dnl Intel P5 mpn_sqr_basecase -- square an mpn number. dnl dnl P5: approx 8 cycles per crossproduct, or 15.5 cycles per triangular dnl product at around 20x20 limbs. dnl Copyright (C) 1999, 2000 Free Software Foundation, Inc. dnl dnl This file is part of the GNU MP Library. dnl dnl The GNU MP Library is free software; you can redistribute it and/or dnl modify it under the terms of the GNU Lesser General Public License as dnl published by the Free Software Foundation; either version 2.1 of the dnl License, or (at your option) any later version. dnl dnl The GNU MP Library is distributed in the hope that it will be useful, dnl but WITHOUT ANY WARRANTY; without even the implied warranty of dnl MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU dnl Lesser General Public License for more details. dnl dnl You should have received a copy of the GNU Lesser General Public dnl License along with the GNU MP Library; see the file COPYING.LIB. If dnl not, write to the Free Software Foundation, Inc., 59 Temple Place - dnl Suite 330, Boston, MA 02111-1307, USA. include(`../config.m4') C void mpn_sqr_basecase (mp_ptr dst, mp_srcptr src, mp_size_t size); C C Calculate src,size squared, storing the result in dst,2*size. C C The algorithm is basically the same as mpn/generic/sqr_basecase.c, but a C lot of function call overheads are avoided, especially when the size is C small. defframe(PARAM_SIZE,12) defframe(PARAM_SRC, 8) defframe(PARAM_DST, 4) .text ALIGN(8) PROLOGUE(mpn_sqr_basecase) deflit(`FRAME',0) movl PARAM_SIZE, %edx movl PARAM_SRC, %eax cmpl $2, %edx movl PARAM_DST, %ecx je L(two_limbs) movl (%eax), %eax ja L(three_or_more) C ----------------------------------------------------------------------------- C one limb only C eax src C ebx C ecx dst C edx mull %eax movl %eax, (%ecx) movl %edx, 4(%ecx) ret C ----------------------------------------------------------------------------- ALIGN(8) L(two_limbs): C eax src C ebx C ecx dst C edx size pushl %ebp pushl %edi pushl %esi pushl %ebx movl %eax, %ebx movl (%eax), %eax mull %eax C src[0]^2 movl %eax, (%ecx) C dst[0] movl %edx, %esi C dst[1] movl 4(%ebx), %eax mull %eax C src[1]^2 movl %eax, %edi C dst[2] movl %edx, %ebp C dst[3] movl (%ebx), %eax mull 4(%ebx) C src[0]*src[1] addl %eax, %esi popl %ebx adcl %edx, %edi adcl $0, %ebp addl %esi, %eax adcl %edi, %edx movl %eax, 4(%ecx) adcl $0, %ebp popl %esi movl %edx, 8(%ecx) movl %ebp, 12(%ecx) popl %edi popl %ebp ret C ----------------------------------------------------------------------------- ALIGN(8) L(three_or_more): C eax src low limb C ebx C ecx dst C edx size cmpl $4, %edx pushl %ebx deflit(`FRAME',4) movl PARAM_SRC, %ebx jae L(four_or_more) C ----------------------------------------------------------------------------- C three limbs C eax src low limb C ebx src C ecx dst C edx size pushl %ebp pushl %edi mull %eax C src[0] ^ 2 movl %eax, (%ecx) movl %edx, 4(%ecx) movl 4(%ebx), %eax xorl %ebp, %ebp mull %eax C src[1] ^ 2 movl %eax, 8(%ecx) movl %edx, 12(%ecx) movl 8(%ebx), %eax pushl %esi C risk of cache bank clash mull %eax C src[2] ^ 2 movl %eax, 16(%ecx) movl %edx, 20(%ecx) movl (%ebx), %eax mull 4(%ebx) C src[0] * src[1] movl %eax, %esi movl %edx, %edi movl (%ebx), %eax mull 8(%ebx) C src[0] * src[2] addl %eax, %edi movl %edx, %ebp adcl $0, %ebp movl 4(%ebx), %eax mull 8(%ebx) C src[1] * src[2] xorl %ebx, %ebx addl %eax, %ebp C eax C ebx zero, will be dst[5] C ecx dst C edx dst[4] C esi dst[1] C edi dst[2] C ebp dst[3] adcl $0, %edx addl %esi, %esi adcl %edi, %edi adcl %ebp, %ebp adcl %edx, %edx movl 4(%ecx), %eax adcl $0, %ebx addl %esi, %eax movl %eax, 4(%ecx) movl 8(%ecx), %eax adcl %edi, %eax movl 12(%ecx), %esi adcl %ebp, %esi movl 16(%ecx), %edi movl %eax, 8(%ecx) movl %esi, 12(%ecx) adcl %edx, %edi popl %esi movl 20(%ecx), %eax movl %edi, 16(%ecx) popl %edi popl %ebp adcl %ebx, %eax C no carry out of this popl %ebx movl %eax, 20(%ecx) ret C ----------------------------------------------------------------------------- ALIGN(8) L(four_or_more): C eax src low limb C ebx src C ecx dst C edx size C esi C edi C ebp C C First multiply src[0]*src[1..size-1] and store at dst[1..size]. deflit(`FRAME',4) pushl %edi FRAME_pushl() pushl %esi FRAME_pushl() pushl %ebp FRAME_pushl() leal (%ecx,%edx,4), %edi C dst end of this mul1 leal (%ebx,%edx,4), %esi C src end movl %ebx, %ebp C src negl %edx C -size xorl %ebx, %ebx C clear carry limb and carry flag leal 1(%edx), %ecx C -(size-1) L(mul1): C eax scratch C ebx carry C ecx counter, negative C edx scratch C esi &src[size] C edi &dst[size] C ebp src adcl $0, %ebx movl (%esi,%ecx,4), %eax mull (%ebp) addl %eax, %ebx movl %ebx, (%edi,%ecx,4) incl %ecx movl %edx, %ebx jnz L(mul1) C Add products src[n]*src[n+1..size-1] at dst[2*n-1...], for C n=1..size-2. C C The last two products, which are the end corner of the product C triangle, are handled separately to save looping overhead. These C are src[size-3]*src[size-2,size-1] and src[size-2]*src[size-1]. C If size is 4 then it's only these that need to be done. C C In the outer loop %esi is a constant, and %edi just advances by 1 C limb each time. The size of the operation decreases by 1 limb C each time. C eax C ebx carry (needing carry flag added) C ecx C edx C esi &src[size] C edi &dst[size] C ebp adcl $0, %ebx movl PARAM_SIZE, %edx movl %ebx, (%edi) subl $4, %edx negl %edx jz L(corner) L(outer): C ebx previous carry limb to store C edx outer loop counter (negative) C esi &src[size] C edi dst, pointing at stored carry limb of previous loop pushl %edx C new outer loop counter leal -2(%edx), %ecx movl %ebx, (%edi) addl $4, %edi addl $4, %ebp xorl %ebx, %ebx C initial carry limb, clear carry flag L(inner): C eax scratch C ebx carry (needing carry flag added) C ecx counter, negative C edx scratch C esi &src[size] C edi dst end of this addmul C ebp &src[j] adcl $0, %ebx movl (%esi,%ecx,4), %eax mull (%ebp) addl %ebx, %eax movl (%edi,%ecx,4), %ebx adcl $0, %edx addl %eax, %ebx movl %ebx, (%edi,%ecx,4) incl %ecx movl %edx, %ebx jnz L(inner) adcl $0, %ebx popl %edx C outer loop counter incl %edx jnz L(outer) movl %ebx, (%edi) L(corner): C esi &src[size] C edi &dst[2*size-4] movl -8(%esi), %eax movl -4(%edi), %ebx C risk of data cache bank clash here mull -12(%esi) C src[size-2]*src[size-3] addl %eax, %ebx movl %edx, %ecx adcl $0, %ecx movl -4(%esi), %eax mull -12(%esi) C src[size-1]*src[size-3] addl %ecx, %eax movl (%edi), %ecx adcl $0, %edx movl %ebx, -4(%edi) addl %eax, %ecx movl %edx, %ebx adcl $0, %ebx movl -4(%esi), %eax mull -8(%esi) C src[size-1]*src[size-2] movl %ecx, 0(%edi) addl %eax, %ebx adcl $0, %edx movl PARAM_SIZE, %eax negl %eax movl %ebx, 4(%edi) addl $1, %eax C -(size-1) and clear carry movl %edx, 8(%edi) C ----------------------------------------------------------------------------- C Left shift of dst[1..2*size-2], high bit shifted out becomes dst[2*size-1]. L(lshift): C eax counter, negative C ebx next limb C ecx C edx C esi C edi &dst[2*size-4] C ebp movl 12(%edi,%eax,8), %ebx rcll %ebx movl 16(%edi,%eax,8), %ecx rcll %ecx movl %ebx, 12(%edi,%eax,8) movl %ecx, 16(%edi,%eax,8) incl %eax jnz L(lshift) adcl %eax, %eax C high bit out movl PARAM_SRC, %esi movl PARAM_SIZE, %ecx C risk of cache bank clash movl %eax, 12(%edi) C dst most significant limb C ----------------------------------------------------------------------------- C Now add in the squares on the diagonal, namely src[0]^2, src[1]^2, ..., C src[size-1]^2. dst[0] hasn't yet been set at all yet, and just gets the C low limb of src[0]^2. movl (%esi), %eax C src[0] leal (%esi,%ecx,4), %esi C src end negl %ecx mull %eax movl %eax, 16(%edi,%ecx,8) C dst[0] movl %edx, %ebx addl $1, %ecx C size-1 and clear carry L(diag): C eax scratch (low product) C ebx carry limb C ecx counter, negative C edx scratch (high product) C esi &src[size] C edi &dst[2*size-4] C ebp scratch (fetched dst limbs) movl (%esi,%ecx,4), %eax adcl $0, %ebx mull %eax movl 16-4(%edi,%ecx,8), %ebp addl %ebp, %ebx movl 16(%edi,%ecx,8), %ebp adcl %eax, %ebp movl %ebx, 16-4(%edi,%ecx,8) movl %ebp, 16(%edi,%ecx,8) incl %ecx movl %edx, %ebx jnz L(diag) adcl $0, %edx movl 16-4(%edi), %eax C dst most significant limb addl %eax, %edx popl %ebp movl %edx, 16-4(%edi) popl %esi C risk of cache bank clash popl %edi popl %ebx ret EPILOGUE()