dnl AMD K7 mpn_sqr_basecase -- square an mpn number. dnl dnl K7: approx 2.3 cycles/crossproduct, or 4.55 cycles/triangular product dnl (measured on the speed difference between 25 and 50 limbs, which is dnl roughly the Karatsuba recursing range). dnl Copyright (C) 1999, 2000 Free Software Foundation, Inc. dnl dnl This file is part of the GNU MP Library. dnl dnl The GNU MP Library is free software; you can redistribute it and/or dnl modify it under the terms of the GNU Lesser General Public License as dnl published by the Free Software Foundation; either version 2.1 of the dnl License, or (at your option) any later version. dnl dnl The GNU MP Library is distributed in the hope that it will be useful, dnl but WITHOUT ANY WARRANTY; without even the implied warranty of dnl MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU dnl Lesser General Public License for more details. dnl dnl You should have received a copy of the GNU Lesser General Public dnl License along with the GNU MP Library; see the file COPYING.LIB. If dnl not, write to the Free Software Foundation, Inc., 59 Temple Place - dnl Suite 330, Boston, MA 02111-1307, USA. include(`../config.m4') dnl These are the same as mpn/x86/k6/sqr_basecase.asm, see that code for dnl some comments. deflit(KARATSUBA_SQR_THRESHOLD_MAX, 66) ifdef(`KARATSUBA_SQR_THRESHOLD_OVERRIDE', `define(`KARATSUBA_SQR_THRESHOLD',KARATSUBA_SQR_THRESHOLD_OVERRIDE)') m4_config_gmp_mparam(`KARATSUBA_SQR_THRESHOLD') deflit(UNROLL_COUNT, eval(KARATSUBA_SQR_THRESHOLD-3)) C void mpn_sqr_basecase (mp_ptr dst, mp_srcptr src, mp_size_t size); C C With a KARATSUBA_SQR_THRESHOLD around 50 this code is about 1500 bytes, C which is quite a bit, but is considered good value since squares big C enough to use most of the code will be spending quite a few cycles in it. defframe(PARAM_SIZE,12) defframe(PARAM_SRC, 8) defframe(PARAM_DST, 4) .text ALIGN(32) PROLOGUE(mpn_sqr_basecase) deflit(`FRAME',0) movl PARAM_SIZE, %ecx movl PARAM_SRC, %eax cmpl $2, %ecx movl PARAM_DST, %edx je L(two_limbs) ja L(three_or_more) C------------------------------------------------------------------------------ C one limb only C eax src C ecx size C edx dst movl (%eax), %eax movl %edx, %ecx mull %eax movl %edx, 4(%ecx) movl %eax, (%ecx) ret C------------------------------------------------------------------------------ C C Using the read/modify/write "add"s seems to be faster than saving and C restoring registers. Perhaps the loads for the first set hide under the C mul latency and the second gets store to load forwarding. ALIGN(16) L(two_limbs): C eax src C ebx C ecx size C edx dst deflit(`FRAME',0) pushl %ebx FRAME_pushl() movl %eax, %ebx C src movl (%eax), %eax movl %edx, %ecx C dst mull %eax C src[0]^2 movl %eax, (%ecx) C dst[0] movl 4(%ebx), %eax movl %edx, 4(%ecx) C dst[1] mull %eax C src[1]^2 movl %eax, 8(%ecx) C dst[2] movl (%ebx), %eax movl %edx, 12(%ecx) C dst[3] mull 4(%ebx) C src[0]*src[1] popl %ebx addl %eax, 4(%ecx) adcl %edx, 8(%ecx) adcl $0, 12(%ecx) ASSERT(nc) addl %eax, 4(%ecx) adcl %edx, 8(%ecx) adcl $0, 12(%ecx) ASSERT(nc) ret C------------------------------------------------------------------------------ defframe(SAVE_EBX, -4) defframe(SAVE_ESI, -8) defframe(SAVE_EDI, -12) defframe(SAVE_EBP, -16) deflit(STACK_SPACE, 16) L(three_or_more): subl $STACK_SPACE, %esp cmpl $4, %ecx jae L(four_or_more) deflit(`FRAME',STACK_SPACE) C------------------------------------------------------------------------------ C Three limbs C C Writing out the loads and stores separately at the end of this code comes C out about 10 cycles faster than using adcls to memory. C eax src C ecx size C edx dst movl %ebx, SAVE_EBX movl %eax, %ebx C src movl (%eax), %eax movl %edx, %ecx C dst movl %esi, SAVE_ESI movl %edi, SAVE_EDI mull %eax C src[0] ^ 2 movl %eax, (%ecx) movl 4(%ebx), %eax movl %edx, 4(%ecx) mull %eax C src[1] ^ 2 movl %eax, 8(%ecx) movl 8(%ebx), %eax movl %edx, 12(%ecx) mull %eax C src[2] ^ 2 movl %eax, 16(%ecx) movl (%ebx), %eax movl %edx, 20(%ecx) mull 4(%ebx) C src[0] * src[1] movl %eax, %esi movl (%ebx), %eax movl %edx, %edi mull 8(%ebx) C src[0] * src[2] addl %eax, %edi movl %ebp, SAVE_EBP movl $0, %ebp movl 4(%ebx), %eax adcl %edx, %ebp mull 8(%ebx) C src[1] * src[2] xorl %ebx, %ebx addl %eax, %ebp adcl $0, %edx C eax C ebx zero, will be dst[5] C ecx dst C edx dst[4] C esi dst[1] C edi dst[2] C ebp dst[3] adcl $0, %edx addl %esi, %esi adcl %edi, %edi movl 4(%ecx), %eax adcl %ebp, %ebp adcl %edx, %edx adcl $0, %ebx addl %eax, %esi movl 8(%ecx), %eax adcl %eax, %edi movl 12(%ecx), %eax movl %esi, 4(%ecx) adcl %eax, %ebp movl 16(%ecx), %eax movl %edi, 8(%ecx) movl SAVE_ESI, %esi movl SAVE_EDI, %edi adcl %eax, %edx movl 20(%ecx), %eax movl %ebp, 12(%ecx) adcl %ebx, %eax ASSERT(nc) movl SAVE_EBX, %ebx movl SAVE_EBP, %ebp movl %edx, 16(%ecx) movl %eax, 20(%ecx) addl $FRAME, %esp ret C------------------------------------------------------------------------------ L(four_or_more): C First multiply src[0]*src[1..size-1] and store at dst[1..size]. C Further products are added in rather than stored. C eax src C ebx C ecx size C edx dst C esi C edi C ebp defframe(`VAR_COUNTER',-20) defframe(`VAR_JMP', -24) deflit(EXTRA_STACK_SPACE, 8) movl %ebx, SAVE_EBX movl %edi, SAVE_EDI leal (%edx,%ecx,4), %edi C &dst[size] movl %esi, SAVE_ESI movl %ebp, SAVE_EBP leal (%eax,%ecx,4), %esi C &src[size] movl (%eax), %ebp C multiplier movl $0, %ebx decl %ecx negl %ecx subl $EXTRA_STACK_SPACE, %esp FRAME_subl_esp(EXTRA_STACK_SPACE) L(mul_1): C eax scratch C ebx carry C ecx counter C edx scratch C esi &src[size] C edi &dst[size] C ebp multiplier movl (%esi,%ecx,4), %eax mull %ebp addl %ebx, %eax movl %eax, (%edi,%ecx,4) movl $0, %ebx adcl %edx, %ebx incl %ecx jnz L(mul_1) C Add products src[n]*src[n+1..size-1] at dst[2*n-1...], for each n=1..size-2. C C The last two products, which are the bottom right corner of the product C triangle, are left to the end. These are src[size-3]*src[size-2,size-1] C and src[size-2]*src[size-1]. If size is 4 then it's only these corner C cases that need to be done. C C The unrolled code is the same as in mpn_addmul_1, see that routine for C some comments. C C VAR_COUNTER is the outer loop, running from -size+4 to -1, inclusive. C C VAR_JMP is the computed jump into the unrolled code, stepped by one code C chunk each outer loop. C C K7 does branch prediction on indirect jumps, which is bad since it's a C different target each time. There seems no way to avoid this. dnl This value also hard coded in some shifts and adds deflit(CODE_BYTES_PER_LIMB, 17) dnl With the unmodified &src[size] and &dst[size] pointers, the dnl displacements in the unrolled code fit in a byte for UNROLL_COUNT dnl values up to 31, but above that an offset must be added to them. deflit(OFFSET, ifelse(eval(UNROLL_COUNT>31),1, eval((UNROLL_COUNT-31)*4), 0)) dnl Because the last chunk of code is generated differently, a label placed dnl at the end doesn't work. Instead calculate the implied end using the dnl start and how many chunks of code there are. deflit(UNROLL_INNER_END, `L(unroll_inner_start)+eval(UNROLL_COUNT*CODE_BYTES_PER_LIMB)') C eax C ebx carry C ecx C edx C esi &src[size] C edi &dst[size] C ebp movl PARAM_SIZE, %ecx movl %ebx, (%edi) subl $4, %ecx jz L(corner) negl %ecx ifelse(OFFSET,0,,`subl $OFFSET, %edi') ifelse(OFFSET,0,,`subl $OFFSET, %esi') movl %ecx, %edx shll $4, %ecx ifdef(`PIC',` call L(pic_calc) L(here): ',` leal UNROLL_INNER_END-eval(2*CODE_BYTES_PER_LIMB)(%ecx,%edx), %ecx ') C The calculated jump mustn't come out to before the start of the C code available. This is the limit UNROLL_COUNT puts on the src C operand size, but checked here directly using the jump address. ASSERT(ae, `movl_text_address(L(unroll_inner_start), %eax) cmpl %eax, %ecx') C------------------------------------------------------------------------------ ALIGN(16) L(unroll_outer_top): C eax C ebx high limb to store C ecx VAR_JMP C edx VAR_COUNTER, limbs, negative C esi &src[size], constant C edi dst ptr, high of last addmul C ebp movl -12+OFFSET(%esi,%edx,4), %ebp C next multiplier movl -8+OFFSET(%esi,%edx,4), %eax C first of multiplicand movl %edx, VAR_COUNTER mull %ebp define(cmovX,`ifelse(eval(UNROLL_COUNT%2),0,`cmovz($@)',`cmovnz($@)')') testb $1, %cl movl %edx, %ebx C high carry movl %ecx, %edx C jump movl %eax, %ecx C low carry cmovX( %ebx, %ecx) C high carry reverse cmovX( %eax, %ebx) C low carry reverse leal CODE_BYTES_PER_LIMB(%edx), %eax xorl %edx, %edx leal 4(%edi), %edi movl %eax, VAR_JMP jmp *%eax ifdef(`PIC',` L(pic_calc): addl (%esp), %ecx addl $UNROLL_INNER_END-eval(2*CODE_BYTES_PER_LIMB)-L(here), %ecx addl %edx, %ecx ret ') C Must be an even address to preserve the significance of the low C bit of the jump address indicating which way around ecx/ebx should C start. ALIGN(2) L(unroll_inner_start): C eax next limb C ebx carry high C ecx carry low C edx scratch C esi src C edi dst C ebp multiplier forloop(`i', UNROLL_COUNT, 1, ` deflit(`disp_src', eval(-i*4 + OFFSET)) deflit(`disp_dst', eval(disp_src - 4)) m4_assert(`disp_src>=-128 && disp_src<128') m4_assert(`disp_dst>=-128 && disp_dst<128') ifelse(eval(i%2),0,` Zdisp( movl, disp_src,(%esi), %eax) adcl %edx, %ebx mull %ebp Zdisp( addl, %ecx, disp_dst,(%edi)) movl $0, %ecx adcl %eax, %ebx ',` dnl this bit comes out last Zdisp( movl, disp_src,(%esi), %eax) adcl %edx, %ecx mull %ebp dnl Zdisp( addl %ebx, disp_src,(%edi)) addl %ebx, disp_dst(%edi) ifelse(forloop_last,0, ` movl $0, %ebx') adcl %eax, %ecx ') ') C eax next limb C ebx carry high C ecx carry low C edx scratch C esi src C edi dst C ebp multiplier adcl $0, %edx addl %ecx, -4+OFFSET(%edi) movl VAR_JMP, %ecx adcl $0, %edx movl %edx, m4_empty_if_zero(OFFSET) (%edi) movl VAR_COUNTER, %edx incl %edx jnz L(unroll_outer_top) ifelse(OFFSET,0,,` addl $OFFSET, %esi addl $OFFSET, %edi ') C------------------------------------------------------------------------------ L(corner): C esi &src[size] C edi &dst[2*size-5] movl -12(%esi), %ebp movl -8(%esi), %eax movl %eax, %ecx mull %ebp addl %eax, -4(%edi) movl -4(%esi), %eax adcl $0, %edx movl %edx, %ebx movl %eax, %esi mull %ebp addl %ebx, %eax adcl $0, %edx addl %eax, (%edi) movl %esi, %eax adcl $0, %edx movl %edx, %ebx mull %ecx addl %ebx, %eax movl %eax, 4(%edi) adcl $0, %edx movl %edx, 8(%edi) C Left shift of dst[1..2*size-2], high bit shifted out becomes dst[2*size-1]. L(lshift_start): movl PARAM_SIZE, %eax movl PARAM_DST, %edi xorl %ecx, %ecx C clear carry leal (%edi,%eax,8), %edi notl %eax C -size-1, preserve carry leal 2(%eax), %eax C -(size-1) L(lshift): C eax counter, negative C ebx C ecx C edx C esi C edi dst, pointing just after last limb C ebp rcll -4(%edi,%eax,8) rcll (%edi,%eax,8) incl %eax jnz L(lshift) setc %al movl PARAM_SRC, %esi movl %eax, -4(%edi) C dst most significant limb movl PARAM_SIZE, %ecx C Now add in the squares on the diagonal, src[0]^2, src[1]^2, ..., C src[size-1]^2. dst[0] hasn't yet been set at all yet, and just gets the C low limb of src[0]^2. movl (%esi), %eax C src[0] mull %eax leal (%esi,%ecx,4), %esi C src point just after last limb negl %ecx movl %eax, (%edi,%ecx,8) C dst[0] incl %ecx L(diag): C eax scratch C ebx scratch C ecx counter, negative C edx carry C esi src just after last limb C edi dst just after last limb C ebp movl (%esi,%ecx,4), %eax movl %edx, %ebx mull %eax addl %ebx, -4(%edi,%ecx,8) adcl %eax, (%edi,%ecx,8) adcl $0, %edx incl %ecx jnz L(diag) movl SAVE_ESI, %esi movl SAVE_EBX, %ebx addl %edx, -4(%edi) C dst most significant limb movl SAVE_EDI, %edi movl SAVE_EBP, %ebp addl $FRAME, %esp ret EPILOGUE()