dnl AMD K6 mpn_sqr_basecase -- square an mpn number. dnl dnl K6: approx 4.7 cycles per cross product, or 9.2 cycles per triangular dnl product (measured on the speed difference between 17 and 33 limbs, dnl which is roughly the Karatsuba recursing range). dnl Copyright (C) 1999, 2000 Free Software Foundation, Inc. dnl dnl This file is part of the GNU MP Library. dnl dnl The GNU MP Library is free software; you can redistribute it and/or dnl modify it under the terms of the GNU Lesser General Public License as dnl published by the Free Software Foundation; either version 2.1 of the dnl License, or (at your option) any later version. dnl dnl The GNU MP Library is distributed in the hope that it will be useful, dnl but WITHOUT ANY WARRANTY; without even the implied warranty of dnl MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU dnl Lesser General Public License for more details. dnl dnl You should have received a copy of the GNU Lesser General Public dnl License along with the GNU MP Library; see the file COPYING.LIB. If dnl not, write to the Free Software Foundation, Inc., 59 Temple Place - dnl Suite 330, Boston, MA 02111-1307, USA. include(`../config.m4') dnl KARATSUBA_SQR_THRESHOLD_MAX is the maximum KARATSUBA_SQR_THRESHOLD this dnl code supports. This value is used only by the tune program to know dnl what it can go up to. (An attempt to compile with a bigger value will dnl trigger some m4_assert()s in the code, making the build fail.) dnl dnl The value is determined by requiring the displacements in the unrolled dnl addmul to fit in single bytes. This means a maximum UNROLL_COUNT of dnl 63, giving a maximum KARATSUBA_SQR_THRESHOLD of 66. deflit(KARATSUBA_SQR_THRESHOLD_MAX, 66) dnl Allow a value from the tune program to override config.m4. ifdef(`KARATSUBA_SQR_THRESHOLD_OVERRIDE', `define(`KARATSUBA_SQR_THRESHOLD',KARATSUBA_SQR_THRESHOLD_OVERRIDE)') dnl UNROLL_COUNT is the number of code chunks in the unrolled addmul. The dnl number required is determined by KARATSUBA_SQR_THRESHOLD, since dnl mpn_sqr_basecase only needs to handle sizes < KARATSUBA_SQR_THRESHOLD. dnl dnl The first addmul is the biggest, and this takes the second least dnl significant limb and multiplies it by the third least significant and dnl up. Hence for a maximum operand size of KARATSUBA_SQR_THRESHOLD-1 dnl limbs, UNROLL_COUNT needs to be KARATSUBA_SQR_THRESHOLD-3. m4_config_gmp_mparam(`KARATSUBA_SQR_THRESHOLD') deflit(UNROLL_COUNT, eval(KARATSUBA_SQR_THRESHOLD-3)) C void mpn_sqr_basecase (mp_ptr dst, mp_srcptr src, mp_size_t size); C C The algorithm is essentially the same as mpn/generic/sqr_basecase.c, but a C lot of function call overheads are avoided, especially when the given size C is small. C C The code size might look a bit excessive, but not all of it is executed C and so won't fill up the code cache. The 1x1, 2x2 and 3x3 special cases C clearly apply only to those sizes; mid sizes like 10x10 only need part of C the unrolled addmul; and big sizes like 35x35 that do need all of it will C at least be getting value for money, because 35x35 spends something like C 5780 cycles here. C C Different values of UNROLL_COUNT give slightly different speeds, between C 9.0 and 9.2 c/tri-prod measured on the difference between 17 and 33 limbs. C This isn't a big difference, but it's presumably some alignment effect C which if understood could give a simple speedup. defframe(PARAM_SIZE,12) defframe(PARAM_SRC, 8) defframe(PARAM_DST, 4) .text ALIGN(32) PROLOGUE(mpn_sqr_basecase) deflit(`FRAME',0) movl PARAM_SIZE, %ecx movl PARAM_SRC, %eax cmpl $2, %ecx je L(two_limbs) movl PARAM_DST, %edx ja L(three_or_more) C ----------------------------------------------------------------------------- C one limb only C eax src C ebx C ecx size C edx dst movl (%eax), %eax movl %edx, %ecx mull %eax movl %eax, (%ecx) movl %edx, 4(%ecx) ret C ----------------------------------------------------------------------------- ALIGN(16) L(two_limbs): C eax src C ebx C ecx size C edx dst pushl %ebx movl %eax, %ebx C src deflit(`FRAME',4) movl (%ebx), %eax movl PARAM_DST, %ecx mull %eax C src[0]^2 movl %eax, (%ecx) movl 4(%ebx), %eax movl %edx, 4(%ecx) mull %eax C src[1]^2 movl %eax, 8(%ecx) movl (%ebx), %eax movl %edx, 12(%ecx) movl 4(%ebx), %edx mull %edx C src[0]*src[1] addl %eax, 4(%ecx) adcl %edx, 8(%ecx) adcl $0, 12(%ecx) popl %ebx addl %eax, 4(%ecx) adcl %edx, 8(%ecx) adcl $0, 12(%ecx) ret C ----------------------------------------------------------------------------- L(three_or_more): deflit(`FRAME',0) cmpl $4, %ecx jae L(four_or_more) C ----------------------------------------------------------------------------- C three limbs C eax src C ecx size C edx dst pushl %ebx movl %eax, %ebx C src movl (%ebx), %eax movl %edx, %ecx C dst mull %eax C src[0] ^ 2 movl %eax, (%ecx) movl 4(%ebx), %eax movl %edx, 4(%ecx) pushl %esi mull %eax C src[1] ^ 2 movl %eax, 8(%ecx) movl 8(%ebx), %eax movl %edx, 12(%ecx) pushl %edi mull %eax C src[2] ^ 2 movl %eax, 16(%ecx) movl (%ebx), %eax movl %edx, 20(%ecx) movl 4(%ebx), %edx mull %edx C src[0] * src[1] movl %eax, %esi movl (%ebx), %eax movl %edx, %edi movl 8(%ebx), %edx pushl %ebp xorl %ebp, %ebp mull %edx C src[0] * src[2] addl %eax, %edi movl 4(%ebx), %eax adcl %edx, %ebp movl 8(%ebx), %edx mull %edx C src[1] * src[2] addl %eax, %ebp adcl $0, %edx C eax will be dst[5] C ebx C ecx dst C edx dst[4] C esi dst[1] C edi dst[2] C ebp dst[3] xorl %eax, %eax addl %esi, %esi adcl %edi, %edi adcl %ebp, %ebp adcl %edx, %edx adcl $0, %eax addl %esi, 4(%ecx) adcl %edi, 8(%ecx) adcl %ebp, 12(%ecx) popl %ebp popl %edi adcl %edx, 16(%ecx) popl %esi popl %ebx adcl %eax, 20(%ecx) ASSERT(nc) ret C ----------------------------------------------------------------------------- defframe(SAVE_EBX, -4) defframe(SAVE_ESI, -8) defframe(SAVE_EDI, -12) defframe(SAVE_EBP, -16) defframe(VAR_COUNTER,-20) defframe(VAR_JMP, -24) deflit(STACK_SPACE, 24) ALIGN(16) L(four_or_more): C eax src C ebx C ecx size C edx dst C esi C edi C ebp C First multiply src[0]*src[1..size-1] and store at dst[1..size]. C C A test was done calling mpn_mul_1 here to get the benefit of its unrolled C loop, but this was only a tiny speedup; at 35 limbs it took 24 cycles off C a 5780 cycle operation, which is not surprising since the loop here is 8 C c/l and mpn_mul_1 is 6.25 c/l. subl $STACK_SPACE, %esp deflit(`FRAME',STACK_SPACE) movl %edi, SAVE_EDI leal 4(%edx), %edi movl %ebx, SAVE_EBX leal 4(%eax), %ebx movl %esi, SAVE_ESI xorl %esi, %esi movl %ebp, SAVE_EBP C eax C ebx src+4 C ecx size C edx C esi C edi dst+4 C ebp movl (%eax), %ebp C multiplier leal -1(%ecx), %ecx C size-1, and pad to a 16 byte boundary ALIGN(16) L(mul_1): C eax scratch C ebx src ptr C ecx counter C edx scratch C esi carry C edi dst ptr C ebp multiplier movl (%ebx), %eax addl $4, %ebx mull %ebp addl %esi, %eax movl $0, %esi adcl %edx, %esi movl %eax, (%edi) addl $4, %edi loop L(mul_1) C Addmul src[n]*src[n+1..size-1] at dst[2*n-1...], for each n=1..size-2. C C The last two addmuls, which are the bottom right corner of the product C triangle, are left to the end. These are src[size-3]*src[size-2,size-1] C and src[size-2]*src[size-1]. If size is 4 then it's only these corner C cases that need to be done. C C The unrolled code is the same as mpn_addmul_1(), see that routine for some C comments. C C VAR_COUNTER is the outer loop, running from -(size-4) to -1, inclusive. C C VAR_JMP is the computed jump into the unrolled code, stepped by one code C chunk each outer loop. C C K6 doesn't do any branch prediction on indirect jumps, which is good C actually because it's a different target each time. The unrolled addmul C is about 3 cycles/limb faster than a simple loop, so the 6 cycle cost of C the indirect jump is quickly recovered. dnl This value is also implicitly encoded in a shift and add. dnl deflit(CODE_BYTES_PER_LIMB, 15) dnl With the unmodified &src[size] and &dst[size] pointers, the dnl displacements in the unrolled code fit in a byte for UNROLL_COUNT dnl values up to 31. Above that an offset must be added to them. dnl deflit(OFFSET, ifelse(eval(UNROLL_COUNT>31),1, eval((UNROLL_COUNT-31)*4), 0)) C eax C ebx &src[size] C ecx C edx C esi carry C edi &dst[size] C ebp movl PARAM_SIZE, %ecx movl %esi, (%edi) subl $4, %ecx jz L(corner) movl %ecx, %edx ifelse(OFFSET,0,, ` subl $OFFSET, %ebx') shll $4, %ecx ifelse(OFFSET,0,, ` subl $OFFSET, %edi') negl %ecx ifdef(`PIC',` call L(pic_calc) L(here): ',` leal L(unroll_inner_end)-eval(2*CODE_BYTES_PER_LIMB)(%ecx,%edx), %ecx ') negl %edx C The calculated jump mustn't be before the start of the available C code. This is the limitation UNROLL_COUNT puts on the src operand C size, but checked here using the jump address directly. C ASSERT(ae,` movl_text_address( L(unroll_inner_start), %eax) cmpl %eax, %ecx ') C ----------------------------------------------------------------------------- ALIGN(16) L(unroll_outer_top): C eax C ebx &src[size], constant C ecx VAR_JMP C edx VAR_COUNTER, limbs, negative C esi high limb to store C edi dst ptr, high of last addmul C ebp movl -12+OFFSET(%ebx,%edx,4), %ebp C multiplier movl %edx, VAR_COUNTER movl -8+OFFSET(%ebx,%edx,4), %eax C first limb of multiplicand mull %ebp testb $1, %cl movl %edx, %esi C high carry movl %ecx, %edx C jump movl %eax, %ecx C low carry leal CODE_BYTES_PER_LIMB(%edx), %edx movl %edx, VAR_JMP leal 4(%edi), %edi C A branch-free version of this using some xors was found to be a C touch slower than just a conditional jump, despite the jump C switching between taken and not taken on every loop. ifelse(eval(UNROLL_COUNT%2),0, jz,jnz) L(unroll_noswap) movl %esi, %eax C high,low carry other way around movl %ecx, %esi movl %eax, %ecx L(unroll_noswap): jmp *%edx C Must be on an even address here so the low bit of the jump address C will indicate which way around ecx/esi should start. C C An attempt was made at padding here to get the end of the unrolled C code to come out on a good alignment, to save padding before C L(corner). This worked, but turned out to run slower than just an C ALIGN(2). The reason for this is not clear, it might be related C to the different speeds on different UNROLL_COUNTs noted above. ALIGN(2) L(unroll_inner_start): C eax scratch C ebx src C ecx carry low C edx scratch C esi carry high C edi dst C ebp multiplier C C 15 code bytes each limb C ecx/esi swapped on each chunk forloop(`i', UNROLL_COUNT, 1, ` deflit(`disp_src', eval(-i*4 + OFFSET)) deflit(`disp_dst', eval(disp_src - 4)) m4_assert(`disp_src>=-128 && disp_src<128') m4_assert(`disp_dst>=-128 && disp_dst<128') ifelse(eval(i%2),0,` Zdisp( movl, disp_src,(%ebx), %eax) mull %ebp Zdisp( addl, %esi, disp_dst,(%edi)) adcl %eax, %ecx movl %edx, %esi jadcl0( %esi) ',` dnl this one comes out last Zdisp( movl, disp_src,(%ebx), %eax) mull %ebp Zdisp( addl, %ecx, disp_dst,(%edi)) adcl %eax, %esi movl %edx, %ecx jadcl0( %ecx) ') ') L(unroll_inner_end): addl %esi, -4+OFFSET(%edi) movl VAR_COUNTER, %edx jadcl0( %ecx) movl %ecx, m4_empty_if_zero(OFFSET)(%edi) movl VAR_JMP, %ecx incl %edx jnz L(unroll_outer_top) ifelse(OFFSET,0,,` addl $OFFSET, %ebx addl $OFFSET, %edi ') C ----------------------------------------------------------------------------- ALIGN(16) L(corner): C ebx &src[size] C edi &dst[2*size-5] movl -12(%ebx), %ebp movl -8(%ebx), %eax movl %eax, %ecx mull %ebp addl %eax, -4(%edi) adcl $0, %edx movl -4(%ebx), %eax movl %edx, %esi movl %eax, %ebx mull %ebp addl %esi, %eax adcl $0, %edx addl %eax, (%edi) adcl $0, %edx movl %edx, %esi movl %ebx, %eax mull %ecx addl %esi, %eax movl %eax, 4(%edi) adcl $0, %edx movl %edx, 8(%edi) C ----------------------------------------------------------------------------- C Left shift of dst[1..2*size-2], the bit shifted out becomes dst[2*size-1]. C The loop measures about 6 cycles/iteration, though it looks like it should C decode in 5. L(lshift_start): movl PARAM_SIZE, %ecx movl PARAM_DST, %edi subl $1, %ecx C size-1 and clear carry movl PARAM_SRC, %ebx movl %ecx, %edx xorl %eax, %eax C ready for adcl ALIGN(16) L(lshift): C eax C ebx src (for later use) C ecx counter, decrementing C edx size-1 (for later use) C esi C edi dst, incrementing C ebp rcll 4(%edi) rcll 8(%edi) leal 8(%edi), %edi loop L(lshift) adcl %eax, %eax movl %eax, 4(%edi) C dst most significant limb movl (%ebx), %eax C src[0] leal 4(%ebx,%edx,4), %ebx C &src[size] subl %edx, %ecx C -(size-1) C ----------------------------------------------------------------------------- C Now add in the squares on the diagonal, src[0]^2, src[1]^2, ..., C src[size-1]^2. dst[0] hasn't yet been set at all yet, and just gets the C low limb of src[0]^2. mull %eax movl %eax, (%edi,%ecx,8) C dst[0] ALIGN(16) L(diag): C eax scratch C ebx &src[size] C ecx counter, negative C edx carry C esi scratch C edi dst[2*size-2] C ebp movl (%ebx,%ecx,4), %eax movl %edx, %esi mull %eax addl %esi, 4(%edi,%ecx,8) adcl %eax, 8(%edi,%ecx,8) adcl $0, %edx incl %ecx jnz L(diag) movl SAVE_EBX, %ebx movl SAVE_ESI, %esi addl %edx, 4(%edi) C dst most significant limb movl SAVE_EDI, %edi movl SAVE_EBP, %ebp addl $FRAME, %esp ret C ----------------------------------------------------------------------------- ifdef(`PIC',` L(pic_calc): C See README.family about old gas bugs addl (%esp), %ecx addl $L(unroll_inner_end)-L(here)-eval(2*CODE_BYTES_PER_LIMB), %ecx addl %edx, %ecx ret ') EPILOGUE()