/* ----------------------------------------------------------------------------- * $Id: StgMiscClosures.hc,v 1.66 2001/03/23 16:36:21 simonmar Exp $ * * (c) The GHC Team, 1998-2000 * * Entry code for various built-in closure types. * * ---------------------------------------------------------------------------*/ #include "Stg.h" #include "Rts.h" #include "RtsUtils.h" #include "RtsFlags.h" #include "StgMiscClosures.h" #include "HeapStackCheck.h" /* for stg_gen_yield */ #include "Storage.h" #include "StoragePriv.h" #include "Profiling.h" #include "Prelude.h" #include "Schedule.h" #include "SMP.h" #if defined(GRAN) || defined(PAR) # include "GranSimRts.h" /* for DumpRawGranEvent */ # include "StgRun.h" /* for StgReturn and register saving */ #endif #ifdef HAVE_STDIO_H #include #endif /* ToDo: make the printing of panics more win32-friendly, i.e., * pop up some lovely message boxes (as well). */ #define DUMP_ERRMSG(msg) STGCALL2(fprintf,stderr,msg) /* Template for the entry code of non-enterable closures. */ #define NON_ENTERABLE_ENTRY_CODE(type) \ STGFUN(stg_##type##_entry) \ { \ FB_ \ DUMP_ERRMSG(#type " object entered!\n"); \ STGCALL1(shutdownHaskellAndExit, EXIT_FAILURE); \ return NULL; \ FE_ \ } /* ----------------------------------------------------------------------------- Support for the bytecode interpreter. -------------------------------------------------------------------------- */ /* 9 bits of return code for constructors created by the interpreter. */ FN_(stg_interp_constr_entry) { /* R1 points at the constructor */ FB_ /* STGCALL2(fprintf,stderr,"stg_interp_constr_entry (direct return)!\n"); */ /* Pointless, since SET_TAG doesn't do anything */ SET_TAG( GET_TAG(GET_INFO(R1.cl))); JMP_(ENTRY_CODE((P_)(*Sp))); FE_ } FN_(stg_interp_constr1_entry) { FB_ JMP_(RET_VEC((P_)(*Sp),0)); FE_ } FN_(stg_interp_constr2_entry) { FB_ JMP_(RET_VEC((P_)(*Sp),1)); FE_ } FN_(stg_interp_constr3_entry) { FB_ JMP_(RET_VEC((P_)(*Sp),2)); FE_ } FN_(stg_interp_constr4_entry) { FB_ JMP_(RET_VEC((P_)(*Sp),3)); FE_ } FN_(stg_interp_constr5_entry) { FB_ JMP_(RET_VEC((P_)(*Sp),4)); FE_ } FN_(stg_interp_constr6_entry) { FB_ JMP_(RET_VEC((P_)(*Sp),5)); FE_ } FN_(stg_interp_constr7_entry) { FB_ JMP_(RET_VEC((P_)(*Sp),6)); FE_ } FN_(stg_interp_constr8_entry) { FB_ JMP_(RET_VEC((P_)(*Sp),7)); FE_ } /* Some info tables to be used when compiled code returns a value to the interpreter, i.e. the interpreter pushes one of these onto the stack before entering a value. What the code does is to impedance-match the compiled return convention (in R1p/R1n/F1/D1 etc) to the interpreter's convention (returned value is on top of stack), and then cause the scheduler to enter the interpreter. On entry, the stack (growing down) looks like this: ptr to BCO holding return continuation ptr to one of these info tables. The info table code, both direct and vectored, must: * push R1/F1/D1 on the stack, and its tag if necessary * push the BCO (so it's now on the stack twice) * Yield, ie, go to the scheduler. Scheduler examines the t.o.s, discovers it is a BCO, and proceeds directly to the bytecode interpreter. That pops the top element (the BCO, containing the return continuation), and interprets it. Net result: return continuation gets interpreted, with the following stack: ptr to this BCO ptr to the info table just jumped thru return value which is just what we want -- the "standard" return layout for the interpreter. Hurrah! Don't ask me how unboxed tuple returns are supposed to work. We haven't got a good story about that yet. */ /* When the returned value is in R1 and it is a pointer, so doesn't need tagging ... */ #define STG_CtoI_RET_R1p_Template(label) \ IFN_(label) \ { \ StgPtr bco; \ FB_ \ bco = ((StgPtr*)Sp)[1]; \ Sp -= 1; \ ((StgPtr*)Sp)[0] = R1.p; \ Sp -= 1; \ ((StgPtr*)Sp)[0] = bco; \ JMP_(stg_yield_to_interpreter); \ FE_ \ } STG_CtoI_RET_R1p_Template(stg_ctoi_ret_R1p_entry); STG_CtoI_RET_R1p_Template(stg_ctoi_ret_R1p_0_entry); STG_CtoI_RET_R1p_Template(stg_ctoi_ret_R1p_1_entry); STG_CtoI_RET_R1p_Template(stg_ctoi_ret_R1p_2_entry); STG_CtoI_RET_R1p_Template(stg_ctoi_ret_R1p_3_entry); STG_CtoI_RET_R1p_Template(stg_ctoi_ret_R1p_4_entry); STG_CtoI_RET_R1p_Template(stg_ctoi_ret_R1p_5_entry); STG_CtoI_RET_R1p_Template(stg_ctoi_ret_R1p_6_entry); STG_CtoI_RET_R1p_Template(stg_ctoi_ret_R1p_7_entry); VEC_POLY_INFO_TABLE(stg_ctoi_ret_R1p,0, NULL/*srt*/, 0/*srt_off*/, 0/*srt_len*/, RET_BCO,, EF_); /* When the returned value is in R1 and it isn't a pointer. */ #define STG_CtoI_RET_R1n_Template(label) \ IFN_(label) \ { \ StgPtr bco; \ FB_ \ bco = ((StgPtr*)Sp)[1]; \ Sp -= 1; \ ((StgPtr*)Sp)[0] = (StgPtr)R1.i; \ Sp -= 1; \ ((StgPtr*)Sp)[0] = (StgPtr)1; /* tag */ \ Sp -= 1; \ ((StgPtr*)Sp)[0] = bco; \ JMP_(stg_yield_to_interpreter); \ FE_ \ } STG_CtoI_RET_R1n_Template(stg_ctoi_ret_R1n_entry); STG_CtoI_RET_R1n_Template(stg_ctoi_ret_R1n_0_entry); STG_CtoI_RET_R1n_Template(stg_ctoi_ret_R1n_1_entry); STG_CtoI_RET_R1n_Template(stg_ctoi_ret_R1n_2_entry); STG_CtoI_RET_R1n_Template(stg_ctoi_ret_R1n_3_entry); STG_CtoI_RET_R1n_Template(stg_ctoi_ret_R1n_4_entry); STG_CtoI_RET_R1n_Template(stg_ctoi_ret_R1n_5_entry); STG_CtoI_RET_R1n_Template(stg_ctoi_ret_R1n_6_entry); STG_CtoI_RET_R1n_Template(stg_ctoi_ret_R1n_7_entry); VEC_POLY_INFO_TABLE(stg_ctoi_ret_R1n,0, NULL/*srt*/, 0/*srt_off*/, 0/*srt_len*/, RET_BCO,, EF_); /* When the returned value is in F1 ... */ #define STG_CtoI_RET_F1_Template(label) \ IFN_(label) \ { \ StgPtr bco; \ FB_ \ bco = ((StgPtr*)Sp)[1]; \ Sp -= sizeofW(StgFloat); \ ASSIGN_FLT((W_*)Sp, F1); \ Sp -= 1; \ ((StgPtr*)Sp)[0] = (StgPtr)sizeofW(StgFloat); \ Sp -= 1; \ ((StgPtr*)Sp)[0] = bco; \ JMP_(stg_yield_to_interpreter); \ FE_ \ } STG_CtoI_RET_F1_Template(stg_ctoi_ret_F1_entry); STG_CtoI_RET_F1_Template(stg_ctoi_ret_F1_0_entry); STG_CtoI_RET_F1_Template(stg_ctoi_ret_F1_1_entry); STG_CtoI_RET_F1_Template(stg_ctoi_ret_F1_2_entry); STG_CtoI_RET_F1_Template(stg_ctoi_ret_F1_3_entry); STG_CtoI_RET_F1_Template(stg_ctoi_ret_F1_4_entry); STG_CtoI_RET_F1_Template(stg_ctoi_ret_F1_5_entry); STG_CtoI_RET_F1_Template(stg_ctoi_ret_F1_6_entry); STG_CtoI_RET_F1_Template(stg_ctoi_ret_F1_7_entry); VEC_POLY_INFO_TABLE(stg_ctoi_ret_F1,0, NULL/*srt*/, 0/*srt_off*/, 0/*srt_len*/, RET_BCO,, EF_); /* When the returned value is in D1 ... */ #define STG_CtoI_RET_D1_Template(label) \ IFN_(label) \ { \ StgPtr bco; \ FB_ \ bco = ((StgPtr*)Sp)[1]; \ Sp -= sizeofW(StgDouble); \ ASSIGN_DBL((W_*)Sp, D1); \ Sp -= 1; \ ((StgPtr*)Sp)[0] = (StgPtr)sizeofW(StgDouble); \ Sp -= 1; \ ((StgPtr*)Sp)[0] = bco; \ JMP_(stg_yield_to_interpreter); \ FE_ \ } STG_CtoI_RET_D1_Template(stg_ctoi_ret_D1_entry); STG_CtoI_RET_D1_Template(stg_ctoi_ret_D1_0_entry); STG_CtoI_RET_D1_Template(stg_ctoi_ret_D1_1_entry); STG_CtoI_RET_D1_Template(stg_ctoi_ret_D1_2_entry); STG_CtoI_RET_D1_Template(stg_ctoi_ret_D1_3_entry); STG_CtoI_RET_D1_Template(stg_ctoi_ret_D1_4_entry); STG_CtoI_RET_D1_Template(stg_ctoi_ret_D1_5_entry); STG_CtoI_RET_D1_Template(stg_ctoi_ret_D1_6_entry); STG_CtoI_RET_D1_Template(stg_ctoi_ret_D1_7_entry); VEC_POLY_INFO_TABLE(stg_ctoi_ret_D1,0, NULL/*srt*/, 0/*srt_off*/, 0/*srt_len*/, RET_BCO,, EF_); /* When the returned value a VoidRep ... */ #define STG_CtoI_RET_V_Template(label) \ IFN_(label) \ { \ StgPtr bco; \ FB_ \ bco = ((StgPtr*)Sp)[1]; \ Sp -= 1; \ ((StgPtr*)Sp)[0] = 0; /* VoidRep tag */ \ Sp -= 1; \ ((StgPtr*)Sp)[0] = bco; \ JMP_(stg_yield_to_interpreter); \ FE_ \ } STG_CtoI_RET_V_Template(stg_ctoi_ret_V_entry); STG_CtoI_RET_V_Template(stg_ctoi_ret_V_0_entry); STG_CtoI_RET_V_Template(stg_ctoi_ret_V_1_entry); STG_CtoI_RET_V_Template(stg_ctoi_ret_V_2_entry); STG_CtoI_RET_V_Template(stg_ctoi_ret_V_3_entry); STG_CtoI_RET_V_Template(stg_ctoi_ret_V_4_entry); STG_CtoI_RET_V_Template(stg_ctoi_ret_V_5_entry); STG_CtoI_RET_V_Template(stg_ctoi_ret_V_6_entry); STG_CtoI_RET_V_Template(stg_ctoi_ret_V_7_entry); VEC_POLY_INFO_TABLE(stg_ctoi_ret_V,0, NULL/*srt*/, 0/*srt_off*/, 0/*srt_len*/, RET_BCO,, EF_); /* The other way round: when the interpreter returns a value to compiled code. The stack looks like this: return info table (pushed by compiled code) return value (pushed by interpreter) If the value is ptr-rep'd, the interpreter simply returns to the scheduler, instructing it to ThreadEnterGHC. Otherwise (unboxed return value), we replace the top stack word, which must be the tag, with stg_gc_unbx_r1_info (or f1_info or d1_info), and return to the scheduler, instructing it to ThreadRunGHC. No supporting code needed! */ /* Entering a BCO. Heave it on the stack and defer to the scheduler. */ INFO_TABLE(stg_BCO_info,stg_BCO_entry,4,0,BCO,,EF_,"BCO","BCO"); STGFUN(stg_BCO_entry) { FB_ Sp -= 1; Sp[0] = R1.w; JMP_(stg_yield_to_interpreter); FE_ } /* ----------------------------------------------------------------------------- Entry code for an indirection. -------------------------------------------------------------------------- */ INFO_TABLE(stg_IND_info,stg_IND_entry,1,0,IND,,EF_,0,0); STGFUN(stg_IND_entry) { FB_ TICK_ENT_IND(Node); /* tick */ R1.p = (P_) ((StgInd*)R1.p)->indirectee; TICK_ENT_VIA_NODE(); JMP_(ENTRY_CODE(*R1.p)); FE_ } INFO_TABLE(stg_IND_STATIC_info,stg_IND_STATIC_entry,1,0,IND_STATIC,,EF_,0,0); STGFUN(stg_IND_STATIC_entry) { FB_ TICK_ENT_IND(Node); /* tick */ R1.p = (P_) ((StgIndStatic*)R1.p)->indirectee; TICK_ENT_VIA_NODE(); JMP_(ENTRY_CODE(*R1.p)); FE_ } INFO_TABLE(stg_IND_PERM_info,stg_IND_PERM_entry,1,1,IND_PERM,,EF_,"IND_PERM","IND_PERM"); STGFUN(stg_IND_PERM_entry) { FB_ /* Don't add INDs to granularity cost */ /* Dont: TICK_ENT_IND(Node); for ticky-ticky; this ind is here only to help profiling */ #if defined(TICKY_TICKY) && !defined(PROFILING) /* TICKY_TICKY && !PROFILING means PERM_IND *replaces* an IND, rather than being extra */ TICK_ENT_PERM_IND(R1.p); /* tick */ #endif /* Enter PAP cost centre -- lexical scoping only */ ENTER_CCS_PAP_CL(R1.cl); /* For ticky-ticky, change the perm_ind to a normal ind on first * entry, so the number of ent_perm_inds is the number of *thunks* * entered again, not the number of subsequent entries. * * Since this screws up cost centres, we die if profiling and * ticky_ticky are on at the same time. KSW 1999-01. */ #ifdef TICKY_TICKY # ifdef PROFILING # error Profiling and ticky-ticky do not mix at present! # endif /* PROFILING */ SET_INFO((StgInd*)R1.p,&stg_IND_info); #endif /* TICKY_TICKY */ R1.p = (P_) ((StgInd*)R1.p)->indirectee; /* Dont: TICK_ENT_VIA_NODE(); for ticky-ticky; as above */ #if defined(TICKY_TICKY) && !defined(PROFILING) TICK_ENT_VIA_NODE(); #endif JMP_(ENTRY_CODE(*R1.p)); FE_ } INFO_TABLE(stg_IND_OLDGEN_info,stg_IND_OLDGEN_entry,1,1,IND_OLDGEN,,EF_,0,0); STGFUN(stg_IND_OLDGEN_entry) { FB_ TICK_ENT_IND(Node); /* tick */ R1.p = (P_) ((StgInd*)R1.p)->indirectee; TICK_ENT_VIA_NODE(); JMP_(ENTRY_CODE(*R1.p)); FE_ } INFO_TABLE(stg_IND_OLDGEN_PERM_info,stg_IND_OLDGEN_PERM_entry,1,1,IND_OLDGEN_PERM,,EF_,0,0); STGFUN(stg_IND_OLDGEN_PERM_entry) { FB_ /* Dont: TICK_ENT_IND(Node); for ticky-ticky; this ind is here only to help profiling */ #if defined(TICKY_TICKY) && !defined(PROFILING) /* TICKY_TICKY && !PROFILING means PERM_IND *replaces* an IND, rather than being extra */ TICK_ENT_PERM_IND(R1.p); /* tick */ #endif /* Enter PAP cost centre -- lexical scoping only */ ENTER_CCS_PAP_CL(R1.cl); /* see comment in IND_PERM */ #ifdef TICKY_TICKY # ifdef PROFILING # error Profiling and ticky-ticky do not mix at present! # endif /* PROFILING */ SET_INFO((StgInd*)R1.p,&stg_IND_OLDGEN_info); #endif /* TICKY_TICKY */ R1.p = (P_) ((StgInd*)R1.p)->indirectee; TICK_ENT_VIA_NODE(); JMP_(ENTRY_CODE(*R1.p)); FE_ } /* ----------------------------------------------------------------------------- Entry code for a black hole. Entering a black hole normally causes a cyclic data dependency, but in the concurrent world, black holes are synchronization points, and they are turned into blocking queues when there are threads waiting for the evaluation of the closure to finish. -------------------------------------------------------------------------- */ /* Note: a BLACKHOLE and BLACKHOLE_BQ must be big enough to be * overwritten with an indirection/evacuee/catch. Thus we claim it * has 1 non-pointer word of payload (in addition to the pointer word * for the blocking queue in a BQ), which should be big enough for an * old-generation indirection. */ INFO_TABLE(stg_BLACKHOLE_info, stg_BLACKHOLE_entry,0,2,BLACKHOLE,,EF_,"BLACKHOLE","BLACKHOLE"); STGFUN(stg_BLACKHOLE_entry) { FB_ #if defined(GRAN) /* Before overwriting TSO_LINK */ STGCALL3(GranSimBlock,CurrentTSO,CurrentProc,(StgClosure *)R1.p /*Node*/); #endif #ifdef SMP { bdescr *bd = Bdescr(R1.p); if (bd->back != (bdescr *)BaseReg) { if (bd->gen->no >= 1 || bd->step->no >= 1) { CMPXCHG(R1.cl->header.info, &stg_BLACKHOLE_info, &stg_WHITEHOLE_info); } else { EXTFUN_RTS(stg_gc_enter_1_hponly); JMP_(stg_gc_enter_1_hponly); } } } #endif TICK_ENT_BH(); /* Put ourselves on the blocking queue for this black hole */ #if defined(GRAN) || defined(PAR) /* in fact, only difference is the type of the end-of-queue marker! */ CurrentTSO->link = END_BQ_QUEUE; ((StgBlockingQueue *)R1.p)->blocking_queue = (StgBlockingQueueElement *)CurrentTSO; #else CurrentTSO->link = END_TSO_QUEUE; ((StgBlockingQueue *)R1.p)->blocking_queue = CurrentTSO; #endif /* jot down why and on what closure we are blocked */ CurrentTSO->why_blocked = BlockedOnBlackHole; CurrentTSO->block_info.closure = R1.cl; /* closure is mutable since something has just been added to its BQ */ recordMutable((StgMutClosure *)R1.cl); /* Change the BLACKHOLE into a BLACKHOLE_BQ */ ((StgBlockingQueue *)R1.p)->header.info = &stg_BLACKHOLE_BQ_info; /* PAR: dumping of event now done in blockThread -- HWL */ /* stg_gen_block is too heavyweight, use a specialised one */ BLOCK_NP(1); FE_ } INFO_TABLE(stg_BLACKHOLE_BQ_info, stg_BLACKHOLE_BQ_entry,1,1,BLACKHOLE_BQ,,EF_,"BLACKHOLE","BLACKHOLE"); STGFUN(stg_BLACKHOLE_BQ_entry) { FB_ #if defined(GRAN) /* Before overwriting TSO_LINK */ STGCALL3(GranSimBlock,CurrentTSO,CurrentProc,(StgClosure *)R1.p /*Node*/); #endif #ifdef SMP { bdescr *bd = Bdescr(R1.p); if (bd->back != (bdescr *)BaseReg) { if (bd->gen->no >= 1 || bd->step->no >= 1) { CMPXCHG(R1.cl->header.info, &stg_BLACKHOLE_info, &stg_WHITEHOLE_info); } else { EXTFUN_RTS(stg_gc_enter_1_hponly); JMP_(stg_gc_enter_1_hponly); } } } #endif TICK_ENT_BH(); /* Put ourselves on the blocking queue for this black hole */ CurrentTSO->link = ((StgBlockingQueue *)R1.p)->blocking_queue; ((StgBlockingQueue *)R1.p)->blocking_queue = CurrentTSO; /* jot down why and on what closure we are blocked */ CurrentTSO->why_blocked = BlockedOnBlackHole; CurrentTSO->block_info.closure = R1.cl; #ifdef SMP ((StgBlockingQueue *)R1.p)->header.info = &stg_BLACKHOLE_BQ_info; #endif /* PAR: dumping of event now done in blockThread -- HWL */ /* stg_gen_block is too heavyweight, use a specialised one */ BLOCK_NP(1); FE_ } /* Revertible black holes are needed in the parallel world, to handle negative acknowledgements of messages containing updatable closures. The idea is that when the original message is transmitted, the closure is turned into a revertible black hole...an object which acts like a black hole when local threads try to enter it, but which can be reverted back to the original closure if necessary. It's actually a lot like a blocking queue (BQ) entry, because revertible black holes are initially set up with an empty blocking queue. */ #if defined(PAR) || defined(GRAN) INFO_TABLE(stg_RBH_info, stg_RBH_entry,1,1,RBH,,EF_,0,0); STGFUN(stg_RBH_entry) { FB_ # if defined(GRAN) /* mainly statistics gathering for GranSim simulation */ STGCALL3(GranSimBlock,CurrentTSO,CurrentProc,(StgClosure *)R1.p /*Node*/); # endif /* exactly the same as a BLACKHOLE_BQ_entry -- HWL */ /* Put ourselves on the blocking queue for this black hole */ CurrentTSO->link = ((StgBlockingQueue *)R1.p)->blocking_queue; ((StgBlockingQueue *)R1.p)->blocking_queue = CurrentTSO; /* jot down why and on what closure we are blocked */ CurrentTSO->why_blocked = BlockedOnBlackHole; CurrentTSO->block_info.closure = R1.cl; /* PAR: dumping of event now done in blockThread -- HWL */ /* stg_gen_block is too heavyweight, use a specialised one */ BLOCK_NP(1); FE_ } INFO_TABLE(stg_RBH_Save_0_info, stg_RBH_Save_0_entry,0,2,CONSTR,,EF_,0,0); NON_ENTERABLE_ENTRY_CODE(RBH_Save_0); INFO_TABLE(stg_RBH_Save_1_info, stg_RBH_Save_1_entry,1,1,CONSTR,,EF_,0,0); NON_ENTERABLE_ENTRY_CODE(RBH_Save_1); INFO_TABLE(stg_RBH_Save_2_info, stg_RBH_Save_2_entry,2,0,CONSTR,,EF_,0,0); NON_ENTERABLE_ENTRY_CODE(RBH_Save_2); #endif /* defined(PAR) || defined(GRAN) */ /* identical to BLACKHOLEs except for the infotag */ INFO_TABLE(stg_CAF_BLACKHOLE_info, stg_CAF_BLACKHOLE_entry,0,2,CAF_BLACKHOLE,,EF_,"CAF_BLACKHOLE","CAF_BLACKHOLE"); STGFUN(stg_CAF_BLACKHOLE_entry) { FB_ #if defined(GRAN) /* mainly statistics gathering for GranSim simulation */ STGCALL3(GranSimBlock,CurrentTSO,CurrentProc,(StgClosure *)R1.p /*Node*/); #endif #ifdef SMP { bdescr *bd = Bdescr(R1.p); if (bd->back != (bdescr *)BaseReg) { if (bd->gen->no >= 1 || bd->step->no >= 1) { CMPXCHG(R1.cl->header.info, &stg_CAF_BLACKHOLE_info, &stg_WHITEHOLE_info); } else { EXTFUN_RTS(stg_gc_enter_1_hponly); JMP_(stg_gc_enter_1_hponly); } } } #endif TICK_ENT_BH(); /* Put ourselves on the blocking queue for this black hole */ #if defined(GRAN) || defined(PAR) /* in fact, only difference is the type of the end-of-queue marker! */ CurrentTSO->link = END_BQ_QUEUE; ((StgBlockingQueue *)R1.p)->blocking_queue = (StgBlockingQueueElement *)CurrentTSO; #else CurrentTSO->link = END_TSO_QUEUE; ((StgBlockingQueue *)R1.p)->blocking_queue = CurrentTSO; #endif /* jot down why and on what closure we are blocked */ CurrentTSO->why_blocked = BlockedOnBlackHole; CurrentTSO->block_info.closure = R1.cl; /* closure is mutable since something has just been added to its BQ */ recordMutable((StgMutClosure *)R1.cl); /* Change the CAF_BLACKHOLE into a BLACKHOLE_BQ_STATIC */ ((StgBlockingQueue *)R1.p)->header.info = &stg_BLACKHOLE_BQ_info; /* PAR: dumping of event now done in blockThread -- HWL */ /* stg_gen_block is too heavyweight, use a specialised one */ BLOCK_NP(1); FE_ } #ifdef TICKY_TICKY INFO_TABLE(stg_SE_BLACKHOLE_info, stg_SE_BLACKHOLE_entry,0,2,SE_BLACKHOLE,,EF_,0,0); STGFUN(stg_SE_BLACKHOLE_entry) { FB_ STGCALL3(fprintf,stderr,"SE_BLACKHOLE at %p entered!\n",R1.p); STGCALL1(shutdownHaskellAndExit,EXIT_FAILURE); FE_ } INFO_TABLE(SE_CAF_BLACKHOLE_info, SE_CAF_BLACKHOLE_entry,0,2,SE_CAF_BLACKHOLE,,EF_,0,0); STGFUN(stg_SE_CAF_BLACKHOLE_entry) { FB_ STGCALL3(fprintf,stderr,"SE_CAF_BLACKHOLE at %p entered!\n",R1.p); STGCALL1(shutdownHaskellAndExit,EXIT_FAILURE); FE_ } #endif #ifdef SMP INFO_TABLE(stg_WHITEHOLE_info, stg_WHITEHOLE_entry,0,2,CONSTR_NOCAF_STATIC,,EF_,0,0); STGFUN(stg_WHITEHOLE_entry) { FB_ JMP_(GET_ENTRY(R1.cl)); FE_ } #endif /* ----------------------------------------------------------------------------- Some static info tables for things that don't get entered, and therefore don't need entry code (i.e. boxed but unpointed objects) NON_ENTERABLE_ENTRY_CODE now defined at the beginning of the file -------------------------------------------------------------------------- */ INFO_TABLE(stg_TSO_info, stg_TSO_entry, 0,0,TSO,,EF_,"TSO","TSO"); NON_ENTERABLE_ENTRY_CODE(TSO); /* ----------------------------------------------------------------------------- Evacuees are left behind by the garbage collector. Any attempt to enter one is a real bug. -------------------------------------------------------------------------- */ INFO_TABLE(stg_EVACUATED_info,stg_EVACUATED_entry,1,0,EVACUATED,,EF_,0,0); NON_ENTERABLE_ENTRY_CODE(EVACUATED); /* ----------------------------------------------------------------------------- Weak pointers Live weak pointers have a special closure type. Dead ones are just nullary constructors (although they live on the heap - we overwrite live weak pointers with dead ones). -------------------------------------------------------------------------- */ INFO_TABLE(stg_WEAK_info,stg_WEAK_entry,0,4,WEAK,,EF_,"WEAK","WEAK"); NON_ENTERABLE_ENTRY_CODE(WEAK); INFO_TABLE_CONSTR(stg_DEAD_WEAK_info,stg_DEAD_WEAK_entry,0,1,0,CONSTR,,EF_,"DEAD_WEAK","DEAD_WEAK"); NON_ENTERABLE_ENTRY_CODE(DEAD_WEAK); /* ----------------------------------------------------------------------------- NO_FINALIZER This is a static nullary constructor (like []) that we use to mark an empty finalizer in a weak pointer object. -------------------------------------------------------------------------- */ INFO_TABLE_CONSTR(stg_NO_FINALIZER_info,stg_NO_FINALIZER_entry,0,0,0,CONSTR_NOCAF_STATIC,,EF_,0,0); NON_ENTERABLE_ENTRY_CODE(NO_FINALIZER); SET_STATIC_HDR(stg_NO_FINALIZER_closure,stg_NO_FINALIZER_info,0/*CC*/,,EI_) , /*payload*/{} }; /* ----------------------------------------------------------------------------- Foreign Objects are unlifted and therefore never entered. -------------------------------------------------------------------------- */ INFO_TABLE(stg_FOREIGN_info,stg_FOREIGN_entry,0,1,FOREIGN,,EF_,"FOREIGN","FOREIGN"); NON_ENTERABLE_ENTRY_CODE(FOREIGN); /* ----------------------------------------------------------------------------- Stable Names are unlifted too. -------------------------------------------------------------------------- */ INFO_TABLE(stg_STABLE_NAME_info,stg_STABLE_NAME_entry,0,1,STABLE_NAME,,EF_,"STABLE_NAME","STABLE_NAME"); NON_ENTERABLE_ENTRY_CODE(STABLE_NAME); /* ----------------------------------------------------------------------------- MVars There are two kinds of these: full and empty. We need an info table and entry code for each type. -------------------------------------------------------------------------- */ INFO_TABLE(stg_FULL_MVAR_info,stg_FULL_MVAR_entry,4,0,MVAR,,EF_,"MVAR","MVAR"); NON_ENTERABLE_ENTRY_CODE(FULL_MVAR); INFO_TABLE(stg_EMPTY_MVAR_info,stg_EMPTY_MVAR_entry,4,0,MVAR,,EF_,"MVAR","MVAR"); NON_ENTERABLE_ENTRY_CODE(EMPTY_MVAR); /* ----------------------------------------------------------------------------- END_TSO_QUEUE This is a static nullary constructor (like []) that we use to mark the end of a linked TSO queue. -------------------------------------------------------------------------- */ INFO_TABLE_CONSTR(stg_END_TSO_QUEUE_info,stg_END_TSO_QUEUE_entry,0,0,0,CONSTR_NOCAF_STATIC,,EF_,0,0); NON_ENTERABLE_ENTRY_CODE(END_TSO_QUEUE); SET_STATIC_HDR(stg_END_TSO_QUEUE_closure,stg_END_TSO_QUEUE_info,0/*CC*/,,EI_) , /*payload*/{} }; /* ----------------------------------------------------------------------------- Mutable lists Mutable lists (used by the garbage collector) consist of a chain of StgMutClosures connected through their mut_link fields, ending in an END_MUT_LIST closure. -------------------------------------------------------------------------- */ INFO_TABLE_CONSTR(stg_END_MUT_LIST_info,stg_END_MUT_LIST_entry,0,0,0,CONSTR_NOCAF_STATIC,,EF_,0,0); NON_ENTERABLE_ENTRY_CODE(END_MUT_LIST); SET_STATIC_HDR(stg_END_MUT_LIST_closure,stg_END_MUT_LIST_info,0/*CC*/,,EI_) , /*payload*/{} }; INFO_TABLE(stg_MUT_CONS_info, stg_MUT_CONS_entry, 1, 1, MUT_VAR, , EF_, 0, 0); NON_ENTERABLE_ENTRY_CODE(MUT_CONS); /* ----------------------------------------------------------------------------- Exception lists -------------------------------------------------------------------------- */ INFO_TABLE_CONSTR(stg_END_EXCEPTION_LIST_info,stg_END_EXCEPTION_LIST_entry,0,0,0,CONSTR_NOCAF_STATIC,,EF_,0,0); NON_ENTERABLE_ENTRY_CODE(END_EXCEPTION_LIST); SET_STATIC_HDR(stg_END_EXCEPTION_LIST_closure,stg_END_EXCEPTION_LIST_info,0/*CC*/,,EI_) , /*payload*/{} }; INFO_TABLE(stg_EXCEPTION_CONS_info, stg_EXCEPTION_CONS_entry, 1, 1, CONSTR, , EF_, 0, 0); NON_ENTERABLE_ENTRY_CODE(EXCEPTION_CONS); /* ----------------------------------------------------------------------------- Arrays These come in two basic flavours: arrays of data (StgArrWords) and arrays of pointers (StgArrPtrs). They all have a similar layout: ___________________________ | Info | No. of | data.... | Ptr | Words | --------------------------- These are *unpointed* objects: i.e. they cannot be entered. -------------------------------------------------------------------------- */ #define ArrayInfo(type) \ INFO_TABLE(stg_##type##_info, stg_##type##_entry, 0, 0, type, , EF_,"" # type "","" # type ""); ArrayInfo(ARR_WORDS); NON_ENTERABLE_ENTRY_CODE(ARR_WORDS); ArrayInfo(MUT_ARR_PTRS); NON_ENTERABLE_ENTRY_CODE(MUT_ARR_PTRS); ArrayInfo(MUT_ARR_PTRS_FROZEN); NON_ENTERABLE_ENTRY_CODE(MUT_ARR_PTRS_FROZEN); #undef ArrayInfo /* ----------------------------------------------------------------------------- Mutable Variables -------------------------------------------------------------------------- */ INFO_TABLE(stg_MUT_VAR_info, stg_MUT_VAR_entry, 1, 1, MUT_VAR, , EF_, "MUT_VAR", "MUT_VAR"); NON_ENTERABLE_ENTRY_CODE(MUT_VAR); /* ----------------------------------------------------------------------------- Standard Error Entry. This is used for filling in vector-table entries that can never happen, for instance. -------------------------------------------------------------------------- */ /* No longer used; we use NULL, because a) it never happens, right? and b) Windows doesn't like DLL entry points being used as static initialisers STGFUN(stg_error_entry) \ { \ FB_ \ DUMP_ERRMSG("fatal: stg_error_entry"); \ STGCALL1(shutdownHaskellAndExit, EXIT_FAILURE); \ return NULL; \ FE_ \ } */ /* ----------------------------------------------------------------------------- Dummy return closure Entering this closure will just return to the address on the top of the stack. Useful for getting a thread in a canonical form where we can just enter the top stack word to start the thread. (see deleteThread) * -------------------------------------------------------------------------- */ INFO_TABLE(stg_dummy_ret_info, stg_dummy_ret_entry, 0, 0, CONSTR_NOCAF_STATIC, , EF_, 0, 0); STGFUN(stg_dummy_ret_entry) { W_ ret_addr; FB_ ret_addr = Sp[0]; Sp++; JMP_(ENTRY_CODE(ret_addr)); FE_ } SET_STATIC_HDR(stg_dummy_ret_closure,stg_dummy_ret_info,CCS_DONT_CARE,,EI_) , /*payload*/{} }; /* ----------------------------------------------------------------------------- Strict IO application - performing an IO action and entering its result. rts_evalIO() lets you perform Haskell IO actions from outside of Haskell-land, returning back to you their result. Want this result to be evaluated to WHNF by that time, so that we can easily get at the int/char/whatever using the various get{Ty} functions provided by the RTS API. forceIO takes care of this, performing the IO action and entering the results that comes back. * -------------------------------------------------------------------------- */ #ifdef REG_R1 INFO_TABLE_SRT_BITMAP(stg_forceIO_ret_info,stg_forceIO_ret_entry,0,0,0,0,RET_SMALL,,EF_,0,0); STGFUN(stg_forceIO_ret_entry) { FB_ Sp++; Sp -= sizeofW(StgSeqFrame); PUSH_SEQ_FRAME(Sp); JMP_(GET_ENTRY(R1.cl)); } #else INFO_TABLE_SRT_BITMAP(stg_forceIO_ret_info,stg_forceIO_ret_entry,0,0,0,0,RET_SMALL,,EF_,0,0); STGFUN(stg_forceIO_ret_entry) { StgClosure *rval; FB_ rval = (StgClosure *)Sp[0]; Sp += 2; Sp -= sizeofW(StgSeqFrame); PUSH_SEQ_FRAME(Sp); R1.cl = rval; JMP_(GET_ENTRY(R1.cl)); } #endif INFO_TABLE(stg_forceIO_info,stg_forceIO_entry,1,0,FUN_STATIC,,EF_,0,0); FN_(stg_forceIO_entry) { FB_ /* Sp[0] contains the IO action we want to perform */ R1.p = (P_)Sp[0]; /* Replace it with the return continuation that enters the result. */ Sp[0] = (W_)&stg_forceIO_ret_info; Sp--; /* Push the RealWorld# tag and enter */ Sp[0] =(W_)REALWORLD_TAG; JMP_(GET_ENTRY(R1.cl)); FE_ } SET_STATIC_HDR(stg_forceIO_closure,stg_forceIO_info,CCS_DONT_CARE,,EI_) , /*payload*/{} }; /* ----------------------------------------------------------------------------- CHARLIKE and INTLIKE closures. These are static representations of Chars and small Ints, so that we can remove dynamic Chars and Ints during garbage collection and replace them with references to the static objects. -------------------------------------------------------------------------- */ #if defined(INTERPRETER) || defined(ENABLE_WIN32_DLL_SUPPORT) /* * When sticking the RTS in a DLL, we delay populating the * Charlike and Intlike tables until load-time, which is only * when we've got the real addresses to the C# and I# closures. * */ static INFO_TBL_CONST StgInfoTable czh_static_info; static INFO_TBL_CONST StgInfoTable izh_static_info; #define Char_hash_static_info czh_static_info #define Int_hash_static_info izh_static_info #else #define Char_hash_static_info PrelBase_Czh_static_info #define Int_hash_static_info PrelBase_Izh_static_info #endif #define CHARLIKE_HDR(n) \ { \ STATIC_HDR(Char_hash_static_info, /* C# */ \ CCS_DONT_CARE), \ data : n \ } #define INTLIKE_HDR(n) \ { \ STATIC_HDR(Int_hash_static_info, /* I# */ \ CCS_DONT_CARE), \ data : n \ } /* put these in the *data* section, since the garbage collector relies * on the fact that static closures live in the data section. */ /* end the name with _closure, to convince the mangler this is a closure */ StgIntCharlikeClosure stg_CHARLIKE_closure[] = { CHARLIKE_HDR(0), CHARLIKE_HDR(1), CHARLIKE_HDR(2), CHARLIKE_HDR(3), CHARLIKE_HDR(4), CHARLIKE_HDR(5), CHARLIKE_HDR(6), CHARLIKE_HDR(7), CHARLIKE_HDR(8), CHARLIKE_HDR(9), CHARLIKE_HDR(10), CHARLIKE_HDR(11), CHARLIKE_HDR(12), CHARLIKE_HDR(13), CHARLIKE_HDR(14), CHARLIKE_HDR(15), CHARLIKE_HDR(16), CHARLIKE_HDR(17), CHARLIKE_HDR(18), CHARLIKE_HDR(19), CHARLIKE_HDR(20), CHARLIKE_HDR(21), CHARLIKE_HDR(22), CHARLIKE_HDR(23), CHARLIKE_HDR(24), CHARLIKE_HDR(25), CHARLIKE_HDR(26), CHARLIKE_HDR(27), CHARLIKE_HDR(28), CHARLIKE_HDR(29), CHARLIKE_HDR(30), CHARLIKE_HDR(31), CHARLIKE_HDR(32), CHARLIKE_HDR(33), CHARLIKE_HDR(34), CHARLIKE_HDR(35), CHARLIKE_HDR(36), CHARLIKE_HDR(37), CHARLIKE_HDR(38), CHARLIKE_HDR(39), CHARLIKE_HDR(40), CHARLIKE_HDR(41), CHARLIKE_HDR(42), CHARLIKE_HDR(43), CHARLIKE_HDR(44), CHARLIKE_HDR(45), CHARLIKE_HDR(46), CHARLIKE_HDR(47), CHARLIKE_HDR(48), CHARLIKE_HDR(49), CHARLIKE_HDR(50), CHARLIKE_HDR(51), CHARLIKE_HDR(52), CHARLIKE_HDR(53), CHARLIKE_HDR(54), CHARLIKE_HDR(55), CHARLIKE_HDR(56), CHARLIKE_HDR(57), CHARLIKE_HDR(58), CHARLIKE_HDR(59), CHARLIKE_HDR(60), CHARLIKE_HDR(61), CHARLIKE_HDR(62), CHARLIKE_HDR(63), CHARLIKE_HDR(64), CHARLIKE_HDR(65), CHARLIKE_HDR(66), CHARLIKE_HDR(67), CHARLIKE_HDR(68), CHARLIKE_HDR(69), CHARLIKE_HDR(70), CHARLIKE_HDR(71), CHARLIKE_HDR(72), CHARLIKE_HDR(73), CHARLIKE_HDR(74), CHARLIKE_HDR(75), CHARLIKE_HDR(76), CHARLIKE_HDR(77), CHARLIKE_HDR(78), CHARLIKE_HDR(79), CHARLIKE_HDR(80), CHARLIKE_HDR(81), CHARLIKE_HDR(82), CHARLIKE_HDR(83), CHARLIKE_HDR(84), CHARLIKE_HDR(85), CHARLIKE_HDR(86), CHARLIKE_HDR(87), CHARLIKE_HDR(88), CHARLIKE_HDR(89), CHARLIKE_HDR(90), CHARLIKE_HDR(91), CHARLIKE_HDR(92), CHARLIKE_HDR(93), CHARLIKE_HDR(94), CHARLIKE_HDR(95), CHARLIKE_HDR(96), CHARLIKE_HDR(97), CHARLIKE_HDR(98), CHARLIKE_HDR(99), CHARLIKE_HDR(100), CHARLIKE_HDR(101), CHARLIKE_HDR(102), CHARLIKE_HDR(103), CHARLIKE_HDR(104), CHARLIKE_HDR(105), CHARLIKE_HDR(106), CHARLIKE_HDR(107), CHARLIKE_HDR(108), CHARLIKE_HDR(109), CHARLIKE_HDR(110), CHARLIKE_HDR(111), CHARLIKE_HDR(112), CHARLIKE_HDR(113), CHARLIKE_HDR(114), CHARLIKE_HDR(115), CHARLIKE_HDR(116), CHARLIKE_HDR(117), CHARLIKE_HDR(118), CHARLIKE_HDR(119), CHARLIKE_HDR(120), CHARLIKE_HDR(121), CHARLIKE_HDR(122), CHARLIKE_HDR(123), CHARLIKE_HDR(124), CHARLIKE_HDR(125), CHARLIKE_HDR(126), CHARLIKE_HDR(127), CHARLIKE_HDR(128), CHARLIKE_HDR(129), CHARLIKE_HDR(130), CHARLIKE_HDR(131), CHARLIKE_HDR(132), CHARLIKE_HDR(133), CHARLIKE_HDR(134), CHARLIKE_HDR(135), CHARLIKE_HDR(136), CHARLIKE_HDR(137), CHARLIKE_HDR(138), CHARLIKE_HDR(139), CHARLIKE_HDR(140), CHARLIKE_HDR(141), CHARLIKE_HDR(142), CHARLIKE_HDR(143), CHARLIKE_HDR(144), CHARLIKE_HDR(145), CHARLIKE_HDR(146), CHARLIKE_HDR(147), CHARLIKE_HDR(148), CHARLIKE_HDR(149), CHARLIKE_HDR(150), CHARLIKE_HDR(151), CHARLIKE_HDR(152), CHARLIKE_HDR(153), CHARLIKE_HDR(154), CHARLIKE_HDR(155), CHARLIKE_HDR(156), CHARLIKE_HDR(157), CHARLIKE_HDR(158), CHARLIKE_HDR(159), CHARLIKE_HDR(160), CHARLIKE_HDR(161), CHARLIKE_HDR(162), CHARLIKE_HDR(163), CHARLIKE_HDR(164), CHARLIKE_HDR(165), CHARLIKE_HDR(166), CHARLIKE_HDR(167), CHARLIKE_HDR(168), CHARLIKE_HDR(169), CHARLIKE_HDR(170), CHARLIKE_HDR(171), CHARLIKE_HDR(172), CHARLIKE_HDR(173), CHARLIKE_HDR(174), CHARLIKE_HDR(175), CHARLIKE_HDR(176), CHARLIKE_HDR(177), CHARLIKE_HDR(178), CHARLIKE_HDR(179), CHARLIKE_HDR(180), CHARLIKE_HDR(181), CHARLIKE_HDR(182), CHARLIKE_HDR(183), CHARLIKE_HDR(184), CHARLIKE_HDR(185), CHARLIKE_HDR(186), CHARLIKE_HDR(187), CHARLIKE_HDR(188), CHARLIKE_HDR(189), CHARLIKE_HDR(190), CHARLIKE_HDR(191), CHARLIKE_HDR(192), CHARLIKE_HDR(193), CHARLIKE_HDR(194), CHARLIKE_HDR(195), CHARLIKE_HDR(196), CHARLIKE_HDR(197), CHARLIKE_HDR(198), CHARLIKE_HDR(199), CHARLIKE_HDR(200), CHARLIKE_HDR(201), CHARLIKE_HDR(202), CHARLIKE_HDR(203), CHARLIKE_HDR(204), CHARLIKE_HDR(205), CHARLIKE_HDR(206), CHARLIKE_HDR(207), CHARLIKE_HDR(208), CHARLIKE_HDR(209), CHARLIKE_HDR(210), CHARLIKE_HDR(211), CHARLIKE_HDR(212), CHARLIKE_HDR(213), CHARLIKE_HDR(214), CHARLIKE_HDR(215), CHARLIKE_HDR(216), CHARLIKE_HDR(217), CHARLIKE_HDR(218), CHARLIKE_HDR(219), CHARLIKE_HDR(220), CHARLIKE_HDR(221), CHARLIKE_HDR(222), CHARLIKE_HDR(223), CHARLIKE_HDR(224), CHARLIKE_HDR(225), CHARLIKE_HDR(226), CHARLIKE_HDR(227), CHARLIKE_HDR(228), CHARLIKE_HDR(229), CHARLIKE_HDR(230), CHARLIKE_HDR(231), CHARLIKE_HDR(232), CHARLIKE_HDR(233), CHARLIKE_HDR(234), CHARLIKE_HDR(235), CHARLIKE_HDR(236), CHARLIKE_HDR(237), CHARLIKE_HDR(238), CHARLIKE_HDR(239), CHARLIKE_HDR(240), CHARLIKE_HDR(241), CHARLIKE_HDR(242), CHARLIKE_HDR(243), CHARLIKE_HDR(244), CHARLIKE_HDR(245), CHARLIKE_HDR(246), CHARLIKE_HDR(247), CHARLIKE_HDR(248), CHARLIKE_HDR(249), CHARLIKE_HDR(250), CHARLIKE_HDR(251), CHARLIKE_HDR(252), CHARLIKE_HDR(253), CHARLIKE_HDR(254), CHARLIKE_HDR(255) }; StgIntCharlikeClosure stg_INTLIKE_closure[] = { INTLIKE_HDR(-16), /* MIN_INTLIKE == -16 */ INTLIKE_HDR(-15), INTLIKE_HDR(-14), INTLIKE_HDR(-13), INTLIKE_HDR(-12), INTLIKE_HDR(-11), INTLIKE_HDR(-10), INTLIKE_HDR(-9), INTLIKE_HDR(-8), INTLIKE_HDR(-7), INTLIKE_HDR(-6), INTLIKE_HDR(-5), INTLIKE_HDR(-4), INTLIKE_HDR(-3), INTLIKE_HDR(-2), INTLIKE_HDR(-1), INTLIKE_HDR(0), INTLIKE_HDR(1), INTLIKE_HDR(2), INTLIKE_HDR(3), INTLIKE_HDR(4), INTLIKE_HDR(5), INTLIKE_HDR(6), INTLIKE_HDR(7), INTLIKE_HDR(8), INTLIKE_HDR(9), INTLIKE_HDR(10), INTLIKE_HDR(11), INTLIKE_HDR(12), INTLIKE_HDR(13), INTLIKE_HDR(14), INTLIKE_HDR(15), INTLIKE_HDR(16) /* MAX_INTLIKE == 16 */ };