dnl Intel P5 mpn_rshift -- mpn right shift. dnl dnl P5: 1.75 cycles/limb. dnl Copyright (C) 2000 Free Software Foundation, Inc. dnl dnl This file is part of the GNU MP Library. dnl dnl The GNU MP Library is free software; you can redistribute it and/or dnl modify it under the terms of the GNU Lesser General Public License as dnl published by the Free Software Foundation; either version 2.1 of the dnl License, or (at your option) any later version. dnl dnl The GNU MP Library is distributed in the hope that it will be useful, dnl but WITHOUT ANY WARRANTY; without even the implied warranty of dnl MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU dnl Lesser General Public License for more details. dnl dnl You should have received a copy of the GNU Lesser General Public dnl License along with the GNU MP Library; see the file COPYING.LIB. If dnl not, write to the Free Software Foundation, Inc., 59 Temple Place - dnl Suite 330, Boston, MA 02111-1307, USA. include(`../config.m4') C mp_limb_t mpn_rshift (mp_ptr dst, mp_srcptr src, mp_size_t size, C unsigned shift); C C Shift src,size right by shift many bits and store the result in dst,size. C Zeros are shifted in at the left. Return the bits shifted out at the C right. C C It takes 6 mmx instructions to process 2 limbs, making 1.5 cycles/limb, C and with a 4 limb loop and 1 cycle of loop overhead the total is 1.75 c/l. C C Full speed depends on source and destination being aligned. Unaligned mmx C loads and stores on P5 don't pair and have a 2 cycle penalty. Some hairy C setups and finish-ups are done to ensure alignment for the loop. C C MMX shifts work out a bit faster even for the simple loop. defframe(PARAM_SHIFT,16) defframe(PARAM_SIZE, 12) defframe(PARAM_SRC, 8) defframe(PARAM_DST, 4) deflit(`FRAME',0) dnl Minimum 5, because the unrolled loop can't handle less. deflit(UNROLL_THRESHOLD, 5) .text ALIGN(8) PROLOGUE(mpn_rshift) pushl %ebx pushl %edi deflit(`FRAME',8) movl PARAM_SIZE, %eax movl PARAM_DST, %edx movl PARAM_SRC, %ebx movl PARAM_SHIFT, %ecx cmp $UNROLL_THRESHOLD, %eax jae L(unroll) decl %eax movl (%ebx), %edi C src low limb jnz L(simple) shrdl( %cl, %edi, %eax) C eax was decremented to zero shrl %cl, %edi movl %edi, (%edx) C dst low limb popl %edi C risk of data cache bank clash popl %ebx ret C ----------------------------------------------------------------------------- ALIGN(8) L(simple): C eax size-1 C ebx src C ecx shift C edx dst C esi C edi C ebp deflit(`FRAME',8) movd (%ebx), %mm5 C src[0] leal (%ebx,%eax,4), %ebx C &src[size-1] movd %ecx, %mm6 C rshift leal -4(%edx,%eax,4), %edx C &dst[size-2] psllq $32, %mm5 negl %eax C This loop is 5 or 8 cycles, with every second load unaligned and a wasted C cycle waiting for the mm0 result to be ready. For comparison a shrdl is 4 C cycles and would be 8 in a simple loop. Using mmx helps the return value C and last limb calculations too. L(simple_top): C eax counter, limbs, negative C ebx &src[size-1] C ecx return value C edx &dst[size-2] C C mm0 scratch C mm5 return value C mm6 shift movq (%ebx,%eax,4), %mm0 incl %eax psrlq %mm6, %mm0 movd %mm0, (%edx,%eax,4) jnz L(simple_top) movd (%ebx), %mm0 psrlq %mm6, %mm5 C return value psrlq %mm6, %mm0 popl %edi movd %mm5, %eax popl %ebx movd %mm0, 4(%edx) emms ret C ----------------------------------------------------------------------------- ALIGN(8) L(unroll): C eax size C ebx src C ecx shift C edx dst C esi C edi C ebp deflit(`FRAME',8) movd (%ebx), %mm5 C src[0] movl $4, %edi movd %ecx, %mm6 C rshift testl %edi, %ebx psllq $32, %mm5 jz L(start_src_aligned) C src isn't aligned, process low limb separately (marked xxx) and C step src and dst by one limb, making src aligned. C C source ebx C --+-------+-------+-------+ C | xxx | C --+-------+-------+-------+ C 4mod8 0mod8 4mod8 C C dest edx C --+-------+-------+ C | | xxx | C --+-------+-------+ movq (%ebx), %mm0 C unaligned load psrlq %mm6, %mm0 addl $4, %ebx decl %eax movd %mm0, (%edx) addl $4, %edx L(start_src_aligned): movq (%ebx), %mm1 testl %edi, %edx psrlq %mm6, %mm5 C retval jz L(start_dst_aligned) C dst isn't aligned, add 4 to make it so, and pretend the shift is C 32 bits extra. Low limb of dst (marked xxx) handled here C separately. C C source ebx C --+-------+-------+ C | mm1 | C --+-------+-------+ C 4mod8 0mod8 C C dest edx C --+-------+-------+-------+ C | xxx | C --+-------+-------+-------+ C 4mod8 0mod8 4mod8 movq %mm1, %mm0 addl $32, %ecx C new shift psrlq %mm6, %mm0 movd %ecx, %mm6 movd %mm0, (%edx) addl $4, %edx L(start_dst_aligned): movq 8(%ebx), %mm3 negl %ecx movq %mm3, %mm2 C mm2 src qword addl $64, %ecx movd %ecx, %mm7 psrlq %mm6, %mm1 leal -12(%ebx,%eax,4), %ebx leal -20(%edx,%eax,4), %edx psllq %mm7, %mm3 subl $7, %eax C size-7 por %mm1, %mm3 C mm3 ready to store negl %eax C -(size-7) jns L(finish) C This loop is the important bit, the rest is just support. Careful C instruction scheduling achieves the claimed 1.75 c/l. The C relevant parts of the pairing rules are: C C - mmx loads and stores execute only in the U pipe C - only one mmx shift in a pair C - wait one cycle before storing an mmx register result C - the usual address generation interlock C C Two qword calculations are slightly interleaved. The instructions C marked "C" belong to the second qword, and the "C prev" one is for C the second qword from the previous iteration. ALIGN(8) L(unroll_loop): C eax counter, limbs, negative C ebx &src[size-12] C ecx C edx &dst[size-12] C esi C edi C C mm0 C mm1 C mm2 src qword from -8(%ebx,%eax,4) C mm3 dst qword ready to store to -8(%edx,%eax,4) C C mm5 return value C mm6 rshift C mm7 lshift movq (%ebx,%eax,4), %mm0 psrlq %mm6, %mm2 movq %mm0, %mm1 psllq %mm7, %mm0 movq %mm3, -8(%edx,%eax,4) C prev por %mm2, %mm0 movq 8(%ebx,%eax,4), %mm3 C psrlq %mm6, %mm1 C movq %mm0, (%edx,%eax,4) movq %mm3, %mm2 C psllq %mm7, %mm3 C addl $4, %eax por %mm1, %mm3 C js L(unroll_loop) L(finish): C eax 0 to 3 representing respectively 3 to 0 limbs remaining testb $2, %al jnz L(finish_no_two) movq (%ebx,%eax,4), %mm0 psrlq %mm6, %mm2 movq %mm0, %mm1 psllq %mm7, %mm0 movq %mm3, -8(%edx,%eax,4) C prev por %mm2, %mm0 movq %mm1, %mm2 movq %mm0, %mm3 addl $2, %eax L(finish_no_two): C eax 2 or 3 representing respectively 1 or 0 limbs remaining C C mm2 src prev qword, from -8(%ebx,%eax,4) C mm3 dst qword, for -8(%edx,%eax,4) testb $1, %al popl %edi movd %mm5, %eax C retval jnz L(finish_zero) C One extra limb, destination was aligned. C C source ebx C +-------+---------------+-- C | | mm2 | C +-------+---------------+-- C C dest edx C +-------+---------------+---------------+-- C | | | mm3 | C +-------+---------------+---------------+-- C C mm6 = shift C mm7 = ecx = 64-shift C One extra limb, destination was unaligned. C C source ebx C +-------+---------------+-- C | | mm2 | C +-------+---------------+-- C C dest edx C +---------------+---------------+-- C | | mm3 | C +---------------+---------------+-- C C mm6 = shift+32 C mm7 = ecx = 64-(shift+32) C In both cases there's one extra limb of src to fetch and combine C with mm2 to make a qword at 8(%edx), and in the aligned case C there's a further extra limb of dst to be formed. movd 8(%ebx), %mm0 psrlq %mm6, %mm2 movq %mm0, %mm1 psllq %mm7, %mm0 movq %mm3, (%edx) por %mm2, %mm0 psrlq %mm6, %mm1 andl $32, %ecx popl %ebx jz L(finish_one_unaligned) C dst was aligned, must store one extra limb movd %mm1, 16(%edx) L(finish_one_unaligned): movq %mm0, 8(%edx) emms ret L(finish_zero): C No extra limbs, destination was aligned. C C source ebx C +---------------+-- C | mm2 | C +---------------+-- C C dest edx+4 C +---------------+---------------+-- C | | mm3 | C +---------------+---------------+-- C C mm6 = shift C mm7 = ecx = 64-shift C No extra limbs, destination was unaligned. C C source ebx C +---------------+-- C | mm2 | C +---------------+-- C C dest edx+4 C +-------+---------------+-- C | | mm3 | C +-------+---------------+-- C C mm6 = shift+32 C mm7 = 64-(shift+32) C The movd for the unaligned case is clearly the same data as the C movq for the aligned case, it's just a choice between whether one C or two limbs should be written. movq %mm3, 4(%edx) psrlq %mm6, %mm2 movd %mm2, 12(%edx) andl $32, %ecx popl %ebx jz L(finish_zero_unaligned) movq %mm2, 12(%edx) L(finish_zero_unaligned): emms ret EPILOGUE()