literal>[Q Dec]</literal>.
5044 Type splices are not implemented, and neither are pattern splices or quotations.
5045
5046 </sect2>
5047
5048 <sect2>  <title> Using Template Haskell </title>
5049 <para>
5050 <itemizedlist>
5051     <listitem><para>
5052     The data types and monadic constructor functions for Template Haskell are in the library
5053     <literal>Language.Haskell.THSyntax</literal>.
5054     </para></listitem>
5055
5056     <listitem><para>
5057     You can only run a function at compile time if it is imported from another module.  That is,
5058             you can't define a function in a module, and call it from within a splice in the same module.
5059             (It would make sense to do so, but it's hard to implement.)
5060    </para></listitem>
5061
5062    <listitem><para>
5063    You can only run a function at compile time if it is imported
5064    from another module <emphasis>that is not part of a mutually-recursive group of modules
5065    that includes the module currently being compiled</emphasis>.  Furthermore, all of the modules of 
5066    the mutually-recursive group must be reachable by non-SOURCE imports from the module where the
5067    splice is to be run.</para>
5068    <para>
5069    For example, when compiling module A,
5070    you can only run Template Haskell functions imported from B if B does not import A (directly or indirectly).
5071    The reason should be clear: to run B we must compile and run A, but we are currently type-checking A.
5072    </para></listitem>
5073
5074     <listitem><para>
5075             The flag <literal>-ddump-splices</literal> shows the expansion of all top-level splices as they happen.
5076    </para></listitem>
5077     <listitem><para>
5078             If you are building GHC from source, you need at least a stage-2 bootstrap compiler to
5079               run Template Haskell.  A stage-1 compiler will reject the TH constructs.  Reason: TH
5080               compiles and runs a program, and then looks at the result.  So it's important that
5081               the program it compiles produces results whose representations are identical to
5082               those of the compiler itself.
5083    </para></listitem>
5084 </itemizedlist>
5085 </para>
5086 <para> Template Haskell works in any mode (<literal>--make</literal>, <literal>--interactive</literal>,
5087         or file-at-a-time).  There used to be a restriction to the former two, but that restriction 
5088         has been lifted.
5089 </para>
5090 </sect2>
5091  
5092 <sect2 id="th-example">  <title> A Template Haskell Worked Example </title>
5093 <para>To help you get over the confidence barrier, try out this skeletal worked example.
5094   First cut and paste the two modules below into "Main.hs" and "Printf.hs":</para>
5095
5096 <programlisting>
5097
5098 {- Main.hs -}
5099 module Main where
5100
5101 -- Import our template "pr"
5102 import Printf ( pr )
5103
5104 -- The splice operator $ takes the Haskell source code
5105 -- generated at compile time by "pr" and splices it into
5106 -- the argument of "putStrLn".
5107 main = putStrLn ( $(pr "Hello") )
5108
5109
5110 {- Printf.hs -}
5111 module Printf where
5112
5113 -- Skeletal printf from the paper.
5114 -- It needs to be in a separate module to the one where
5115 -- you intend to use it.
5116
5117 -- Import some Template Haskell syntax
5118 import Language.Haskell.TH
5119
5120 -- Describe a format string
5121 data Format = D | S | L String
5122
5123 -- Parse a format string.  This is left largely to you
5124 -- as we are here interested in building our first ever
5125 -- Template Haskell program and not in building printf.
5126 parse :: String -> [Format]
5127 parse s   = [ L s ]
5128
5129 -- Generate Haskell source code from a parsed representation
5130 -- of the format string.  This code will be spliced into
5131 -- the module which calls "pr", at compile time.
5132 gen :: [Format] -> Q Exp
5133 gen [D]   = [| \n -> show n |]
5134 gen [S]   = [| \s -> s |]
5135 gen [L s] = stringE s
5136
5137 -- Here we generate the Haskell code for the splice
5138 -- from an input format string.
5139 pr :: String -> Q Exp
5140 pr s = gen (parse s)
5141 </programlisting>
5142
5143 <para>Now run the compiler (here we are a Cygwin prompt on Windows):
5144 </para>
5145 <programlisting>
5146 $ ghc --make -XTemplateHaskell main.hs -o main.exe
5147 </programlisting>
5148
5149 <para>Run "main.exe" and here is your output:</para>
5150
5151 <programlisting>
5152 $ ./main
5153 Hello
5154 </programlisting>
5155
5156 </sect2>
5157
5158 <sect2>
5159 <title>Using Template Haskell with Profiling</title>
5160 <indexterm><primary>profiling</primary><secondary>with Template Haskell</secondary></indexterm>
5161  
5162 <para>Template Haskell relies on GHC's built-in bytecode compiler and
5163 interpreter to run the splice expressions.  The bytecode interpreter
5164 runs the compiled expression on top of the same runtime on which GHC
5165 itself is running; this means that the compiled code referred to by
5166 the interpreted expression must be compatible with this runtime, and
5167 in particular this means that object code that is compiled for
5168 profiling <emphasis>cannot</emphasis> be loaded and used by a splice
5169 expression, because profiled object code is only compatible with the
5170 profiling version of the runtime.</para>
5171
5172 <para>This causes difficulties if you have a multi-module program
5173 containing Template Haskell code and you need to compile it for
5174 profiling, because GHC cannot load the profiled object code and use it
5175 when executing the splices.  Fortunately GHC provides a workaround.
5176 The basic idea is to compile the program twice:</para>
5177
5178 <orderedlist>
5179 <listitem>
5180   <para>Compile the program or library first the normal way, without
5181   <option>-prof</option><indexterm><primary><option>-prof</option></primary></indexterm>.</para>
5182 </listitem>
5183 <listitem>
5184   <para>Then compile it again with <option>-prof</option>, and
5185   additionally use <option>-osuf
5186   p_o</option><indexterm><primary><option>-osuf</option></primary></indexterm>
5187   to name the object files differently (you can choose any suffix
5188   that isn't the normal object suffix here).  GHC will automatically
5189   load the object files built in the first step when executing splice
5190   expressions.  If you omit the <option>-osuf</option> flag when
5191   building with <option>-prof</option> and Template Haskell is used,
5192   GHC will emit an error message. </para>
5193 </listitem>
5194 </orderedlist>
5195 </sect2>
5196
5197 <sect2 id="th-quasiquotation">  <title> Template Haskell Quasi-quotation </title>
5198 <para>Quasi-quotation allows patterns and expressions to be written using
5199 programmer-defined concrete syntax; the motivation behind the extension and
5200 several examples are documented in
5201 "<ulink url="http://www.eecs.harvard.edu/~mainland/ghc-quasiquoting/">Why It's
5202 Nice to be Quoted: Quasiquoting for Haskell</ulink>" (Proc Haskell Workshop
5203 2007). The example below shows how to write a quasiquoter for a simple
5204 expression language.</para>
5205
5206 <para>
5207 In the example, the quasiquoter <literal>expr</literal> is bound to a value of
5208 type <literal>Language.Haskell.TH.Quote.QuasiQuoter</literal> which contains two
5209 functions for quoting expressions and patterns, respectively. The first argument
5210 to each quoter is the (arbitrary) string enclosed in the Oxford brackets. The
5211 context of the quasi-quotation statement determines which of the two parsers is
5212 called: if the quasi-quotation occurs in an expression context, the expression
5213 parser is called, and if it occurs in a pattern context, the pattern parser is
5214 called.</para>
5215
5216 <para>
5217 Note that in the example we make use of an antiquoted
5218 variable <literal>n</literal>, indicated by the syntax <literal>'int:n</literal>
5219 (this syntax for anti-quotation was defined by the parser's
5220 author, <emphasis>not</emphasis> by GHC). This binds <literal>n</literal> to the
5221 integer value argument of the constructor <literal>IntExpr</literal> when
5222 pattern matching. Please see the referenced paper for further details regarding
5223 anti-quotation as well as the description of a technique that uses SYB to
5224 leverage a single parser of type <literal>String -> a</literal> to generate both
5225 an expression parser that returns a value of type <literal>Q Exp</literal> and a
5226 pattern parser that returns a value of type <literal>Q Pat</literal>.
5227 </para>
5228
5229 <para>In general, a quasi-quote has the form
5230 <literal>[$<replaceable>quoter</replaceable>| <replaceable>string</replaceable> |]</literal>.
5231 The <replaceable>quoter</replaceable> must be the name of an imported quoter; it
5232 cannot be an arbitrary expression.  The quoted <replaceable>string</replaceable> 
5233 can be arbitrary, and may contain newlines.
5234 </para>
5235 <para>
5236 Quasiquoters must obey the same stage restrictions as Template Haskell, e.g., in
5237 the example, <literal>expr</literal> cannot be defined
5238 in <literal>Main.hs</literal> where it is used, but must be imported.
5239 </para>
5240
5241 <programlisting>
5242
5243 {- Main.hs -}
5244 module Main where
5245
5246 import Expr
5247
5248 main :: IO ()
5249 main = do { print $ eval [$expr|1 + 2|]
5250           ; case IntExpr 1 of
5251               { [$expr|'int:n|] -> print n
5252               ;  _              -> return ()
5253               }
5254           }
5255
5256
5257 {- Expr.hs -}
5258 module Expr where
5259
5260 import qualified Language.Haskell.TH as TH
5261 import Language.Haskell.TH.Quasi
5262
5263 data Expr  =  IntExpr Integer
5264            |  AntiIntExpr String
5265            |  BinopExpr BinOp Expr Expr
5266            |  AntiExpr String
5267     deriving(Show, Typeable, Data)
5268
5269 data BinOp  =  AddOp
5270             |  SubOp
5271             |  MulOp
5272             |  DivOp
5273     deriving(Show, Typeable, Data)
5274
5275 eval :: Expr -> Integer
5276 eval (IntExpr n)        = n
5277 eval (BinopExpr op x y) = (opToFun op) (eval x) (eval y)
5278   where
5279     opToFun AddOp = (+)
5280     opToFun SubOp = (-)
5281     opToFun MulOp = (*)
5282     opToFun DivOp = div
5283
5284 expr = QuasiQuoter parseExprExp parseExprPat
5285
5286 -- Parse an Expr, returning its representation as
5287 -- either a Q Exp or a Q Pat. See the referenced paper
5288 -- for how to use SYB to do this by writing a single
5289 -- parser of type String -> Expr instead of two
5290 -- separate parsers.
5291
5292 parseExprExp :: String -> Q Exp
5293 parseExprExp ...
5294
5295 parseExprPat :: String -> Q Pat
5296 parseExprPat ...
5297 </programlisting>
5298
5299 <para>Now run the compiler:
5300 </para>
5301 <programlisting>
5302 $ ghc --make -XQuasiQuotes Main.hs -o main
5303 </programlisting>
5304
5305 <para>Run "main" and here is your output:</para>
5306
5307 <programlisting>
5308 $ ./main
5309 3
5310 1
5311 </programlisting>
5312
5313 </sect2>
5314
5315 </sect1>
5316
5317 <!-- ===================== Arrow notation ===================  -->
5318
5319 <sect1 id="arrow-notation">
5320 <title>Arrow notation
5321 </title>
5322
5323 <para>Arrows are a generalization of monads introduced by John Hughes.
5324 For more details, see
5325 <itemizedlist>
5326
5327 <listitem>
5328 <para>
5329 &ldquo;Generalising Monads to Arrows&rdquo;,
5330 John Hughes, in <citetitle>Science of Computer Programming</citetitle> 37,
5331 pp67&ndash;111, May 2000.
5332 </para>
5333 </listitem>
5334
5335 <listitem>
5336 <para>
5337 &ldquo;<ulink url="http://www.soi.city.ac.uk/~ross/papers/notation.html">A New Notation for Arrows</ulink>&rdquo;,
5338 Ross Paterson, in <citetitle>ICFP</citetitle>, Sep 2001.
5339 </para>
5340 </listitem>
5341
5342 <listitem>
5343 <para>
5344 &ldquo;<ulink url="http://www.soi.city.ac.uk/~ross/papers/fop.html">Arrows and Computation</ulink>&rdquo;,
5345 Ross Paterson, in <citetitle>The Fun of Programming</citetitle>,
5346 Palgrave, 2003.
5347 </para>
5348 </listitem>
5349
5350 </itemizedlist>
5351 and the arrows web page at
5352 <ulink url="http://www.haskell.org/arrows/"><literal>http://www.haskell.org/arrows/</literal></ulink>.
5353 With the <option>-XArrows</option> flag, GHC supports the arrow
5354 notation described in the second of these papers.
5355 What follows is a brief introduction to the notation;
5356 it won't make much sense unless you've read Hughes's paper.
5357 This notation is translated to ordinary Haskell,
5358 using combinators from the
5359 <ulink url="../libraries/base/Control-Arrow.html"><literal>Control.Arrow</literal></ulink>
5360 module.
5361 </para>
5362
5363 <para>The extension adds a new kind of expression for defining arrows:
5364 <screen>
5365 <replaceable>exp</replaceable><superscript>10</superscript> ::= ...
5366        |  proc <replaceable>apat</replaceable> -> <replaceable>cmd</replaceable>
5367 </screen>
5368 where <literal>proc</literal> is a new keyword.
5369 The variables of the pattern are bound in the body of the 
5370 <literal>proc</literal>-expression,
5371 which is a new sort of thing called a <firstterm>command</firstterm>.
5372 The syntax of commands is as follows:
5373 <screen>
5374 <replaceable>cmd</replaceable>   ::= <replaceable>exp</replaceable><superscript>10</superscript> -&lt;  <replaceable>exp</replaceable>
5375        |  <replaceable>exp</replaceable><superscript>10</superscript> -&lt;&lt; <replaceable>exp</replaceable>
5376        |  <replaceable>cmd</replaceable><superscript>0</superscript>
5377 </screen>
5378 with <replaceable>cmd</replaceable><superscript>0</superscript> up to
5379 <replaceable>cmd</replaceable><superscript>9</superscript> defined using
5380 infix operators as for expressions, and
5381 <screen>
5382 <replaceable>cmd</replaceable><superscript>10</superscript> ::= \ <replaceable>apat</replaceable> ... <replaceable>apat</replaceable> -> <replaceable>cmd</replaceable>
5383        |  let <replaceable>decls</replaceable> in <replaceable>cmd</replaceable>
5384        |  if <replaceable>exp</replaceable> then <replaceable>cmd</replaceable> else <replaceable>cmd</replaceable>
5385        |  case <replaceable>exp</replaceable> of { <replaceable>calts</replaceable> }
5386        |  do { <replaceable>cstmt</replaceable> ; ... <replaceable>cstmt</replaceable> ; <replaceable>cmd</replaceable> }
5387        |  <replaceable>fcmd</replaceable>
5388
5389 <replaceable>fcmd</replaceable>  ::= <replaceable>fcmd</replaceable> <replaceable>aexp</replaceable>
5390        |  ( <replaceable>cmd</replaceable> )
5391        |  (| <replaceable>aexp</replaceable> <replaceable>cmd</replaceable> ... <replaceable>cmd</replaceable> |)
5392
5393 <replaceable>cstmt</replaceable> ::= let <replaceable>decls</replaceable>
5394        |  <replaceable>pat</replaceable> &lt;- <replaceable>cmd</replaceable>
5395        |  rec { <replaceable>cstmt</replaceable> ; ... <replaceable>cstmt</replaceable> [;] }
5396        |  <replaceable>cmd</replaceable>
5397 </screen>
5398 where <replaceable>calts</replaceable> are like <replaceable>alts</replaceable>
5399 except that the bodies are commands instead of expressions.
5400 </para>
5401
5402 <para>
5403 Commands produce values, but (like monadic computations)
5404 may yield more than one value,
5405 or none, and may do other things as well.
5406 For the most part, familiarity with monadic notation is a good guide to
5407 using commands.
5408 However the values of expressions, even monadic ones,
5409 are determined by the values of the variables they contain;
5410 this is not necessarily the case for commands.
5411 </para>
5412
5413 <para>
5414 A simple example of the new notation is the expression
5415 <screen>
5416 proc x -> f -&lt; x+1
5417 </screen>
5418 We call this a <firstterm>procedure</firstterm> or
5419 <firstterm>arrow abstraction</firstterm>.
5420 As with a lambda expression, the variable <literal>x</literal>
5421 is a new variable bound within the <literal>proc</literal>-expression.
5422 It refers to the input to the arrow.
5423 In the above example, <literal>-&lt;</literal> is not an identifier but an
5424 new reserved symbol used for building commands from an expression of arrow
5425 type and an expression to be fed as input to that arrow.
5426 (The weird look will make more sense later.)
5427 It may be read as analogue of application for arrows.
5428 The above example is equivalent to the Haskell expression
5429 <screen>
5430 arr (\ x -> x+1) >>> f
5431 </screen>
5432 That would make no sense if the expression to the left of
5433 <literal>-&lt;</literal> involves the bound variable <literal>x</literal>.
5434 More generally, the expression to the left of <literal>-&lt;</literal>
5435 may not involve any <firstterm>local variable</firstterm>,
5436 i.e. a variable bound in the current arrow abstraction.
5437 For such a situation there is a variant <literal>-&lt;&lt;</literal>, as in
5438 <screen>
5439 proc x -> f x -&lt;&lt; x+1
5440 </screen>
5441 which is equivalent to
5442 <screen>
5443 arr (\ x -> (f x, x+1)) >>> app
5444 </screen>
5445 so in this case the arrow must belong to the <literal>ArrowApply</literal>
5446 class.
5447 Such an arrow is equivalent to a monad, so if you're using this form
5448 you may find a monadic formulation more convenient.
5449 </para>
5450
5451 <sect2>
5452 <title>do-notation for commands</title>
5453
5454 <para>
5455 Another form of command is a form of <literal>do</literal>-notation.
5456 For example, you can write
5457 <screen>
5458 proc x -> do
5459         y &lt;- f -&lt; x+1
5460         g -&lt; 2*y
5461         let z = x+y
5462         t &lt;- h -&lt; x*z
5463         returnA -&lt; t+z
5464 </screen>
5465 You can read this much like ordinary <literal>do</literal>-notation,
5466 but with commands in place of monadic expressions.
5467 The first line sends the value of <literal>x+1</literal> as an input to
5468 the arrow <literal>f</literal>, and matches its output against
5469 <literal>y</literal>.
5470 In the next line, the output is discarded.
5471 The arrow <function>returnA</function> is defined in the
5472 <ulink url="../libraries/base/Control-Arrow.html"><literal>Control.Arrow</literal></ulink>
5473 module as <literal>arr id</literal>.
5474 The above example is treated as an abbreviation for
5475 <screen>
5476 arr (\ x -> (x, x)) >>>
5477         first (arr (\ x -> x+1) >>> f) >>>
5478         arr (\ (y, x) -> (y, (x, y))) >>>
5479         first (arr (\ y -> 2*y) >>> g) >>>
5480         arr snd >>>
5481         arr (\ (x, y) -> let z = x+y in ((x, z), z)) >>>
5482         first (arr (\ (x, z) -> x*z) >>> h) >>>
5483         arr (\ (t, z) -> t+z) >>>
5484         returnA
5485 </screen>
5486 Note that variables not used later in the composition are projected out.
5487 After simplification using rewrite rules (see <xref linkend="rewrite-rules"/>)
5488 defined in the
5489 <ulink url="../libraries/base/Control-Arrow.html"><literal>Control.Arrow</literal></ulink>
5490 module, this reduces to
5491 <screen>
5492 arr (\ x -> (x+1, x)) >>>
5493         first f >>>
5494         arr (\ (y, x) -> (2*y, (x, y))) >>>
5495         first g >>>
5496         arr (\ (_, (x, y)) -> let z = x+y in (x*z, z)) >>>
5497         first h >>>
5498         arr (\ (t, z) -> t+z)
5499 </screen>
5500 which is what you might have written by hand.
5501 With arrow notation, GHC keeps track of all those tuples of variables for you.
5502 </para>
5503
5504 <para>
5505 Note that although the above translation suggests that
5506 <literal>let</literal>-bound variables like <literal>z</literal> must be
5507 monomorphic, the actual translation produces Core,
5508 so polymorphic variables are allowed.
5509 </para>
5510
5511 <para>
5512 It's also possible to have mutually recursive bindings,
5513 using the new <literal>rec</literal> keyword, as in the following example:
5514 <programlisting>
5515 counter :: ArrowCircuit a => a Bool Int
5516 counter = proc reset -> do
5517         rec     output &lt;- returnA -&lt; if reset then 0 else next
5518                 next &lt;- delay 0 -&lt; output+1
5519         returnA -&lt; output
5520 </programlisting>
5521 The translation of such forms uses the <function>loop</function> combinator,
5522 so the arrow concerned must belong to the <literal>ArrowLoop</literal> class.
5523 </para>
5524
5525 </sect2>
5526
5527 <sect2>
5528 <title>Conditional commands</title>
5529
5530 <para>
5531 In the previous example, we used a conditional expression to construct the
5532 input for an arrow.
5533 Sometimes we want to conditionally execute different commands, as in
5534 <screen>
5535 proc (x,y) ->
5536         if f x y
5537         then g -&lt; x+1
5538         else h -&lt; y+2
5539 </screen>
5540 which is translated to
5541 <screen>
5542 arr (\ (x,y) -> if f x y then Left x else Right y) >>>
5543         (arr (\x -> x+1) >>> f) ||| (arr (\y -> y+2) >>> g)
5544 </screen>
5545 Since the translation uses <function>|||</function>,
5546 the arrow concerned must belong to the <literal>ArrowChoice</literal> class.
5547 </para>
5548
5549 <para>
5550 There are also <literal>case</literal> commands, like
5551 <screen>
5552 case input of
5553     [] -> f -&lt; ()
5554     [x] -> g -&lt; x+1
5555     x1:x2:xs -> do
5556         y &lt;- h -&lt; (x1, x2)
5557         ys &lt;- k -&lt; xs
5558         returnA -&lt; y:ys
5559 </screen>
5560 The syntax is the same as for <literal>case</literal> expressions,
5561 except that the bodies of the alternatives are commands rather than expressions.
5562 The translation is similar to that of <literal>if</literal> commands.
5563 </para>
5564
5565 </sect2>
5566
5567 <sect2>
5568 <title>Defining your own control structures</title>
5569
5570 <para>
5571 As we're seen, arrow notation provides constructs,
5572 modelled on those for expressions,
5573 for sequencing, value recursion and conditionals.
5574 But suitable combinators,
5575 which you can define in ordinary Haskell,
5576 may also be used to build new commands out of existing ones.
5577 The basic idea is that a command defines an arrow from environments to values.
5578 These environments assign values to the free local variables of the command.
5579 Thus combinators that produce arrows from arrows
5580 may also be used to build commands from commands.
5581 For example, the <literal>ArrowChoice</literal> class includes a combinator
5582 <programlisting>
5583 ArrowChoice a => (&lt;+>) :: a e c -> a e c -> a e c
5584 </programlisting>
5585 so we can use it to build commands:
5586 <programlisting>
5587 expr' = proc x -> do
5588                 returnA -&lt; x
5589         &lt;+> do
5590                 symbol Plus -&lt; ()
5591                 y &lt;- term -&lt; ()
5592                 expr' -&lt; x + y
5593         &lt;+> do
5594                 symbol Minus -&lt; ()
5595                 y &lt;- term -&lt; ()
5596                 expr' -&lt; x - y
5597 </programlisting>
5598 (The <literal>do</literal> on the first line is needed to prevent the first
5599 <literal>&lt;+> ...</literal> from being interpreted as part of the
5600 expression on the previous line.)
5601 This is equivalent to
5602 <programlisting>
5603 expr' = (proc x -> returnA -&lt; x)
5604         &lt;+> (proc x -> do
5605                 symbol Plus -&lt; ()
5606                 y &lt;- term -&lt; ()
5607                 expr' -&lt; x + y)
5608         &lt;+> (proc x -> do
5609                 symbol Minus -&lt; ()
5610                 y &lt;- term -&lt; ()
5611                 expr' -&lt; x - y)
5612 </programlisting>
5613 It is essential that this operator be polymorphic in <literal>e</literal>
5614 (representing the environment input to the command
5615 and thence to its subcommands)
5616 and satisfy the corresponding naturality property
5617 <screen>
5618 arr k >>> (f &lt;+> g) = (arr k >>> f) &lt;+> (arr k >>> g)
5619 </screen>
5620 at least for strict <literal>k</literal>.
5621 (This should be automatic if you're not using <function>seq</function>.)
5622 This ensures that environments seen by the subcommands are environments
5623 of the whole command,
5624 and also allows the translation to safely trim these environments.
5625 The operator must also not use any variable defined within the current
5626 arrow abstraction.
5627 </para>
5628
5629 <para>
5630 We could define our own operator
5631 <programlisting>
5632 untilA :: ArrowChoice a => a e () -> a e Bool -> a e ()
5633 untilA body cond = proc x ->
5634         if cond x then returnA -&lt; ()
5635         else do
5636                 body -&lt; x
5637                 untilA body cond -&lt; x
5638 </programlisting>
5639 and use it in the same way.
5640 Of course this infix syntax only makes sense for binary operators;
5641 there is also a more general syntax involving special brackets:
5642 <screen>
5643 proc x -> do
5644         y &lt;- f -&lt; x+1
5645         (|untilA (increment -&lt; x+y) (within 0.5 -&lt; x)|)
5646 </screen>
5647 </para>
5648
5649 </sect2>
5650
5651 <sect2>
5652 <title>Primitive constructs</title>
5653
5654 <para>
5655 Some operators will need to pass additional inputs to their subcommands.
5656 For example, in an arrow type supporting exceptions,
5657 the operator that attaches an exception handler will wish to pass the
5658 exception that occurred to the handler.
5659 Such an operator might have a type
5660 <screen>
5661 handleA :: ... => a e c -> a (e,Ex) c -> a e c
5662 </screen>
5663 where <literal>Ex</literal> is the type of exceptions handled.
5664 You could then use this with arrow notation by writing a command
5665 <screen>
5666 body `handleA` \ ex -> handler
5667 </screen>
5668 so that if an exception is raised in the command <literal>body</literal>,
5669 the variable <literal>ex</literal> is bound to the value of the exception
5670 and the command <literal>handler</literal>,
5671 which typically refers to <literal>ex</literal>, is entered.
5672 Though the syntax here looks like a functional lambda,
5673 we are talking about commands, and something different is going on.
5674 The input to the arrow represented by a command consists of values for
5675 the free local variables in the command, plus a stack of anonymous values.
5676 In all the prior examples, this stack was empty.
5677 In the second argument to <function>handleA</function>,
5678 this stack consists of one value, the value of the exception.
5679 The command form of lambda merely gives this value a name.
5680 </para>
5681
5682 <para>
5683 More concretely,
5684 the values on the stack are paired to the right of the environment.
5685 So operators like <function>handleA</function> that pass
5686 extra inputs to their subcommands can be designed for use with the notation
5687 by pairing the values with the environment in this way.
5688 More precisely, the type of each argument of the operator (and its result)
5689 should have the form
5690 <screen>
5691 a (...(e,t1), ... tn) t
5692 </screen>
5693 where <replaceable>e</replaceable> is a polymorphic variable
5694 (representing the environment)
5695 and <replaceable>ti</replaceable> are the types of the values on the stack,
5696 with <replaceable>t1</replaceable> being the <quote>top</quote>.
5697 The polymorphic variable <replaceable>e</replaceable> must not occur in
5698 <replaceable>a</replaceable>, <replaceable>ti</replaceable> or
5699 <replaceable>t</replaceable>.
5700 However the arrows involved need not be the same.
5701 Here are some more examples of suitable operators:
5702 <screen>
5703 bracketA :: ... => a e b -> a (e,b) c -> a (e,c) d -> a e d
5704 runReader :: ... => a e c -> a' (e,State) c
5705 runState :: ... => a e c -> a' (e,State) (c,State)
5706 </screen>
5707 We can supply the extra input required by commands built with the last two
5708 by applying them to ordinary expressions, as in
5709 <screen>
5710 proc x -> do
5711         s &lt;- ...
5712         (|runReader (do { ... })|) s
5713 </screen>
5714 which adds <literal>s</literal> to the stack of inputs to the command
5715 built using <function>runReader</function>.
5716 </para>
5717
5718 <para>
5719 The command versions of lambda abstraction and application are analogous to
5720 the expression versions.
5721 In particular, the beta and eta rules describe equivalences of commands.
5722 These three features (operators, lambda abstraction and application)
5723 are the core of the notation; everything else can be built using them,
5724 though the results would be somewhat clumsy.
5725 For example, we could simulate <literal>do</literal>-notation by defining
5726 <programlisting>
5727 bind :: Arrow a => a e b -> a (e,b) c -> a e c
5728 u `bind` f = returnA &amp;&amp;&amp; u >>> f
5729
5730 bind_ :: Arrow a => a e b -> a e c -> a e c
5731 u `bind_` f = u `bind` (arr fst >>> f)
5732 </programlisting>
5733 We could simulate <literal>if</literal> by defining
5734 <programlisting>
5735 cond :: ArrowChoice a => a e b -> a e b -> a (e,Bool) b
5736 cond f g = arr (\ (e,b) -> if b then Left e else Right e) >>> f ||| g
5737 </programlisting>
5738 </para>
5739
5740 </sect2>
5741
5742 <sect2>
5743 <title>Differences with the paper</title>
5744
5745 <itemizedlist>
5746
5747 <listitem>
5748 <para>Instead of a single form of arrow application (arrow tail) with two
5749 translations, the implementation provides two forms
5750 <quote><literal>-&lt;</literal></quote> (first-order)
5751 and <quote><literal>-&lt;&lt;</literal></quote> (higher-order).
5752 </para>
5753 </listitem>
5754
5755 <listitem>
5756 <para>User-defined operators are flagged with banana brackets instead of
5757 a new <literal>form</literal> keyword.
5758 </para>
5759 </listitem>
5760
5761 </itemizedlist>
5762
5763 </sect2>
5764
5765 <sect2>
5766 <title>Portability</title>
5767
5768 <para>
5769 Although only GHC implements arrow notation directly,
5770 there is also a preprocessor
5771 (available from the 
5772 <ulink url="http://www.haskell.org/arrows/">arrows web page</ulink>)
5773 that translates arrow notation into Haskell 98
5774 for use with other Haskell systems.
5775 You would still want to check arrow programs with GHC;
5776 tracing type errors in the preprocessor output is not easy.
5777 Modules intended for both GHC and the preprocessor must observe some
5778 additional restrictions:
5779 <itemizedlist>
5780
5781 <listitem>
5782 <para>
5783 The module must import
5784 <ulink url="../libraries/base/Control-Arrow.html"><literal>Control.Arrow</literal></ulink>.
5785 </para>
5786 </listitem>
5787
5788 <listitem>
5789 <para>
5790 The preprocessor cannot cope with other Haskell extensions.
5791 These would have to go in separate modules.
5792 </para>
5793 </listitem>
5794
5795 <listitem>
5796 <para>
5797 Because the preprocessor targets Haskell (rather than Core),
5798 <literal>let</literal>-bound variables are monomorphic.
5799 </para>
5800 </listitem>
5801
5802 </itemizedlist>
5803 </para>
5804
5805 </sect2>
5806
5807 </sect1>
5808
5809 <!-- ==================== BANG PATTERNS =================  -->
5810
5811 <sect1 id="bang-patterns">
5812 <title>Bang patterns
5813 <indexterm><primary>Bang patterns</primary></indexterm>
5814 </title>
5815 <para>GHC supports an extension of pattern matching called <emphasis>bang
5816 patterns</emphasis>.   Bang patterns are under consideration for Haskell Prime.
5817 The <ulink
5818 url="http://hackage.haskell.org/trac/haskell-prime/wiki/BangPatterns">Haskell
5819 prime feature description</ulink> contains more discussion and examples
5820 than the material below.
5821 </para>
5822 <para>
5823 Bang patterns are enabled by the flag <option>-XBangPatterns</option>.
5824 </para>
5825
5826 <sect2 id="bang-patterns-informal">
5827 <title>Informal description of bang patterns
5828 </title>
5829 <para>
5830 The main idea is to add a single new production to the syntax of patterns:
5831 <programlisting>
5832   pat ::= !pat
5833 </programlisting>
5834 Matching an expression <literal>e</literal> against a pattern <literal>!p</literal> is done by first
5835 evaluating <literal>e</literal> (to WHNF) and then matching the result against <literal>p</literal>.
5836 Example:
5837 <programlisting>
5838 f1 !x = True
5839 </programlisting>
5840 This definition makes <literal>f1</literal> is strict in <literal>x</literal>,
5841 whereas without the bang it would be lazy.
5842 Bang patterns can be nested of course:
5843 <programlisting>
5844 f2 (!x, y) = [x,y]
5845 </programlisting>
5846 Here, <literal>f2</literal> is strict in <literal>x</literal> but not in
5847 <literal>y</literal>.  
5848 A bang only really has an effect if it precedes a variable or wild-card pattern:
5849 <programlisting>
5850 f3 !(x,y) = [x,y]
5851 f4 (x,y)  = [x,y]
5852 </programlisting>
5853 Here, <literal>f3</literal> and <literal>f4</literal> are identical; putting a bang before a pattern that
5854 forces evaluation anyway does nothing.
5855 </para><para>
5856 Bang patterns work in <literal>case</literal> expressions too, of course:
5857 <programlisting>
5858 g5 x = let y = f x in body
5859 g6 x = case f x of { y -&gt; body }
5860 g7 x = case f x of { !y -&gt; body }
5861 </programlisting>
5862 The functions <literal>g5</literal> and <literal>g6</literal> mean exactly the same thing.  
5863 But <literal>g7</literal> evaluates <literal>(f x)</literal>, binds <literal>y</literal> to the
5864 result, and then evaluates <literal>body</literal>.
5865 </para><para>
5866 Bang patterns work in <literal>let</literal> and <literal>where</literal>
5867 definitions too. For example:
5868 <programlisting>
5869 let ![x,y] = e in b
5870 </programlisting>
5871 is a strict pattern: operationally, it evaluates <literal>e</literal>, matches
5872 it against the pattern <literal>[x,y]</literal>, and then evaluates <literal>b</literal>
5873 The "<literal>!</literal>" should not be regarded as part of the pattern; after all,
5874 in a function argument <literal>![x,y]</literal> means the 
5875 same as <literal>[x,y]</literal>.  Rather, the "<literal>!</literal>" 
5876 is part of the syntax of <literal>let</literal> bindings.
5877 </para>
5878 </sect2>
5879
5880
5881 <sect2 id="bang-patterns-sem">
5882 <title>Syntax and semantics
5883 </title>
5884 <para>
5885
5886 We add a single new production to the syntax of patterns:
5887 <programlisting>
5888   pat ::= !pat
5889 </programlisting>
5890 There is one problem with syntactic ambiguity.  Consider:
5891 <programlisting>
5892 f !x = 3
5893 </programlisting>
5894 Is this a definition of the infix function "<literal>(!)</literal>",
5895 or of the "<literal>f</literal>" with a bang pattern? GHC resolves this
5896 ambiguity in favour of the latter.  If you want to define
5897 <literal>(!)</literal> with bang-patterns enabled, you have to do so using
5898 prefix notation:
5899 <programlisting>
5900 (!) f x = 3
5901 </programlisting>
5902 The semantics of Haskell pattern matching is described in <ulink
5903 url="http://www.haskell.org/onlinereport/exps.html#sect3.17.2">
5904 Section 3.17.2</ulink> of the Haskell Report.  To this description add 
5905 one extra item 10, saying:
5906 <itemizedlist><listitem><para>Matching
5907 the pattern <literal>!pat</literal> against a value <literal>v</literal> behaves as follows:
5908 <itemizedlist><listitem><para>if <literal>v</literal> is bottom, the match diverges</para></listitem>
5909                 <listitem><para>otherwise, <literal>pat</literal> is matched against
5910                 <literal>v</literal></para></listitem>
5911 </itemizedlist>
5912 </para></listitem></itemizedlist>
5913 Similarly, in Figure 4 of  <ulink url="http://www.haskell.org/onlinereport/exps.html#sect3.17.3">
5914 Section 3.17.3</ulink>, add a new case (t):
5915 <programlisting>
5916 case v of { !pat -> e; _ -> e' }
5917    = v `seq` case v of { pat -> e; _ -> e' }
5918 </programlisting>
5919 </para><para>
5920 That leaves let expressions, whose translation is given in 
5921 <ulink url="http://www.haskell.org/onlinereport/exps.html#sect3.12">Section
5922 3.12</ulink>
5923 of the Haskell Report.
5924 In the translation box, first apply 
5925 the following transformation:  for each pattern <literal>pi</literal> that is of 
5926 form <literal>!qi = ei</literal>, transform it to <literal>(xi,!qi) = ((),ei)</literal>, and and replace <literal>e0</literal> 
5927 by <literal>(xi `seq` e0)</literal>.  Then, when none of the left-hand-side patterns
5928 have a bang at the top, apply the rules in the existing box.
5929 </para>
5930 <para>The effect of the let rule is to force complete matching of the pattern
5931 <literal>qi</literal> before evaluation of the body is begun.  The bang is
5932 retained in the translated form in case <literal>qi</literal> is a variable,
5933 thus:
5934 <programlisting>
5935   let !y = f x in b
5936 </programlisting>
5937
5938 </para>
5939 <para>
5940 The let-binding can be recursive.  However, it is much more common for
5941 the let-binding to be non-recursive, in which case the following law holds:
5942 <literal>(let !p = rhs in body)</literal>
5943      is equivalent to
5944 <literal>(case rhs of !p -> body)</literal>
5945 </para>
5946 <para>
5947 A pattern with a bang at the outermost level is not allowed at the top level of
5948 a module.
5949 </para>
5950 </sect2>
5951 </sect1>
5952
5953 <!-- ==================== ASSERTIONS =================  -->
5954
5955 <sect1 id="assertions">
5956 <title>Assertions
5957 <indexterm><primary>Assertions</primary></indexterm>
5958 </title>
5959
5960 <para>
5961 If you want to make use of assertions in your standard Haskell code, you
5962 could define a function like the following:
5963 </para>
5964
5965 <para>
5966
5967 <programlisting>
5968 assert :: Bool -> a -> a
5969 assert False x = error "assertion failed!"
5970 assert _     x = x
5971 </programlisting>
5972
5973 </para>
5974
5975 <para>
5976 which works, but gives you back a less than useful error message --
5977 an assertion failed, but which and where?
5978 </para>
5979
5980 <para>
5981 One way out is to define an extended <function>assert</function> function which also
5982 takes a descriptive string to include in the error message and
5983 perhaps combine this with the use of a pre-processor which inserts
5984 the source location where <function>assert</function> was used.
5985 </para>
5986
5987 <para>
5988 Ghc offers a helping hand here, doing all of this for you. For every
5989 use of <function>assert</function> in the user's source:
5990 </para>
5991
5992 <para>
5993
5994 <programlisting>
5995 kelvinToC :: Double -> Double
5996 kelvinToC k = assert (k &gt;= 0.0) (k+273.15)
5997 </programlisting>
5998
5999 </para>
6000
6001 <para>
6002 Ghc will rewrite this to also include the source location where the
6003 assertion was made,
6004 </para>
6005
6006 <para>
6007
6008 <programlisting>
6009 assert pred val ==> assertError "Main.hs|15" pred val
6010 </programlisting>
6011
6012 </para>
6013
6014 <para>
6015 The rewrite is only performed by the compiler when it spots
6016 applications of <function>Control.Exception.assert</function>, so you
6017 can still define and use your own versions of
6018 <function>assert</function>, should you so wish. If not, import
6019 <literal>Control.Exception</literal> to make use
6020 <function>assert</function> in your code.
6021 </para>
6022
6023 <para>
6024 GHC ignores assertions when optimisation is turned on with the
6025       <option>-O</option><indexterm><primary><option>-O</option></primary></indexterm> flag.  That is, expressions of the form
6026 <literal>assert pred e</literal> will be rewritten to
6027 <literal>e</literal>.  You can also disable assertions using the
6028       <option>-fignore-asserts</option>
6029       option<indexterm><primary><option>-fignore-asserts</option></primary>
6030       </indexterm>.</para>
6031
6032 <para>
6033 Assertion failures can be caught, see the documentation for the
6034 <literal>Control.Exception</literal> library for the details.
6035 </para>
6036
6037 </sect1>
6038
6039
6040 <!-- =============================== PRAGMAS ===========================  -->
6041
6042   <sect1 id="pragmas">
6043     <title>Pragmas</title>
6044
6045     <indexterm><primary>pragma</primary></indexterm>
6046
6047     <para>GHC supports several pragmas, or instructions to the
6048     compiler placed in the source code.  Pragmas don't normally affect
6049     the meaning of the program, but they might affect the efficiency
6050     of the generated code.</para>
6051
6052     <para>Pragmas all take the form
6053
6054 <literal>{-# <replaceable>word</replaceable> ... #-}</literal>  
6055
6056     where <replaceable>word</replaceable> indicates the type of
6057     pragma, and is followed optionally by information specific to that
6058     type of pragma.  Case is ignored in
6059     <replaceable>word</replaceable>.  The various values for
6060     <replaceable>word</replaceable> that GHC understands are described
6061     in the following sections; any pragma encountered with an
6062     unrecognised <replaceable>word</replaceable> is (silently)
6063     ignored. The layout rule applies in pragmas, so the closing <literal>#-}</literal>
6064     should start in a column to the right of the opening <literal>{-#</literal>. </para> 
6065
6066     <para>Certain pragmas are <emphasis>file-header pragmas</emphasis>.  A file-header
6067       pragma must precede the <literal>module</literal> keyword in the file.  
6068       There can be as many file-header pragmas as you please, and they can be
6069       preceded or followed by comments.</para>
6070
6071     <sect2 id="language-pragma">
6072       <title>LANGUAGE pragma</title>
6073
6074       <indexterm><primary>LANGUAGE</primary><secondary>pragma</secondary></indexterm>
6075       <indexterm><primary>pragma</primary><secondary>LANGUAGE</secondary></indexterm>
6076
6077       <para>The <literal>LANGUAGE</literal> pragma allows language extensions to be enabled 
6078         in a portable way.
6079         It is the intention that all Haskell compilers support the
6080         <literal>LANGUAGE</literal> pragma with the same syntax, although not
6081         all extensions are supported by all compilers, of
6082         course.  The <literal>LANGUAGE</literal> pragma should be used instead
6083         of <literal>OPTIONS_GHC</literal>, if possible.</para>
6084
6085       <para>For example, to enable the FFI and preprocessing with CPP:</para>
6086
6087 <programlisting>{-# LANGUAGE ForeignFunctionInterface, CPP #-}</programlisting>
6088
6089         <para><literal>LANGUAGE</literal> is a file-header pragma (see <xref linkend="pragmas"/>).</para>
6090
6091       <para>Every language extension can also be turned into a command-line flag
6092         by prefixing it with "<literal>-X</literal>"; for example <option>-XForeignFunctionInterface</option>.
6093         (Similarly, all "<literal>-X</literal>" flags can be written as <literal>LANGUAGE</literal> pragmas.
6094       </para>
6095
6096       <para>A list of all supported language extensions can be obtained by invoking
6097         <literal>ghc --supported-languages</literal> (see <xref linkend="modes"/>).</para>
6098
6099       <para>Any extension from the <literal>Extension</literal> type defined in
6100         <ulink
6101           url="../libraries/Cabal/Language-Haskell-Extension.html"><literal>Language.Haskell.Extension</literal></ulink>
6102         may be used.  GHC will report an error if any of the requested extensions are not supported.</para>
6103     </sect2>
6104
6105
6106     <sect2 id="options-pragma">
6107       <title>OPTIONS_GHC pragma</title>
6108       <indexterm><primary>OPTIONS_GHC</primary>
6109       </indexterm>
6110       <indexterm><primary>pragma</primary><secondary>OPTIONS_GHC</secondary>
6111       </indexterm>
6112
6113       <para>The <literal>OPTIONS_GHC</literal> pragma is used to specify
6114       additional options that are given to the compiler when compiling
6115       this source file.  See <xref linkend="source-file-options"/> for
6116       details.</para>
6117
6118       <para>Previous versions of GHC accepted <literal>OPTIONS</literal> rather
6119         than <literal>OPTIONS_GHC</literal>, but that is now deprecated.</para>
6120     </sect2>
6121
6122         <para><literal>OPTIONS_GHC</literal> is a file-header pragma (see <xref linkend="pragmas"/>).</para>
6123
6124     <sect2 id="include-pragma">
6125       <title>INCLUDE pragma</title>
6126
6127       <para>The <literal>INCLUDE</literal> pragma is for specifying the names
6128         of C header files that should be <literal>#include</literal>'d into
6129         the C source code generated by the compiler for the current module (if
6130         compiling via C).  For example:</para>
6131
6132 <programlisting>
6133 {-# INCLUDE "foo.h" #-}
6134 {-# INCLUDE &lt;stdio.h&gt; #-}</programlisting>
6135
6136         <para><literal>INCLUDE</literal> is a file-header pragma (see <xref linkend="pragmas"/>).</para>
6137
6138       <para>An <literal>INCLUDE</literal> pragma is  the preferred alternative
6139         to the <option>-#include</option> option (<xref
6140           linkend="options-C-compiler" />), because the
6141         <literal>INCLUDE</literal> pragma is understood by other
6142         compilers.  Yet another alternative is to add the include file to each
6143         <literal>foreign import</literal> declaration in your code, but we
6144         don't recommend using this approach with GHC.</para>
6145     </sect2>
6146
6147     <sect2 id="deprecated-pragma">
6148       <title>DEPRECATED pragma</title>
6149       <indexterm><primary>DEPRECATED</primary>
6150       </indexterm>
6151
6152       <para>The DEPRECATED pragma lets you specify that a particular
6153       function, class, or type, is deprecated.  There are two
6154       forms.
6155
6156       <itemizedlist>
6157         <listitem>
6158           <para>You can deprecate an entire module thus:</para>
6159 <programlisting>
6160    module Wibble {-# DEPRECATED "Use Wobble instead" #-} where
6161      ...
6162 </programlisting>
6163           <para>When you compile any module that import
6164           <literal>Wibble</literal>, GHC will print the specified
6165           message.</para>
6166         </listitem>
6167
6168         <listitem>
6169           <para>You can deprecate a function, class, type, or data constructor, with the
6170           following top-level declaration:</para>
6171 <programlisting>
6172    {-# DEPRECATED f, C, T "Don't use these" #-}
6173 </programlisting>
6174           <para>When you compile any module that imports and uses any
6175           of the specified entities, GHC will print the specified
6176           message.</para>
6177           <para> You can only deprecate entities declared at top level in the module
6178           being compiled, and you can only use unqualified names in the list of
6179           entities being deprecated.  A capitalised name, such as <literal>T</literal>
6180           refers to <emphasis>either</emphasis> the type constructor <literal>T</literal>
6181           <emphasis>or</emphasis> the data constructor <literal>T</literal>, or both if
6182           both are in scope.  If both are in scope, there is currently no way to deprecate 
6183           one without the other (c.f. fixities <xref linkend="infix-tycons"/>).</para>
6184         </listitem>
6185       </itemizedlist>
6186       Any use of the deprecated item, or of anything from a deprecated
6187       module, will be flagged with an appropriate message.  However,
6188       deprecations are not reported for
6189       (a) uses of a deprecated function within its defining module, and
6190       (b) uses of a deprecated function in an export list.
6191       The latter reduces spurious complaints within a library
6192       in which one module gathers together and re-exports 
6193       the exports of several others.
6194       </para>
6195       <para>You can suppress the warnings with the flag
6196       <option>-fno-warn-deprecations</option>.</para>
6197     </sect2>
6198
6199     <sect2 id="inline-noinline-pragma">
6200       <title>INLINE and NOINLINE pragmas</title>
6201
6202       <para>These pragmas control the inlining of function
6203       definitions.</para>
6204
6205       <sect3 id="inline-pragma">
6206         <title>INLINE pragma</title>
6207         <indexterm><primary>INLINE</primary></indexterm>
6208
6209         <para>GHC (with <option>-O</option>, as always) tries to
6210         inline (or &ldquo;unfold&rdquo;) functions/values that are
6211         &ldquo;small enough,&rdquo; thus avoiding the call overhead
6212         and possibly exposing other more-wonderful optimisations.
6213         Normally, if GHC decides a function is &ldquo;too
6214         expensive&rdquo; to inline, it will not do so, nor will it
6215         export that unfolding for other modules to use.</para>
6216
6217         <para>The sledgehammer you can bring to bear is the
6218         <literal>INLINE</literal><indexterm><primary>INLINE
6219         pragma</primary></indexterm> pragma, used thusly:</para>
6220
6221 <programlisting>
6222 key_function :: Int -> String -> (Bool, Double)
6223
6224 #ifdef __GLASGOW_HASKELL__
6225 {-# INLINE key_function #-}
6226 #endif
6227 </programlisting>
6228
6229         <para>(You don't need to do the C pre-processor carry-on
6230         unless you're going to stick the code through HBC&mdash;it
6231         doesn't like <literal>INLINE</literal> pragmas.)</para>
6232
6233         <para>The major effect of an <literal>INLINE</literal> pragma
6234         is to declare a function's &ldquo;cost&rdquo; to be very low.
6235         The normal unfolding machinery will then be very keen to
6236         inline it.  However, an <literal>INLINE</literal> pragma for a 
6237         function "<literal>f</literal>" has a number of other effects:
6238 <itemizedlist>
6239 <listitem><para>
6240 No functions are inlined into <literal>f</literal>.  Otherwise
6241 GHC might inline a big function into <literal>f</literal>'s right hand side, 
6242 making <literal>f</literal> big; and then inline <literal>f</literal> blindly.
6243 </para></listitem>
6244 <listitem><para>
6245 The float-in, float-out, and common-sub-expression transformations are not 
6246 applied to the body of <literal>f</literal>.  
6247 </para></listitem>
6248 <listitem><para>
6249 An INLINE function is not worker/wrappered by strictness analysis.
6250 It's going to be inlined wholesale instead.
6251 </para></listitem>
6252 </itemizedlist>
6253 All of these effects are aimed at ensuring that what gets inlined is
6254 exactly what you asked for, no more and no less.
6255 </para>
6256         <para>Syntactically, an <literal>INLINE</literal> pragma for a
6257         function can be put anywhere its type signature could be
6258         put.</para>
6259
6260         <para><literal>INLINE</literal> pragmas are a particularly
6261         good idea for the
6262         <literal>then</literal>/<literal>return</literal> (or
6263         <literal>bind</literal>/<literal>unit</literal>) functions in
6264         a monad.  For example, in GHC's own
6265         <literal>UniqueSupply</literal> monad code, we have:</para>
6266
6267 <programlisting>
6268 #ifdef __GLASGOW_HASKELL__
6269 {-# INLINE thenUs #-}
6270 {-# INLINE returnUs #-}
6271 #endif
6272 </programlisting>
6273
6274         <para>See also the <literal>NOINLINE</literal> pragma (<xref
6275         linkend="noinline-pragma"/>).</para>
6276       </sect3>
6277
6278       <sect3 id="noinline-pragma">
6279         <title>NOINLINE pragma</title>
6280         
6281         <indexterm><primary>NOINLINE</primary></indexterm>
6282         <indexterm><primary>NOTINLINE</primary></indexterm>
6283
6284         <para>The <literal>NOINLINE</literal> pragma does exactly what
6285         you'd expect: it stops the named function from being inlined
6286         by the compiler.  You shouldn't ever need to do this, unless
6287         you're very cautious about code size.</para>
6288
6289         <para><literal>NOTINLINE</literal> is a synonym for
6290         <literal>NOINLINE</literal> (<literal>NOINLINE</literal> is
6291         specified by Haskell 98 as the standard way to disable
6292         inlining, so it should be used if you want your code to be
6293         portable).</para>
6294       </sect3>
6295
6296       <sect3 id="phase-control">
6297         <title>Phase control</title>
6298
6299         <para> Sometimes you want to control exactly when in GHC's
6300         pipeline the INLINE pragma is switched on.  Inlining happens
6301         only during runs of the <emphasis>simplifier</emphasis>.  Each
6302         run of the simplifier has a different <emphasis>phase
6303         number</emphasis>; the phase number decreases towards zero.
6304         If you use <option>-dverbose-core2core</option> you'll see the
6305         sequence of phase numbers for successive runs of the
6306         simplifier.  In an INLINE pragma you can optionally specify a
6307         phase number, thus:
6308         <itemizedlist>
6309           <listitem>
6310             <para>"<literal>INLINE[k] f</literal>" means: do not inline
6311             <literal>f</literal>
6312               until phase <literal>k</literal>, but from phase
6313               <literal>k</literal> onwards be very keen to inline it.
6314             </para></listitem>
6315           <listitem>
6316             <para>"<literal>INLINE[~k] f</literal>" means: be very keen to inline
6317             <literal>f</literal>
6318               until phase <literal>k</literal>, but from phase
6319               <literal>k</literal> onwards do not inline it.
6320             </para></listitem>
6321           <listitem>
6322             <para>"<literal>NOINLINE[k] f</literal>" means: do not inline
6323             <literal>f</literal>
6324               until phase <literal>k</literal>, but from phase
6325               <literal>k</literal> onwards be willing to inline it (as if
6326               there was no pragma).
6327             </para></listitem>
6328             <listitem>
6329             <para>"<literal>NOINLINE[~k] f</literal>" means: be willing to inline
6330             <literal>f</literal>
6331               until phase <literal>k</literal>, but from phase
6332               <literal>k</literal> onwards do not inline it.
6333             </para></listitem>
6334         </itemizedlist>
6335 The same information is summarised here:
6336 <programlisting>
6337                            -- Before phase 2     Phase 2 and later
6338   {-# INLINE   [2]  f #-}  --      No                 Yes
6339   {-# INLINE   [~2] f #-}  --      Yes                No
6340   {-# NOINLINE [2]  f #-}  --      No                 Maybe
6341   {-# NOINLINE [~2] f #-}  --      Maybe              No
6342
6343   {-# INLINE   f #-}       --      Yes                Yes
6344   {-# NOINLINE f #-}       --      No                 No
6345 </programlisting>
6346 By "Maybe" we mean that the usual heuristic inlining rules apply (if the
6347 function body is small, or it is applied to interesting-looking arguments etc).
6348 Another way to understand the semantics is this:
6349 <itemizedlist>
6350 <listitem><para>For both INLINE and NOINLINE, the phase number says
6351 when inlining is allowed at all.</para></listitem>
6352 <listitem><para>The INLINE pragma has the additional effect of making the
6353 function body look small, so that when inlining is allowed it is very likely to
6354 happen.
6355 </para></listitem>
6356 </itemizedlist>
6357 </para>
6358 <para>The same phase-numbering control is available for RULES
6359         (<xref linkend="rewrite-rules"/>).</para>
6360       </sect3>
6361     </sect2>
6362
6363     <sect2 id="line-pragma">
6364       <title>LINE pragma</title>
6365
6366       <indexterm><primary>LINE</primary><secondary>pragma</secondary></indexterm>
6367       <indexterm><primary>pragma</primary><secondary>LINE</secondary></indexterm>
6368       <para>This pragma is similar to C's <literal>&num;line</literal>
6369       pragma, and is mainly for use in automatically generated Haskell
6370       code.  It lets you specify the line number and filename of the
6371       original code; for example</para>
6372
6373 <programlisting>{-# LINE 42 "Foo.vhs" #-}</programlisting>
6374
6375       <para>if you'd generated the current file from something called
6376       <filename>Foo.vhs</filename> and this line corresponds to line
6377       42 in the original.  GHC will adjust its error messages to refer
6378       to the line/file named in the <literal>LINE</literal>
6379       pragma.</para>
6380     </sect2>
6381
6382     <sect2 id="rules">
6383       <title>RULES pragma</title>
6384
6385       <para>The RULES pragma lets you specify rewrite rules.  It is
6386       described in <xref linkend="rewrite-rules"/>.</para>
6387     </sect2>
6388
6389     <sect2 id="specialize-pragma">
6390       <title>SPECIALIZE pragma</title>
6391
6392       <indexterm><primary>SPECIALIZE pragma</primary></indexterm>
6393       <indexterm><primary>pragma, SPECIALIZE</primary></indexterm>
6394       <indexterm><primary>overloading, death to</primary></indexterm>
6395
6396       <para>(UK spelling also accepted.)  For key overloaded
6397       functions, you can create extra versions (NB: more code space)
6398       specialised to particular types.  Thus, if you have an
6399       overloaded function:</para>
6400
6401 <programlisting>
6402   hammeredLookup :: Ord key => [(key, value)] -> key -> value
6403 </programlisting>
6404
6405       <para>If it is heavily used on lists with
6406       <literal>Widget</literal> keys, you could specialise it as
6407       follows:</para>
6408
6409 <programlisting>
6410   {-# SPECIALIZE hammeredLookup :: [(Widget, value)] -> Widget -> value #-}
6411 </programlisting>
6412
6413       <para>A <literal>SPECIALIZE</literal> pragma for a function can
6414       be put anywhere its type signature could be put.</para>
6415
6416       <para>A <literal>SPECIALIZE</literal> has the effect of generating
6417       (a) a specialised version of the function and (b) a rewrite rule
6418       (see <xref linkend="rewrite-rules"/>) that rewrites a call to the
6419       un-specialised function into a call to the specialised one.</para>
6420
6421       <para>The type in a SPECIALIZE pragma can be any type that is less
6422         polymorphic than the type of the original function.  In concrete terms,
6423         if the original function is <literal>f</literal> then the pragma
6424 <programlisting>
6425   {-# SPECIALIZE f :: &lt;type&gt; #-}
6426 </programlisting>
6427       is valid if and only if the definition
6428 <programlisting>
6429   f_spec :: &lt;type&gt;
6430   f_spec = f
6431 </programlisting>
6432       is valid.  Here are some examples (where we only give the type signature
6433       for the original function, not its code):
6434 <programlisting>
6435   f :: Eq a => a -> b -> b
6436   {-# SPECIALISE f :: Int -> b -> b #-}
6437
6438   g :: (Eq a, Ix b) => a -> b -> b
6439   {-# SPECIALISE g :: (Eq a) => a -> Int -> Int #-}
6440
6441   h :: Eq a => a -> a -> a
6442   {-# SPECIALISE h :: (Eq a) => [a] -> [a] -> [a] #-}
6443 </programlisting>
6444 The last of these examples will generate a 
6445 RULE with a somewhat-complex left-hand side (try it yourself), so it might not fire very
6446 well.  If you use this kind of specialisation, let us know how well it works.
6447 </para>
6448
6449 <para>A <literal>SPECIALIZE</literal> pragma can optionally be followed with a
6450 <literal>INLINE</literal> or <literal>NOINLINE</literal> pragma, optionally 
6451 followed by a phase, as described in <xref linkend="inline-noinline-pragma"/>.
6452 The <literal>INLINE</literal> pragma affects the specialised version of the
6453 function (only), and applies even if the function is recursive.  The motivating
6454 example is this:
6455 <programlisting>
6456 -- A GADT for arrays with type-indexed representation
6457 data Arr e where
6458   ArrInt :: !Int -> ByteArray# -> Arr Int
6459   ArrPair :: !Int -> Arr e1 -> Arr e2 -> Arr (e1, e2)
6460
6461 (!:) :: Arr e -> Int -> e
6462 {-# SPECIALISE INLINE (!:) :: Arr Int -> Int -> Int #-}
6463 {-# SPECIALISE INLINE (!:) :: Arr (a, b) -> Int -> (a, b) #-}
6464 (ArrInt _ ba)     !: (I# i) = I# (indexIntArray# ba i)
6465 (ArrPair _ a1 a2) !: i      = (a1 !: i, a2 !: i)
6466 </programlisting>
6467 Here, <literal>(!:)</literal> is a recursive function that indexes arrays
6468 of type <literal>Arr e</literal>.  Consider a call to  <literal>(!:)</literal>
6469 at type <literal>(Int,Int)</literal>.  The second specialisation will fire, and
6470 the specialised function will be inlined.  It has two calls to
6471 <literal>(!:)</literal>,
6472 both at type <literal>Int</literal>.  Both these calls fire the first
6473 specialisation, whose body is also inlined.  The result is a type-based
6474 unrolling of the indexing function.</para>
6475 <para>Warning: you can make GHC diverge by using <literal>SPECIALISE INLINE</literal>
6476 on an ordinarily-recursive function.</para>
6477
6478       <para>Note: In earlier versions of GHC, it was possible to provide your own
6479       specialised function for a given type:
6480
6481 <programlisting>
6482 {-# SPECIALIZE hammeredLookup :: [(Int, value)] -> Int -> value = intLookup #-}
6483 </programlisting>
6484
6485       This feature has been removed, as it is now subsumed by the
6486       <literal>RULES</literal> pragma (see <xref linkend="rule-spec"/>).</para>
6487
6488     </sect2>
6489
6490 <sect2 id="specialize-instance-pragma">
6491 <title>SPECIALIZE instance pragma
6492 </title>
6493
6494 <para>
6495 <indexterm><primary>SPECIALIZE pragma</primary></indexterm>
6496 <indexterm><primary>overloading, death to</primary></indexterm>
6497 Same idea, except for instance declarations.  For example:
6498
6499 <programlisting>
6500 instance (Eq a) => Eq (Foo a) where { 
6501    {-# SPECIALIZE instance Eq (Foo [(Int, Bar)]) #-}
6502    ... usual stuff ...
6503  }
6504 </programlisting>
6505 The pragma must occur inside the <literal>where</literal> part
6506 of the instance declaration.
6507 </para>
6508 <para>
6509 Compatible with HBC, by the way, except perhaps in the placement
6510 of the pragma.
6511 </para>
6512
6513 </sect2>
6514
6515     <sect2 id="unpack-pragma">
6516       <title>UNPACK pragma</title>
6517
6518       <indexterm><primary>UNPACK</primary></indexterm>
6519       
6520       <para>The <literal>UNPACK</literal> indicates to the compiler
6521       that it should unpack the contents of a constructor field into
6522       the constructor itself, removing a level of indirection.  For
6523       example:</para>
6524
6525 <programlisting>
6526 data T = T {-# UNPACK #-} !Float
6527            {-# UNPACK #-} !Float
6528 </programlisting>
6529
6530       <para>will create a constructor <literal>T</literal> containing
6531       two unboxed floats.  This may not always be an optimisation: if
6532       the <function>T</function> constructor is scrutinised and the
6533       floats passed to a non-strict function for example, they will
6534       have to be reboxed (this is done automatically by the
6535       compiler).</para>
6536
6537       <para>Unpacking constructor fields should only be used in
6538       conjunction with <option>-O</option>, in order to expose
6539       unfoldings to the compiler so the reboxing can be removed as
6540       often as possible.  For example:</para>
6541
6542 <programlisting>
6543 f :: T -&#62; Float
6544 f (T f1 f2) = f1 + f2
6545 </programlisting>
6546
6547       <para>The compiler will avoid reboxing <function>f1</function>
6548       and <function>f2</function> by inlining <function>+</function>
6549       on floats, but only when <option>-O</option> is on.</para>
6550
6551       <para>Any single-constructor data is eligible for unpacking; for
6552       example</para>
6553
6554 <programlisting>
6555 data T = T {-# UNPACK #-} !(Int,Int)
6556 </programlisting>
6557
6558       <para>will store the two <literal>Int</literal>s directly in the
6559       <function>T</function> constructor, by flattening the pair.
6560       Multi-level unpacking is also supported:
6561
6562 <programlisting>
6563 data T = T {-# UNPACK #-} !S
6564 data S = S {-# UNPACK #-} !Int {-# UNPACK #-} !Int
6565 </programlisting>
6566
6567       will store two unboxed <literal>Int&num;</literal>s
6568       directly in the <function>T</function> constructor.  The
6569       unpacker can see through newtypes, too.</para>
6570
6571       <para>If a field cannot be unpacked, you will not get a warning,
6572       so it might be an idea to check the generated code with
6573       <option>-ddump-simpl</option>.</para>
6574
6575       <para>See also the <option>-funbox-strict-fields</option> flag,
6576       which essentially has the effect of adding
6577       <literal>{-#&nbsp;UNPACK&nbsp;#-}</literal> to every strict
6578       constructor field.</para>
6579     </sect2>
6580
6581     <sect2 id="source-pragma">
6582       <title>SOURCE pragma</title>
6583
6584       <indexterm><primary>SOURCE</primary></indexterm>
6585      <para>The <literal>{-# SOURCE #-}</literal> pragma is used only in <literal>import</literal> declarations,
6586      to break a module loop.  It is described in detail in <xref linkend="mutual-recursion"/>.
6587      </para>
6588 </sect2>
6589
6590 </sect1>
6591
6592 <!--  ======================= REWRITE RULES ======================== -->
6593
6594 <sect1 id="rewrite-rules">
6595 <title>Rewrite rules
6596
6597 <indexterm><primary>RULES pragma</primary></indexterm>
6598 <indexterm><primary>pragma, RULES</primary></indexterm>
6599 <indexterm><primary>rewrite rules</primary></indexterm></title>
6600
6601 <para>
6602 The programmer can specify rewrite rules as part of the source program
6603 (in a pragma).  GHC applies these rewrite rules wherever it can, provided (a) 
6604 the <option>-O</option> flag (<xref linkend="options-optimise"/>) is on, 
6605 and (b) the <option>-fno-rewrite-rules</option> flag
6606 (<xref linkend="options-f"/>) is not specified, and (c) the
6607 <option>-fglasgow-exts</option> (<xref linkend="options-language"/>)
6608 flag is active.
6609 </para>
6610
6611 <para>
6612 Here is an example:
6613
6614 <programlisting>
6615   {-# RULES
6616   "map/map"    forall f g xs.  map f (map g xs) = map (f.g) xs
6617     #-}
6618 </programlisting>
6619 </para>
6620
6621 <sect2>
6622 <title>Syntax</title>
6623
6624 <para>
6625 From a syntactic point of view:
6626
6627 <itemizedlist>
6628
6629 <listitem>
6630 <para>
6631  There may be zero or more rules in a <literal>RULES</literal> pragma, separated by semicolons (which
6632  may be generated by the layout rule).
6633 </para>
6634 </listitem>
6635
6636 <listitem>
6637 <para>
6638 The layout rule applies in a pragma.
6639 Currently no new indentation level
6640 is set, so if you put several rules in single RULES pragma and wish to use layout to separate them,
6641 you must lay out the starting in the same column as the enclosing definitions.
6642 <programlisting>
6643   {-# RULES
6644   "map/map"    forall f g xs.  map f (map g xs) = map (f.g) xs
6645   "map/append" forall f xs ys. map f (xs ++ ys) = map f xs ++ map f ys
6646     #-}
6647 </programlisting>
6648 Furthermore, the closing <literal>#-}</literal>
6649 should start in a column to the right of the opening <literal>{-#</literal>.
6650 </para>
6651 </listitem>
6652
6653 <listitem>
6654 <para>
6655  Each rule has a name, enclosed in double quotes.  The name itself has
6656 no significance at all.  It is only used when reporting how many times the rule fired.
6657 </para>
6658 </listitem>
6659
6660 <listitem>
6661 <para>
6662 A rule may optionally have a phase-control number (see <xref linkend="phase-control"/>),
6663 immediately after the name of the rule.  Thus:
6664 <programlisting>
6665   {-# RULES
6666         "map/map" [2]  forall f g xs. map f (map g xs) = map (f.g) xs
6667     #-}
6668 </programlisting>
6669 The "[2]" means that the rule is active in Phase 2 and subsequent phases.  The inverse
6670 notation "[~2]" is also accepted, meaning that the rule is active up to, but not including,
6671 Phase 2.
6672 </para>
6673 </listitem>
6674
6675
6676
6677 <listitem>
6678 <para>
6679  Each variable mentioned in a rule must either be in scope (e.g. <function>map</function>),
6680 or bound by the <literal>forall</literal> (e.g. <function>f</function>, <function>g</function>, <function>xs</function>).  The variables bound by
6681 the <literal>forall</literal> are called the <emphasis>pattern</emphasis> variables.  They are separated
6682 by spaces, just like in a type <literal>forall</literal>.
6683 </para>
6684 </listitem>
6685 <listitem>
6686
6687 <para>
6688  A pattern variable may optionally have a type signature.
6689 If the type of the pattern variable is polymorphic, it <emphasis>must</emphasis> have a type signature.
6690 For example, here is the <literal>foldr/build</literal> rule:
6691
6692 <programlisting>
6693 "fold/build"  forall k z (g::forall b. (a->b->b) -> b -> b) .
6694               foldr k z (build g) = g k z
6695 </programlisting>
6696
6697 Since <function>g</function> has a polymorphic type, it must have a type signature.
6698
6699 </para>
6700 </listitem>
6701 <listitem>
6702
6703 <para>
6704 The left hand side of a rule must consist of a top-level variable applied
6705 to arbitrary expressions.  For example, this is <emphasis>not</emphasis> OK:
6706
6707 <programlisting>
6708 "wrong1"   forall e1 e2.  case True of { True -> e1; False -> e2 } = e1
6709 "wrong2"   forall f.      f True = True
6710 </programlisting>
6711
6712 In <literal>"wrong1"</literal>, the LHS is not an application; in <literal>"wrong2"</literal>, the LHS has a pattern variable
6713 in the head.
6714 </para>
6715 </listitem>
6716 <listitem>
6717
6718 <para>
6719  A rule does not need to be in the same module as (any of) the
6720 variables it mentions, though of course they need to be in scope.
6721 </para>
6722 </listitem>
6723 <listitem>
6724
6725 <para>
6726  Rules are automatically exported from a module, just as instance declarations are.
6727 </para>
6728 </listitem>
6729
6730 </itemizedlist>
6731
6732 </para>
6733
6734 </sect2>
6735
6736 <sect2>
6737 <title>Semantics</title>
6738
6739 <para>
6740 From a semantic point of view:
6741
6742 <itemizedlist>
6743 <listitem>
6744
6745 <para>
6746 Rules are only applied if you use the <option>-O</option> flag.
6747 </para>
6748 </listitem>
6749
6750 <listitem>
6751 <para>
6752  Rules are regarded as left-to-right rewrite rules.
6753 When GHC finds an expression that is a substitution instance of the LHS
6754 of a rule, it replaces the expression by the (appropriately-substituted) RHS.
6755 By "a substitution instance" we mean that the LHS can be made equal to the
6756 expression by substituting for the pattern variables.
6757
6758 </para>
6759 </listitem>
6760 <listitem>
6761
6762 <para>
6763  The LHS and RHS of a rule are typechecked, and must have the
6764 same type.
6765
6766 </para>
6767 </listitem>
6768 <listitem>
6769
6770 <para>
6771  GHC makes absolutely no attempt to verify that the LHS and RHS
6772 of a rule have the same meaning.  That is undecidable in general, and
6773 infeasible in most interesting cases.  The responsibility is entirely the programmer's!
6774
6775 </para>
6776 </listitem>
6777 <listitem>
6778
6779 <para>
6780  GHC makes no attempt to make sure that the rules are confluent or
6781 terminating.  For example:
6782
6783 <programlisting>
6784   "loop"        forall x,y.  f x y = f y x
6785 </programlisting>
6786
6787 This rule will cause the compiler to go into an infinite loop.
6788
6789 </para>
6790 </listitem>
6791 <listitem>
6792
6793 <para>
6794  If more than one rule matches a call, GHC will choose one arbitrarily to apply.
6795
6796 </para>
6797 </listitem>
6798 <listitem>
6799 <para>
6800  GHC currently uses a very simple, syntactic, matching algorithm
6801 for matching a rule LHS with an expression.  It seeks a substitution
6802 which makes the LHS and expression syntactically equal modulo alpha
6803 conversion.  The pattern (rule), but not the expression, is eta-expanded if
6804 necessary.  (Eta-expanding the expression can lead to laziness bugs.)
6805 But not beta conversion (that's called higher-order matching).
6806 </para>
6807
6808 <para>
6809 Matching is carried out on GHC's intermediate language, which includes
6810 type abstractions and applications.  So a rule only matches if the
6811 types match too.  See <xref linkend="rule-spec"/> below.
6812 </para>
6813 </listitem>
6814 <listitem>
6815
6816 <para>
6817  GHC keeps trying to apply the rules as it optimises the program.
6818 For example, consider:
6819
6820 <programlisting>
6821   let s = map f
6822       t = map g
6823   in
6824   s (t xs)
6825 </programlisting>
6826
6827 The expression <literal>s (t xs)</literal> does not match the rule <literal>"map/map"</literal>, but GHC
6828 will substitute for <varname>s</varname> and <varname>t</varname>, giving an expression which does match.
6829 If <varname>s</varname> or <varname>t</varname> was (a) used more than once, and (b) large or a redex, then it would
6830 not be substituted, and the rule would not fire.
6831
6832 </para>
6833 </listitem>
6834 <listitem>
6835
6836 <para>
6837  In the earlier phases of compilation, GHC inlines <emphasis>nothing
6838 that appears on the LHS of a rule</emphasis>, because once you have substituted
6839 for something you can't match against it (given the simple minded
6840 matching).  So if you write the rule
6841
6842 <programlisting>
6843         "map/map"       forall f,g.  map f . map g = map (f.g)
6844 </programlisting>
6845
6846 this <emphasis>won't</emphasis> match the expression <literal>map f (map g xs)</literal>.
6847 It will only match something written with explicit use of ".".
6848 Well, not quite.  It <emphasis>will</emphasis> match the expression
6849
6850 <programlisting>
6851 wibble f g xs
6852 </programlisting>
6853
6854 where <function>wibble</function> is defined:
6855
6856 <programlisting>
6857 wibble f g = map f . map g
6858 </programlisting>
6859
6860 because <function>wibble</function> will be inlined (it's small).
6861
6862 Later on in compilation, GHC starts inlining even things on the
6863 LHS of rules, but still leaves the rules enabled.  This inlining
6864 policy is controlled by the per-simplification-pass flag <option>-finline-phase</option><emphasis>n</emphasis>.
6865
6866 </para>
6867 </listitem>
6868 <listitem>
6869
6870 <para>
6871  All rules are implicitly exported from the module, and are therefore
6872 in force in any module that imports the module that defined the rule, directly
6873 or indirectly.  (That is, if A imports B, which imports C, then C's rules are
6874 in force when compiling A.)  The situation is very similar to that for instance
6875 declarations.
6876 </para>
6877 </listitem>
6878
6879 </itemizedlist>
6880
6881 </para>
6882
6883 </sect2>
6884
6885 <sect2>
6886 <title>List fusion</title>
6887
6888 <para>
6889 The RULES mechanism is used to implement fusion (deforestation) of common list functions.
6890 If a "good consumer" consumes an intermediate list constructed by a "good producer", the
6891 intermediate list should be eliminated entirely.
6892 </para>
6893
6894 <para>
6895 The following are good producers:
6896
6897 <itemizedlist>
6898 <listitem>
6899
6900 <para>
6901  List comprehensions
6902 </para>
6903 </listitem>
6904 <listitem>
6905
6906 <para>
6907  Enumerations of <literal>Int</literal> and <literal>Char</literal> (e.g. <literal>['a'..'z']</literal>).
6908 </para>
6909 </listitem>
6910 <listitem>
6911
6912 <para>
6913  Explicit lists (e.g. <literal>[True, False]</literal>)
6914 </para>
6915 </listitem>
6916 <listitem>
6917
6918 <para>
6919  The cons constructor (e.g <literal>3:4:[]</literal>)
6920 </para>
6921 </listitem>
6922 <listitem>
6923
6924 <para>
6925  <function>++</function>
6926 </para>
6927 </listitem>
6928
6929 <listitem>
6930 <para>
6931  <function>map</function>
6932 </para>
6933 </listitem>
6934
6935 <listitem>
6936 <para>
6937 <function>take</function>, <function>filter</function>
6938 </para>
6939 </listitem>
6940 <listitem>
6941
6942 <para>
6943  <function>iterate</function>, <function>repeat</function>
6944 </para>
6945 </listitem>
6946 <listitem>
6947
6948 <para>
6949  <function>zip</function>, <function>zipWith</function>
6950 </para>
6951 </listitem>
6952
6953 </itemizedlist>
6954
6955 </para>
6956
6957 <para>
6958 The following are good consumers:
6959
6960 <itemizedlist>
6961 <listitem>
6962
6963 <para>
6964  List comprehensions
6965 </para>
6966 </listitem>
6967 <listitem>
6968
6969 <para>
6970  <function>array</function> (on its second argument)
6971 </para>
6972 </listitem>
6973 <listitem>
6974
6975 <para>
6976  <function>++</function> (on its first argument)
6977 </para>
6978 </listitem>
6979
6980 <listitem>
6981 <para>
6982  <function>foldr</function>
6983 </para>
6984 </listitem>
6985
6986 <listitem>
6987 <para>
6988  <function>map</function>
6989 </para>
6990 </listitem>
6991 <listitem>
6992
6993 <para>
6994 <function>take</function>, <function>filter</function>
6995 </para>
6996 </listitem>
6997 <listitem>
6998
6999 <para>
7000  <function>concat</function>
7001 </para>
7002 </listitem>
7003 <listitem>
7004
7005 <para>
7006  <function>unzip</function>, <function>unzip2</function>, <function>unzip3</function>, <function>unzip4</function>
7007 </para>
7008 </listitem>
7009 <listitem>
7010
7011 <para>
7012  <function>zip</function>, <function>zipWith</function> (but on one argument only; if both are good producers, <function>zip</function>
7013 will fuse with one but not the other)
7014 </para>
7015 </listitem>
7016 <listitem>
7017
7018 <para>
7019  <function>partition</function>
7020 </para>
7021 </listitem>
7022 <listitem>
7023
7024 <para>
7025  <function>head</function>
7026 </para>
7027 </listitem>
7028 <listitem>
7029
7030 <para>
7031  <function>and</function>, <function>or</function>, <function>any</function>, <function>all</function>
7032 </para>
7033 </listitem>
7034 <listitem>
7035
7036 <para>
7037  <function>sequence&lowbar;</function>
7038 </para>
7039 </listitem>
7040 <listitem>
7041
7042 <para>
7043  <function>msum</function>
7044 </para>
7045 </listitem>
7046 <listitem>
7047
7048 <para>
7049  <function>sortBy</function>
7050 </para>
7051 </listitem>
7052
7053 </itemizedlist>
7054
7055 </para>
7056
7057  <para>
7058 So, for example, the following should generate no intermediate lists:
7059
7060 <programlisting>
7061 array (1,10) [(i,i*i) | i &#60;- map (+ 1) [0..9]]
7062 </programlisting>
7063
7064 </para>
7065
7066 <para>
7067 This list could readily be extended; if there are Prelude functions that you use
7068 a lot which are not included, please tell us.
7069 </para>
7070
7071 <para>
7072 If you want to write your own good consumers or producers, look at the
7073 Prelude definitions of the above functions to see how to do so.
7074 </para>
7075
7076 </sect2>
7077
7078 <sect2 id="rule-spec">
7079 <title>Specialisation
7080 </title>
7081
7082 <para>
7083 Rewrite rules can be used to get the same effect as a feature
7084 present in earlier versions of GHC.
7085 For example, suppose that:
7086
7087 <programlisting>
7088 genericLookup :: Ord a => Table a b   -> a   -> b
7089 intLookup     ::          Table Int b -> Int -> b
7090 </programlisting>
7091
7092 where <function>intLookup</function> is an implementation of
7093 <function>genericLookup</function> that works very fast for
7094 keys of type <literal>Int</literal>.  You might wish
7095 to tell GHC to use <function>intLookup</function> instead of
7096 <function>genericLookup</function> whenever the latter was called with
7097 type <literal>Table Int b -&gt; Int -&gt; b</literal>.
7098 It used to be possible to write
7099
7100 <programlisting>
7101 {-# SPECIALIZE genericLookup :: Table Int b -> Int -> b = intLookup #-}
7102 </programlisting>
7103
7104 This feature is no longer in GHC, but rewrite rules let you do the same thing:
7105
7106 <programlisting>
7107 {-# RULES "genericLookup/Int" genericLookup = intLookup #-}
7108 </programlisting>
7109
7110 This slightly odd-looking rule instructs GHC to replace
7111 <function>genericLookup</function> by <function>intLookup</function>
7112 <emphasis>whenever the types match</emphasis>.
7113 What is more, this rule does not need to be in the same
7114 file as <function>genericLookup</function>, unlike the
7115 <literal>SPECIALIZE</literal> pragmas which currently do (so that they
7116 have an original definition available to specialise).
7117 </para>
7118
7119 <para>It is <emphasis>Your Responsibility</emphasis> to make sure that
7120 <function>intLookup</function> really behaves as a specialised version
7121 of <function>genericLookup</function>!!!</para>
7122
7123 <para>An example in which using <literal>RULES</literal> for
7124 specialisation will Win Big:
7125
7126 <programlisting>
7127 toDouble :: Real a => a -> Double
7128 toDouble = fromRational . toRational
7129
7130 {-# RULES "toDouble/Int" toDouble = i2d #-}
7131 i2d (I# i) = D# (int2Double# i) -- uses Glasgow prim-op directly
7132 </programlisting>
7133
7134 The <function>i2d</function> function is virtually one machine
7135 instruction; the default conversion&mdash;via an intermediate
7136 <literal>Rational</literal>&mdash;is obscenely expensive by
7137 comparison.
7138 </para>
7139
7140 </sect2>
7141
7142 <sect2>
7143 <title>Controlling what's going on</title>
7144
7145 <para>
7146
7147 <itemizedlist>
7148 <listitem>
7149
7150 <para>
7151  Use <option>-ddump-rules</option> to see what transformation rules GHC is using.
7152 </para>
7153 </listitem>
7154 <listitem>
7155
7156 <para>
7157  Use <option>-ddump-simpl-stats</option> to see what rules are being fired.
7158 If you add <option>-dppr-debug</option> you get a more detailed listing.
7159 </para>
7160 </listitem>
7161 <listitem>
7162
7163 <para>
7164  The definition of (say) <function>build</function> in <filename>GHC/Base.lhs</filename> looks like this:
7165
7166 <programlisting>
7167         build   :: forall a. (forall b. (a -> b -> b) -> b -> b) -> [a]
7168         {-# INLINE build #-}
7169         build g = g (:) []
7170 </programlisting>
7171
7172 Notice the <literal>INLINE</literal>!  That prevents <literal>(:)</literal> from being inlined when compiling
7173 <literal>PrelBase</literal>, so that an importing module will &ldquo;see&rdquo; the <literal>(:)</literal>, and can
7174 match it on the LHS of a rule.  <literal>INLINE</literal> prevents any inlining happening
7175 in the RHS of the <literal>INLINE</literal> thing.  I regret the delicacy of this.
7176
7177 </para>
7178 </listitem>
7179 <listitem>
7180
7181 <para>
7182  In <filename>libraries/base/GHC/Base.lhs</filename> look at the rules for <function>map</function> to
7183 see how to write rules that will do fusion and yet give an efficient
7184 program even if fusion doesn't happen.  More rules in <filename>GHC/List.lhs</filename>.
7185 </para>
7186 </listitem>
7187
7188 </itemizedlist>
7189
7190 </para>
7191
7192 </sect2>
7193
7194 <sect2 id="core-pragma">
7195   <title>CORE pragma</title>
7196
7197   <indexterm><primary>CORE pragma</primary></indexterm>
7198   <indexterm><primary>pragma, CORE</primary></indexterm>
7199   <indexterm><primary>core, annotation</primary></indexterm>
7200
7201 <para>
7202   The external core format supports <quote>Note</quote> annotations;
7203   the <literal>CORE</literal> pragma gives a way to specify what these
7204   should be in your Haskell source code.  Syntactically, core
7205   annotations are attached to expressions and take a Haskell string
7206   literal as an argument.  The following function definition shows an
7207   example:
7208
7209 <programlisting>
7210 f x = ({-# CORE "foo" #-} show) ({-# CORE "bar" #-} x)
7211 </programlisting>
7212
7213   Semantically, this is equivalent to:
7214
7215 <programlisting>
7216 g x = show x
7217 </programlisting>
7218 </para>
7219
7220 <para>
7221   However, when external core is generated (via
7222   <option>-fext-core</option>), there will be Notes attached to the
7223   expressions <function>show</function> and <varname>x</varname>.
7224   The core function declaration for <function>f</function> is:
7225 </para>
7226
7227 <programlisting>
7228   f :: %forall a . GHCziShow.ZCTShow a ->
7229                    a -> GHCziBase.ZMZN GHCziBase.Char =
7230     \ @ a (zddShow::GHCziShow.ZCTShow a) (eta::a) ->
7231         (%note "foo"
7232          %case zddShow %of (tpl::GHCziShow.ZCTShow a)
7233            {GHCziShow.ZCDShow
7234             (tpl1::GHCziBase.Int ->
7235                    a ->
7236                    GHCziBase.ZMZN GHCziBase.Char -> GHCziBase.ZMZN GHCziBase.Cha
7237 r)
7238             (tpl2::a -> GHCziBase.ZMZN GHCziBase.Char)
7239             (tpl3::GHCziBase.ZMZN a ->
7240                    GHCziBase.ZMZN GHCziBase.Char -> GHCziBase.ZMZN GHCziBase.Cha
7241 r) ->
7242               tpl2})
7243         (%note "bar"
7244          eta);
7245 </programlisting>
7246
7247 <para>
7248   Here, we can see that the function <function>show</function> (which
7249   has been expanded out to a case expression over the Show dictionary)
7250   has a <literal>%note</literal> attached to it, as does the
7251   expression <varname>eta</varname> (which used to be called
7252   <varname>x</varname>).
7253 </para>
7254
7255 </sect2>
7256
7257 </sect1>
7258
7259 <sect1 id="special-ids">
7260 <title>Special built-in functions</title>
7261 <para>GHC has a few built-in functions with special behaviour.  These
7262 are now described in the module <ulink
7263 url="../libraries/base/GHC-Prim.html"><literal>GHC.Prim</literal></ulink>
7264 in the library documentation.</para>
7265 </sect1>
7266
7267
7268 <sect1 id="generic-classes">
7269 <title>Generic classes</title>
7270
7271 <para>
7272 The ideas behind this extension are described in detail in "Derivable type classes",
7273 Ralf Hinze and Simon Peyton Jones, Haskell Workshop, Montreal Sept 2000, pp94-105.
7274 An example will give the idea:
7275 </para>
7276
7277 <programlisting>
7278   import Generics
7279
7280   class Bin a where
7281     toBin   :: a -> [Int]
7282     fromBin :: [Int] -> (a, [Int])
7283   
7284     toBin {| Unit |}    Unit      = []
7285     toBin {| a :+: b |} (Inl x)   = 0 : toBin x
7286     toBin {| a :+: b |} (Inr y)   = 1 : toBin y
7287     toBin {| a :*: b |} (x :*: y) = toBin x ++ toBin y
7288   
7289     fromBin {| Unit |}    bs      = (Unit, bs)
7290     fromBin {| a :+: b |} (0:bs)  = (Inl x, bs')    where (x,bs') = fromBin bs
7291     fromBin {| a :+: b |} (1:bs)  = (Inr y, bs')    where (y,bs') = fromBin bs
7292     fromBin {| a :*: b |} bs      = (x :*: y, bs'') where (x,bs' ) = fromBin bs
7293                                                           (y,bs'') = fromBin bs'
7294 </programlisting>
7295 <para>
7296 This class declaration explains how <literal>toBin</literal> and <literal>fromBin</literal>
7297 work for arbitrary data types.  They do so by giving cases for unit, product, and sum,
7298 which are defined thus in the library module <literal>Generics</literal>:
7299 </para>
7300 <programlisting>
7301   data Unit    = Unit
7302   data a :+: b = Inl a | Inr b
7303   data a :*: b = a :*: b
7304 </programlisting>
7305 <para>
7306 Now you can make a data type into an instance of Bin like this:
7307 <programlisting>
7308   instance (Bin a, Bin b) => Bin (a,b)
7309   instance Bin a => Bin [a]
7310 </programlisting>
7311 That is, just leave off the "where" clause.  Of course, you can put in the
7312 where clause and over-ride whichever methods you please.
7313 </para>
7314
7315     <sect2>
7316       <title> Using generics </title>
7317       <para>To use generics you need to</para>
7318       <itemizedlist>
7319         <listitem>
7320           <para>Use the flags <option>-fglasgow-exts</option> (to enable the extra syntax), 
7321                 <option>-XGenerics</option> (to generate extra per-data-type code),
7322                 and <option>-package lang</option> (to make the <literal>Generics</literal> library
7323                 available.  </para>
7324         </listitem>
7325         <listitem>
7326           <para>Import the module <literal>Generics</literal> from the
7327           <literal>lang</literal> package.  This import brings into
7328           scope the data types <literal>Unit</literal>,
7329           <literal>:*:</literal>, and <literal>:+:</literal>.  (You
7330           don't need this import if you don't mention these types
7331           explicitly; for example, if you are simply giving instance
7332           declarations.)</para>
7333         </listitem>
7334       </itemizedlist>
7335     </sect2>
7336
7337 <sect2> <title> Changes wrt the paper </title>
7338 <para>
7339 Note that the type constructors <literal>:+:</literal> and <literal>:*:</literal> 
7340 can be written infix (indeed, you can now use
7341 any operator starting in a colon as an infix type constructor).  Also note that
7342 the type constructors are not exactly as in the paper (Unit instead of 1, etc).
7343 Finally, note that the syntax of the type patterns in the class declaration
7344 uses "<literal>{|</literal>" and "<literal>|}</literal>" brackets; curly braces
7345 alone would ambiguous when they appear on right hand sides (an extension we 
7346 anticipate wanting).
7347 </para>
7348 </sect2>
7349
7350 <sect2> <title>Terminology and restrictions</title>
7351 <para>
7352 Terminology.  A "generic default method" in a class declaration
7353 is one that is defined using type patterns as above.
7354 A "polymorphic default method" is a default method defined as in Haskell 98.
7355 A "generic class declaration" is a class declaration with at least one
7356 generic default method.
7357 </para>
7358
7359 <para>
7360 Restrictions:
7361 <itemizedlist>
7362 <listitem>
7363 <para>
7364 Alas, we do not yet implement the stuff about constructor names and 
7365 field labels.
7366 </para>
7367 </listitem>
7368
7369 <listitem>
7370 <para>
7371 A generic class can have only one parameter; you can't have a generic
7372 multi-parameter class.
7373 </para>
7374 </listitem>
7375
7376 <listitem>
7377 <para>
7378 A default method must be defined entirely using type patterns, or entirely
7379 without.  So this is illegal:
7380 <programlisting>
7381   class Foo a where
7382     op :: a -> (a, Bool)
7383     op {| Unit |} Unit = (Unit, True)
7384     op x               = (x,    False)
7385 </programlisting>
7386 However it is perfectly OK for some methods of a generic class to have 
7387 generic default methods and others to have polymorphic default methods.
7388 </para>
7389 </listitem>
7390
7391 <listitem>
7392 <para>
7393 The type variable(s) in the type pattern for a generic method declaration
7394 scope over the right hand side.  So this is legal (note the use of the type variable ``p'' in a type signature on the right hand side:
7395 <programlisting>
7396   class Foo a where
7397     op :: a -> Bool
7398     op {| p :*: q |} (x :*: y) = op (x :: p)
7399     ...
7400 </programlisting>
7401 </para>
7402 </listitem>
7403
7404 <listitem>
7405 <para>
7406 The type patterns in a generic default method must take one of the forms:
7407 <programlisting>
7408        a :+: b
7409        a :*: b
7410        Unit
7411 </programlisting>
7412 where "a" and "b" are type variables.  Furthermore, all the type patterns for
7413 a single type constructor (<literal>:*:</literal>, say) must be identical; they
7414 must use the same type variables.  So this is illegal:
7415 <programlisting>
7416   class Foo a where
7417     op :: a -> Bool
7418     op {| a :+: b |} (Inl x) = True
7419     op {| p :+: q |} (Inr y) = False
7420 </programlisting>
7421 The type patterns must be identical, even in equations for different methods of the class.
7422 So this too is illegal:
7423 <programlisting>
7424   class Foo a where
7425     op1 :: a -> Bool
7426     op1 {| a :*: b |} (x :*: y) = True
7427
7428     op2 :: a -> Bool
7429     op2 {| p :*: q |} (x :*: y) = False
7430 </programlisting>
7431 (The reason for this restriction is that we gather all the equations for a particular type constructor
7432 into a single generic instance declaration.)
7433 </para>
7434 </listitem>
7435
7436 <listitem>
7437 <para>
7438 A generic method declaration must give a case for each of the three type constructors.
7439 </para>
7440 </listitem>
7441
7442 <listitem>
7443 <para>
7444 The type for a generic method can be built only from:
7445   <itemizedlist>
7446   <listitem> <para> Function arrows </para> </listitem>
7447   <listitem> <para> Type variables </para> </listitem>
7448   <listitem> <para> Tuples </para> </listitem>
7449   <listitem> <para> Arbitrary types not involving type variables </para> </listitem>
7450   </itemizedlist>
7451 Here are some example type signatures for generic methods:
7452 <programlisting>
7453     op1 :: a -> Bool
7454     op2 :: Bool -> (a,Bool)
7455     op3 :: [Int] -> a -> a
7456     op4 :: [a] -> Bool
7457 </programlisting>
7458 Here, op1, op2, op3 are OK, but op4 is rejected, because it has a type variable
7459 inside a list.  
7460 </para>
7461 <para>
7462 This restriction is an implementation restriction: we just haven't got around to
7463 implementing the necessary bidirectional maps over arbitrary type constructors.
7464 It would be relatively easy to add specific type constructors, such as Maybe and list,
7465 to the ones that are allowed.</para>
7466 </listitem>
7467
7468 <listitem>
7469 <para>
7470 In an instance declaration for a generic class, the idea is that the compiler
7471 will fill in the methods for you, based on the generic templates.  However it can only
7472 do so if
7473   <itemizedlist>
7474   <listitem>
7475   <para>
7476   The instance type is simple (a type constructor applied to type variables, as in Haskell 98).
7477   </para>
7478   </listitem>
7479   <listitem>
7480   <para>
7481   No constructor of the instance type has unboxed fields.
7482   </para>
7483   </listitem>
7484   </itemizedlist>
7485 (Of course, these things can only arise if you are already using GHC extensions.)
7486 However, you can still give an instance declarations for types which break these rules,
7487 provided you give explicit code to override any generic default methods.
7488 </para>
7489 </listitem>
7490
7491 </itemizedlist>
7492 </para>
7493
7494 <para>
7495 The option <option>-ddump-deriv</option> dumps incomprehensible stuff giving details of 
7496 what the compiler does with generic declarations.
7497 </para>
7498
7499 </sect2>
7500
7501 <sect2> <title> Another example </title>
7502 <para>
7503 Just to finish with, here's another example I rather like:
7504 <programlisting>
7505   class Tag a where
7506     nCons :: a -> Int
7507     nCons {| Unit |}    _ = 1
7508     nCons {| a :*: b |} _ = 1
7509     nCons {| a :+: b |} _ = nCons (bot::a) + nCons (bot::b)
7510   
7511     tag :: a -> Int
7512     tag {| Unit |}    _       = 1
7513     tag {| a :*: b |} _       = 1   
7514     tag {| a :+: b |} (Inl x) = tag x
7515     tag {| a :+: b |} (Inr y) = nCons (bot::a) + tag y
7516 </programlisting>
7517 </para>
7518 </sect2>
7519 </sect1>
7520
7521 <sect1 id="monomorphism">
7522 <title>Control over monomorphism</title>
7523
7524 <para>GHC supports two flags that control the way in which generalisation is
7525 carried out at let and where bindings.
7526 </para>
7527
7528 <sect2>
7529 <title>Switching off the dreaded Monomorphism Restriction</title>
7530           <indexterm><primary><option>-XNoMonomorphismRestriction</option></primary></indexterm>
7531
7532 <para>Haskell's monomorphism restriction (see 
7533 <ulink url="http://www.haskell.org/onlinereport/decls.html#sect4.5.5">Section
7534 4.5.5</ulink>
7535 of the Haskell Report)
7536 can be completely switched off by
7537 <option>-XNoMonomorphismRestriction</option>.
7538 </para>
7539 </sect2>
7540
7541 <sect2>
7542 <title>Monomorphic pattern bindings</title>
7543           <indexterm><primary><option>-XNoMonoPatBinds</option></primary></indexterm>
7544           <indexterm><primary><option>-XMonoPatBinds</option></primary></indexterm>
7545
7546           <para> As an experimental change, we are exploring the possibility of
7547           making pattern bindings monomorphic; that is, not generalised at all.  
7548             A pattern binding is a binding whose LHS has no function arguments,
7549             and is not a simple variable.  For example:
7550 <programlisting>
7551   f x = x                    -- Not a pattern binding
7552   f = \x -> x                -- Not a pattern binding
7553   f :: Int -> Int = \x -> x  -- Not a pattern binding
7554
7555   (g,h) = e                  -- A pattern binding
7556   (f) = e                    -- A pattern binding
7557   [x] = e                    -- A pattern binding
7558 </programlisting>
7559 Experimentally, GHC now makes pattern bindings monomorphic <emphasis>by
7560 default</emphasis>.  Use <option>-XNoMonoPatBinds</option> to recover the
7561 standard behaviour.
7562 </para>
7563 </sect2>
7564 </sect1>
7565
7566
7567
7568 <!-- Emacs stuff:
7569      ;;; Local Variables: ***
7570      ;;; mode: xml ***
7571      ;;; sgml-parent-document: ("users_guide.xml" "book" "chapter" "sect1") ***
7572      ;;; ispell-local-dictionary: "british" ***
7573      ;;; End: ***
7574  -->
7575