dnl AMD K6-2 mpn_and_n, mpn_andn_n, mpn_nand_n, mpn_ior_n, mpn_iorn_n, dnl mpn_nior_n, mpn_xor_n, mpn_xnor_n -- mpn bitwise logical operations. dnl dnl alignment dst/src1/src2, A=0mod8, N=4mod8 dnl A/A/A A/A/N A/N/A A/N/N N/A/A N/A/N N/N/A N/N/N dnl dnl K6-2 1.2 1.5 1.5 1.2 1.2 1.5 1.5 1.2 and,andn,ior,xor dnl K6-2 1.5 1.75 2.0 1.75 1.75 2.0 1.75 1.5 iorn,xnor dnl K6-2 1.75 2.0 2.0 2.0 2.0 2.0 2.0 1.75 nand,nior dnl dnl K6 1.5 1.68 1.75 1.2 1.75 1.75 1.68 1.5 and,andn,ior,xor dnl K6 2.0 2.0 2.25 2.25 2.25 2.25 2.0 2.0 iorn,xnor dnl K6 2.0 2.25 2.25 2.25 2.25 2.25 2.25 2.0 nand,nior dnl Copyright (C) 1999, 2000 Free Software Foundation, Inc. dnl dnl This file is part of the GNU MP Library. dnl dnl The GNU MP Library is free software; you can redistribute it and/or dnl modify it under the terms of the GNU Lesser General Public License as dnl published by the Free Software Foundation; either version 2.1 of the dnl License, or (at your option) any later version. dnl dnl The GNU MP Library is distributed in the hope that it will be useful, dnl but WITHOUT ANY WARRANTY; without even the implied warranty of dnl MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU dnl Lesser General Public License for more details. dnl dnl You should have received a copy of the GNU Lesser General Public dnl License along with the GNU MP Library; see the file COPYING.LIB. If dnl not, write to the Free Software Foundation, Inc., 59 Temple Place - dnl Suite 330, Boston, MA 02111-1307, USA. include(`../config.m4') dnl M4_p and M4_i are the MMX and integer instructions dnl M4_*_neg_dst means whether to negate the final result before writing dnl M4_*_neg_src2 means whether to negate the src2 values before using them define(M4_choose_op, m4_assert_numargs(7) `ifdef(`OPERATION_$1',` define(`M4_function', `mpn_$1') define(`M4_operation', `$1') define(`M4_p', `$2') define(`M4_p_neg_dst', `$3') define(`M4_p_neg_src2',`$4') define(`M4_i', `$5') define(`M4_i_neg_dst', `$6') define(`M4_i_neg_src2',`$7') ')') dnl xnor is done in "iorn" style because it's a touch faster than "nior" dnl style (the two are equivalent for xor). M4_choose_op( and_n, pand,0,0, andl,0,0) M4_choose_op( andn_n, pandn,0,0, andl,0,1) M4_choose_op( nand_n, pand,1,0, andl,1,0) M4_choose_op( ior_n, por,0,0, orl,0,0) M4_choose_op( iorn_n, por,0,1, orl,0,1) M4_choose_op( nior_n, por,1,0, orl,1,0) M4_choose_op( xor_n, pxor,0,0, xorl,0,0) M4_choose_op( xnor_n, pxor,0,1, xorl,0,1) ifdef(`M4_function',, `m4_error(`Unrecognised or undefined OPERATION symbol ')') MULFUNC_PROLOGUE(mpn_and_n mpn_andn_n mpn_nand_n mpn_ior_n mpn_iorn_n mpn_nior_n mpn_xor_n mpn_xnor_n) C void M4_function (mp_ptr dst, mp_srcptr src1, mp_srcptr src2, C mp_size_t size); C C Do src1,size M4_operation src2,size, storing the result in dst,size. C C Unaligned movq loads and stores are a bit slower than aligned ones. The C test at the start of the routine checks the alignment of src1 and if C necessary processes one limb separately at the low end to make it aligned. C C The raw speeds without this alignment switch are as follows. C C alignment dst/src1/src2, A=0mod8, N=4mod8 C A/A/A A/A/N A/N/A A/N/N N/A/A N/A/N N/N/A N/N/N C C K6 1.5 2.0 1.5 2.0 and,andn,ior,xor C K6 1.75 2.2 2.0 2.28 iorn,xnor C K6 2.0 2.25 2.35 2.28 nand,nior C C C Future: C C K6 can do one 64-bit load per cycle so each of these routines should be C able to approach 1.0 c/l, if aligned. The basic and/andn/ior/xor might be C able to get 1.0 with just a 4 limb loop, being 3 instructions per 2 limbs. C The others are 4 instructions per 2 limbs, and so can only approach 1.0 C because there's nowhere to hide some loop control. defframe(PARAM_SIZE,16) defframe(PARAM_SRC2,12) defframe(PARAM_SRC1,8) defframe(PARAM_DST, 4) deflit(`FRAME',0) .text ALIGN(32) PROLOGUE(M4_function) movl PARAM_SIZE, %ecx pushl %ebx FRAME_pushl() movl PARAM_SRC1, %eax movl PARAM_SRC2, %ebx cmpl $1, %ecx movl PARAM_DST, %edx ja L(two_or_more) movl (%ebx), %ecx popl %ebx ifelse(M4_i_neg_src2,1,`notl %ecx') M4_i (%eax), %ecx ifelse(M4_i_neg_dst,1,` notl %ecx') movl %ecx, (%edx) ret L(two_or_more): C eax src1 C ebx src2 C ecx size C edx dst C esi C edi C ebp C C carry bit is low of size pushl %esi FRAME_pushl() testl $4, %eax jz L(alignment_ok) movl (%ebx), %esi addl $4, %ebx ifelse(M4_i_neg_src2,1,`notl %esi') M4_i (%eax), %esi addl $4, %eax ifelse(M4_i_neg_dst,1,` notl %esi') movl %esi, (%edx) addl $4, %edx decl %ecx L(alignment_ok): movl %ecx, %esi shrl %ecx jnz L(still_two_or_more) movl (%ebx), %ecx popl %esi ifelse(M4_i_neg_src2,1,`notl %ecx') M4_i (%eax), %ecx ifelse(M4_i_neg_dst,1,` notl %ecx') popl %ebx movl %ecx, (%edx) ret L(still_two_or_more): ifelse(eval(M4_p_neg_src2 || M4_p_neg_dst),1,` pcmpeqd %mm7, %mm7 C all ones ') ALIGN(16) L(top): C eax src1 C ebx src2 C ecx counter C edx dst C esi C edi C ebp C C carry bit is low of size movq -8(%ebx,%ecx,8), %mm0 ifelse(M4_p_neg_src2,1,`pxor %mm7, %mm0') M4_p -8(%eax,%ecx,8), %mm0 ifelse(M4_p_neg_dst,1,` pxor %mm7, %mm0') movq %mm0, -8(%edx,%ecx,8) loop L(top) jnc L(no_extra) movl -4(%ebx,%esi,4), %ebx ifelse(M4_i_neg_src2,1,`notl %ebx') M4_i -4(%eax,%esi,4), %ebx ifelse(M4_i_neg_dst,1,` notl %ebx') movl %ebx, -4(%edx,%esi,4) L(no_extra): popl %esi popl %ebx emms_or_femms ret EPILOGUE()