Remove very dead Java backend code.
[ghc-hetmet.git] / compiler / coreSyn / CoreUtils.lhs
index 0bd375d..4146b62 100644 (file)
@@ -6,82 +6,75 @@
 Utility functions on @Core@ syntax
 
 \begin{code}
 Utility functions on @Core@ syntax
 
 \begin{code}
-{-# OPTIONS -w #-}
+{-# OPTIONS -fno-warn-incomplete-patterns #-}
 -- The above warning supression flag is a temporary kludge.
 -- While working on this module you are encouraged to remove it and fix
 -- any warnings in the module. See
 -- The above warning supression flag is a temporary kludge.
 -- While working on this module you are encouraged to remove it and fix
 -- any warnings in the module. See
---     http://hackage.haskell.org/trac/ghc/wiki/CodingStyle#Warnings
+--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#Warnings
 -- for details
 
 -- for details
 
+-- | Commonly useful utilites for manipulating the Core language
 module CoreUtils (
 module CoreUtils (
-       -- Construction
-       mkInlineMe, mkSCC, mkCoerce, mkCoerceI,
+       -- * Constructing expressions
+       mkSCC, mkCoerce,
        bindNonRec, needsCaseBinding,
        bindNonRec, needsCaseBinding,
-       mkIfThenElse, mkAltExpr, mkPiType, mkPiTypes,
+       mkAltExpr, mkPiType, mkPiTypes,
 
 
-       -- Taking expressions apart
+       -- * Taking expressions apart
        findDefault, findAlt, isDefaultAlt, mergeAlts, trimConArgs,
 
        findDefault, findAlt, isDefaultAlt, mergeAlts, trimConArgs,
 
-       -- Properties of expressions
-       exprType, coreAltType,
-       exprIsDupable, exprIsTrivial, exprIsCheap, 
-       exprIsHNF,exprOkForSpeculation, exprIsBig, 
-       exprIsConApp_maybe, exprIsBottom,
-       rhsIsStatic,
+       -- * Properties of expressions
+       exprType, coreAltType, coreAltsType,
+       exprIsDupable, exprIsTrivial, exprIsBottom,
+        exprIsCheap, exprIsExpandable, exprIsCheap', CheapAppFun,
+       exprIsHNF, exprOkForSpeculation, exprIsBig, exprIsConLike,
+       rhsIsStatic, isCheapApp, isExpandableApp,
 
 
-       -- Arity and eta expansion
-       manifestArity, exprArity, 
-       exprEtaExpandArity, etaExpand, 
+       -- * Expression and bindings size
+       coreBindsSize, exprSize,
+        CoreStats(..), coreBindsStats, 
 
 
-       -- Size
-       coreBindsSize,
-
-       -- Hashing
+       -- * Hashing
        hashExpr,
 
        hashExpr,
 
-       -- Equality
-       cheapEqExpr, tcEqExpr, tcEqExprX, applyTypeToArgs, applyTypeToArg,
+       -- * Equality
+       cheapEqExpr, eqExpr, eqExprX,
+
+       -- * Eta reduction
+       tryEtaReduce,
 
 
-        dataConOrigInstPat, dataConRepInstPat, dataConRepFSInstPat
+       -- * Manipulating data constructors and types
+       applyTypeToArgs, applyTypeToArg,
+        dataConRepInstPat, dataConRepFSInstPat
     ) where
 
 #include "HsVersions.h"
 
 import CoreSyn
     ) where
 
 #include "HsVersions.h"
 
 import CoreSyn
-import CoreFVs
 import PprCore
 import Var
 import SrcLoc
 import PprCore
 import Var
 import SrcLoc
-import VarSet
 import VarEnv
 import VarEnv
+import VarSet
 import Name
 import Name
-#if mingw32_TARGET_OS
-import Packages
-#endif
 import Literal
 import DataCon
 import PrimOp
 import Id
 import IdInfo
 import Literal
 import DataCon
 import PrimOp
 import Id
 import IdInfo
-import NewDemand
 import Type
 import Coercion
 import TyCon
 import Type
 import Coercion
 import TyCon
-import TysWiredIn
 import CostCentre
 import CostCentre
-import BasicTypes
-import PackageConfig
 import Unique
 import Outputable
 import Unique
 import Outputable
-import DynFlags
 import TysPrim
 import FastString
 import Maybes
 import Util
 import TysPrim
 import FastString
 import Maybes
 import Util
+import Pair
 import Data.Word
 import Data.Bits
 import Data.Word
 import Data.Bits
-
-import GHC.Exts                -- For `xori` 
 \end{code}
 
 
 \end{code}
 
 
@@ -93,13 +86,16 @@ import GHC.Exts             -- For `xori`
 
 \begin{code}
 exprType :: CoreExpr -> Type
 
 \begin{code}
 exprType :: CoreExpr -> Type
-
+-- ^ Recover the type of a well-typed Core expression. Fails when
+-- applied to the actual 'CoreSyn.Type' expression as it cannot
+-- really be said to have a type
 exprType (Var var)          = idType var
 exprType (Lit lit)          = literalType lit
 exprType (Var var)          = idType var
 exprType (Lit lit)          = literalType lit
+exprType (Coercion co)      = coercionType co
 exprType (Let _ body)       = exprType body
 exprType (Let _ body)       = exprType body
-exprType (Case _ _ ty alts)  = ty
-exprType (Cast e co)        = snd (coercionKind co)
-exprType (Note other_note e) = exprType e
+exprType (Case _ _ ty _)     = ty
+exprType (Cast _ co)         = pSnd (coercionKind co)
+exprType (Note _ e)          = exprType e
 exprType (Lam binder expr)   = mkPiType binder (exprType expr)
 exprType e@(App _ _)
   = case collectArgs e of
 exprType (Lam binder expr)   = mkPiType binder (exprType expr)
 exprType e@(App _ _)
   = case collectArgs e of
@@ -108,52 +104,89 @@ exprType e@(App _ _)
 exprType other = pprTrace "exprType" (pprCoreExpr other) alphaTy
 
 coreAltType :: CoreAlt -> Type
 exprType other = pprTrace "exprType" (pprCoreExpr other) alphaTy
 
 coreAltType :: CoreAlt -> Type
-coreAltType (_,_,rhs) = exprType rhs
+-- ^ Returns the type of the alternatives right hand side
+coreAltType (_,bs,rhs) 
+  | any bad_binder bs = expandTypeSynonyms ty
+  | otherwise         = ty    -- Note [Existential variables and silly type synonyms]
+  where
+    ty           = exprType rhs
+    free_tvs     = tyVarsOfType ty
+    bad_binder b = isTyVar b && b `elemVarSet` free_tvs
+
+coreAltsType :: [CoreAlt] -> Type
+-- ^ Returns the type of the first alternative, which should be the same as for all alternatives
+coreAltsType (alt:_) = coreAltType alt
+coreAltsType []             = panic "corAltsType"
 \end{code}
 
 \end{code}
 
-@mkPiType@ makes a (->) type or a forall type, depending on whether
-it is given a type variable or a term variable.  We cleverly use the
-lbvarinfo field to figure out the right annotation for the arrove in
-case of a term variable.
+Note [Existential variables and silly type synonyms]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Consider
+       data T = forall a. T (Funny a)
+       type Funny a = Bool
+       f :: T -> Bool
+       f (T x) = x
 
 
-\begin{code}
-mkPiType  :: Var   -> Type -> Type     -- The more polymorphic version
-mkPiTypes :: [Var] -> Type -> Type     --    doesn't work...
+Now, the type of 'x' is (Funny a), where 'a' is existentially quantified.
+That means that 'exprType' and 'coreAltsType' may give a result that *appears*
+to mention an out-of-scope type variable.  See Trac #3409 for a more real-world
+example.
 
 
-mkPiTypes vs ty = foldr mkPiType ty vs
+Various possibilities suggest themselves:
+
+ - Ignore the problem, and make Lint not complain about such variables
+
+ - Expand all type synonyms (or at least all those that discard arguments)
+      This is tricky, because at least for top-level things we want to
+      retain the type the user originally specified.
+
+ - Expand synonyms on the fly, when the problem arises. That is what
+   we are doing here.  It's not too expensive, I think.
+
+\begin{code}
+mkPiType  :: Var -> Type -> Type
+-- ^ Makes a @(->)@ type or a forall type, depending
+-- on whether it is given a type variable or a term variable.
+mkPiTypes :: [Var] -> Type -> Type
+-- ^ 'mkPiType' for multiple type or value arguments
 
 mkPiType v ty
    | isId v    = mkFunTy (idType v) ty
    | otherwise = mkForAllTy v ty
 
 mkPiType v ty
    | isId v    = mkFunTy (idType v) ty
    | otherwise = mkForAllTy v ty
+
+mkPiTypes vs ty = foldr mkPiType ty vs
 \end{code}
 
 \begin{code}
 applyTypeToArg :: Type -> CoreExpr -> Type
 \end{code}
 
 \begin{code}
 applyTypeToArg :: Type -> CoreExpr -> Type
+-- ^ Determines the type resulting from applying an expression to a function with the given type
 applyTypeToArg fun_ty (Type arg_ty) = applyTy fun_ty arg_ty
 applyTypeToArg fun_ty (Type arg_ty) = applyTy fun_ty arg_ty
-applyTypeToArg fun_ty other_arg     = funResultTy fun_ty
+applyTypeToArg fun_ty _             = funResultTy fun_ty
 
 applyTypeToArgs :: CoreExpr -> Type -> [CoreExpr] -> Type
 
 applyTypeToArgs :: CoreExpr -> Type -> [CoreExpr] -> Type
--- A more efficient version of applyTypeToArg 
--- when we have several args
--- The first argument is just for debugging
-applyTypeToArgs e op_ty [] = op_ty
+-- ^ A more efficient version of 'applyTypeToArg' when we have several arguments.
+-- The first argument is just for debugging, and gives some context
+applyTypeToArgs _ op_ty [] = op_ty
 
 applyTypeToArgs e op_ty (Type ty : args)
   =    -- Accumulate type arguments so we can instantiate all at once
     go [ty] args
   where
     go rev_tys (Type ty : args) = go (ty:rev_tys) args
 
 applyTypeToArgs e op_ty (Type ty : args)
   =    -- Accumulate type arguments so we can instantiate all at once
     go [ty] args
   where
     go rev_tys (Type ty : args) = go (ty:rev_tys) args
-    go rev_tys rest_args        = applyTypeToArgs e op_ty' rest_args
-                               where
-                                 op_ty' = applyTys op_ty (reverse rev_tys)
+    go rev_tys rest_args         = applyTypeToArgs e op_ty' rest_args
+                                where
+                                  op_ty' = applyTysD msg op_ty (reverse rev_tys)
+                                  msg = ptext (sLit "applyTypeToArgs") <+> 
+                                        panic_msg e op_ty
 
 
-applyTypeToArgs e op_ty (other_arg : args)
+applyTypeToArgs e op_ty (_ : args)
   = case (splitFunTy_maybe op_ty) of
        Just (_, res_ty) -> applyTypeToArgs e res_ty args
   = case (splitFunTy_maybe op_ty) of
        Just (_, res_ty) -> applyTypeToArgs e res_ty args
-       Nothing -> pprPanic "applyTypeToArgs" (pprCoreExpr e $$ ppr op_ty)
-\end{code}
-
+       Nothing -> pprPanic "applyTypeToArgs" (panic_msg e op_ty)
 
 
+panic_msg :: CoreExpr -> Type -> SDoc
+panic_msg e op_ty = pprCoreExpr e $$ ppr op_ty
+\end{code}
 
 %************************************************************************
 %*                                                                     *
 
 %************************************************************************
 %*                                                                     *
@@ -161,71 +194,33 @@ applyTypeToArgs e op_ty (other_arg : args)
 %*                                                                     *
 %************************************************************************
 
 %*                                                                     *
 %************************************************************************
 
-mkNote removes redundant coercions, and SCCs where possible
-
-\begin{code}
-#ifdef UNUSED
-mkNote :: Note -> CoreExpr -> CoreExpr
-mkNote (SCC cc)        expr               = mkSCC cc expr
-mkNote InlineMe expr              = mkInlineMe expr
-mkNote note     expr              = Note note expr
-#endif
-\end{code}
-
-Drop trivial InlineMe's.  This is somewhat important, because if we have an unfolding
-that looks like        (Note InlineMe (Var v)), the InlineMe doesn't go away because it may
-not be *applied* to anything.
-
-We don't use exprIsTrivial here, though, because we sometimes generate worker/wrapper
-bindings like
-       fw = ...
-       f  = inline_me (coerce t fw)
-As usual, the inline_me prevents the worker from getting inlined back into the wrapper.
-We want the split, so that the coerces can cancel at the call site.  
-
-However, we can get left with tiresome type applications.  Notably, consider
-       f = /\ a -> let t = e in (t, w)
-Then lifting the let out of the big lambda gives
-       t' = /\a -> e
-       f = /\ a -> let t = inline_me (t' a) in (t, w)
-The inline_me is to stop the simplifier inlining t' right back
-into t's RHS.  In the next phase we'll substitute for t (since
-its rhs is trivial) and *then* we could get rid of the inline_me.
-But it hardly seems worth it, so I don't bother.
-
-\begin{code}
-mkInlineMe (Var v) = Var v
-mkInlineMe e      = Note InlineMe e
-\end{code}
-
-
-
 \begin{code}
 \begin{code}
-mkCoerceI :: CoercionI -> CoreExpr -> CoreExpr
-mkCoerceI IdCo e = e
-mkCoerceI (ACo co) e = mkCoerce co e
-
+-- | Wrap the given expression in the coercion safely, dropping
+-- identity coercions and coalescing nested coercions
 mkCoerce :: Coercion -> CoreExpr -> CoreExpr
 mkCoerce :: Coercion -> CoreExpr -> CoreExpr
+mkCoerce co e | isReflCo co = e
 mkCoerce co (Cast expr co2)
 mkCoerce co (Cast expr co2)
-  = ASSERT(let { (from_ty, _to_ty) = coercionKind co; 
-                 (_from_ty2, to_ty2) = coercionKind co2} in
-           from_ty `coreEqType` to_ty2 )
-    mkCoerce (mkTransCoercion co2 co) expr
+  = ASSERT(let { Pair  from_ty  _to_ty  = coercionKind co; 
+                 Pair _from_ty2  to_ty2 = coercionKind co2} in
+           from_ty `eqType` to_ty2 )
+    mkCoerce (mkTransCo co2 co) expr
 
 mkCoerce co expr 
 
 mkCoerce co expr 
-  = let (from_ty, to_ty) = coercionKind co in
---    if to_ty `coreEqType` from_ty
+  = let Pair from_ty _to_ty = coercionKind co in
+--    if to_ty `eqType` from_ty
 --    then expr
 --    else 
 --    then expr
 --    else 
-        ASSERT2(from_ty `coreEqType` (exprType expr), text "Trying to coerce" <+> text "(" <> ppr expr $$ text "::" <+> ppr (exprType expr) <> text ")" $$ ppr co $$ ppr (coercionKindPredTy co))
+        WARN(not (from_ty `eqType` exprType expr), text "Trying to coerce" <+> text "(" <> ppr expr $$ text "::" <+> ppr (exprType expr) <> text ")" $$ ppr co $$ pprEqPred (coercionKind co))
          (Cast expr co)
 \end{code}
 
 \begin{code}
          (Cast expr co)
 \end{code}
 
 \begin{code}
+-- | Wraps the given expression in the cost centre unless
+-- in a way that maximises their utility to the user
 mkSCC :: CostCentre -> Expr b -> Expr b
        -- Note: Nested SCC's *are* preserved for the benefit of
        --       cost centre stack profiling
 mkSCC :: CostCentre -> Expr b -> Expr b
        -- Note: Nested SCC's *are* preserved for the benefit of
        --       cost centre stack profiling
-mkSCC cc (Lit lit)         = Lit lit
+mkSCC _  (Lit lit)          = Lit lit
 mkSCC cc (Lam x e)         = Lam x (mkSCC cc e)  -- Move _scc_ inside lambda
 mkSCC cc (Note (SCC cc') e) = Note (SCC cc) (Note (SCC cc') e)
 mkSCC cc (Note n e)        = Note n (mkSCC cc e) -- Move _scc_ inside notes
 mkSCC cc (Lam x e)         = Lam x (mkSCC cc e)  -- Move _scc_ inside lambda
 mkSCC cc (Note (SCC cc') e) = Note (SCC cc) (Note (SCC cc') e)
 mkSCC cc (Note n e)        = Note n (mkSCC cc e) -- Move _scc_ inside notes
@@ -242,20 +237,27 @@ mkSCC cc expr                 = Note (SCC cc) expr
 
 \begin{code}
 bindNonRec :: Id -> CoreExpr -> CoreExpr -> CoreExpr
 
 \begin{code}
 bindNonRec :: Id -> CoreExpr -> CoreExpr -> CoreExpr
--- (bindNonRec x r b) produces either
---     let x = r in b
--- or
---     case r of x { _DEFAULT_ -> b }
+-- ^ @bindNonRec x r b@ produces either:
+--
+-- > let x = r in b
+--
+-- or:
 --
 --
--- depending on whether x is unlifted or not
+-- > case r of x { _DEFAULT_ -> b }
+--
+-- depending on whether we have to use a @case@ or @let@
+-- binding for the expression (see 'needsCaseBinding').
 -- It's used by the desugarer to avoid building bindings
 -- It's used by the desugarer to avoid building bindings
--- that give Core Lint a heart attack.  Actually the simplifier
--- deals with them perfectly well.
-
+-- that give Core Lint a heart attack, although actually
+-- the simplifier deals with them perfectly well. See
+-- also 'MkCore.mkCoreLet'
 bindNonRec bndr rhs body 
 bindNonRec bndr rhs body 
-  | needsCaseBinding (idType bndr) rhs = Case rhs bndr (exprType body) [(DEFAULT,[],body)]
+  | needsCaseBinding (idType bndr) rhs = Case rhs bndr (exprType body) [(DEFAULT, [], body)]
   | otherwise                         = Let (NonRec bndr rhs) body
 
   | otherwise                         = Let (NonRec bndr rhs) body
 
+-- | Tests whether we have to use a @case@ rather than @let@ binding for this expression
+-- as per the invariants of 'CoreExpr': see "CoreSyn#let_app_invariant"
+needsCaseBinding :: Type -> CoreExpr -> Bool
 needsCaseBinding ty rhs = isUnLiftedType ty && not (exprOkForSpeculation rhs)
        -- Make a case expression instead of a let
        -- These can arise either from the desugarer,
 needsCaseBinding ty rhs = isUnLiftedType ty && not (exprOkForSpeculation rhs)
        -- Make a case expression instead of a let
        -- These can arise either from the desugarer,
@@ -263,22 +265,18 @@ needsCaseBinding ty rhs = isUnLiftedType ty && not (exprOkForSpeculation rhs)
 \end{code}
 
 \begin{code}
 \end{code}
 
 \begin{code}
-mkAltExpr :: AltCon -> [CoreBndr] -> [Type] -> CoreExpr
-       -- This guy constructs the value that the scrutinee must have
-       -- when you are in one particular branch of a case
+mkAltExpr :: AltCon     -- ^ Case alternative constructor
+          -> [CoreBndr] -- ^ Things bound by the pattern match
+          -> [Type]     -- ^ The type arguments to the case alternative
+          -> CoreExpr
+-- ^ This guy constructs the value that the scrutinee must have
+-- given that you are in one particular branch of a case
 mkAltExpr (DataAlt con) args inst_tys
   = mkConApp con (map Type inst_tys ++ varsToCoreExprs args)
 mkAltExpr (LitAlt lit) [] []
   = Lit lit
 mkAltExpr (LitAlt _) _ _ = panic "mkAltExpr LitAlt"
 mkAltExpr DEFAULT _ _ = panic "mkAltExpr DEFAULT"
 mkAltExpr (DataAlt con) args inst_tys
   = mkConApp con (map Type inst_tys ++ varsToCoreExprs args)
 mkAltExpr (LitAlt lit) [] []
   = Lit lit
 mkAltExpr (LitAlt _) _ _ = panic "mkAltExpr LitAlt"
 mkAltExpr DEFAULT _ _ = panic "mkAltExpr DEFAULT"
-
-mkIfThenElse :: CoreExpr -> CoreExpr -> CoreExpr -> CoreExpr
-mkIfThenElse guard then_expr else_expr
--- Not going to be refining, so okay to take the type of the "then" clause
-  = Case guard (mkWildId boolTy) (exprType then_expr) 
-        [ (DataAlt falseDataCon, [], else_expr),       -- Increasing order of tag!
-          (DataAlt trueDataCon,  [], then_expr) ]
 \end{code}
 
 
 \end{code}
 
 
@@ -292,33 +290,37 @@ The default alternative must be first, if it exists at all.
 This makes it easy to find, though it makes matching marginally harder.
 
 \begin{code}
 This makes it easy to find, though it makes matching marginally harder.
 
 \begin{code}
+-- | Extract the default case alternative
 findDefault :: [CoreAlt] -> ([CoreAlt], Maybe CoreExpr)
 findDefault ((DEFAULT,args,rhs) : alts) = ASSERT( null args ) (alts, Just rhs)
 findDefault alts                       =                     (alts, Nothing)
 
 findDefault :: [CoreAlt] -> ([CoreAlt], Maybe CoreExpr)
 findDefault ((DEFAULT,args,rhs) : alts) = ASSERT( null args ) (alts, Just rhs)
 findDefault alts                       =                     (alts, Nothing)
 
-findAlt :: AltCon -> [CoreAlt] -> CoreAlt
+isDefaultAlt :: CoreAlt -> Bool
+isDefaultAlt (DEFAULT, _, _) = True
+isDefaultAlt _               = False
+
+
+-- | Find the case alternative corresponding to a particular 
+-- constructor: panics if no such constructor exists
+findAlt :: AltCon -> [CoreAlt] -> Maybe CoreAlt
+    -- A "Nothing" result *is* legitmiate
+    -- See Note [Unreachable code]
 findAlt con alts
   = case alts of
 findAlt con alts
   = case alts of
-       (deflt@(DEFAULT,_,_):alts) -> go alts deflt
-       other                      -> go alts panic_deflt
+       (deflt@(DEFAULT,_,_):alts) -> go alts (Just deflt)
+        _                          -> go alts Nothing
   where
   where
-    panic_deflt = pprPanic "Missing alternative" (ppr con $$ vcat (map ppr alts))
-
-    go []                     deflt = deflt
+    go []                    deflt = deflt
     go (alt@(con1,_,_) : alts) deflt
       =        case con `cmpAltCon` con1 of
          LT -> deflt   -- Missed it already; the alts are in increasing order
     go (alt@(con1,_,_) : alts) deflt
       =        case con `cmpAltCon` con1 of
          LT -> deflt   -- Missed it already; the alts are in increasing order
-         EQ -> alt
+         EQ -> Just alt
          GT -> ASSERT( not (con1 == DEFAULT) ) go alts deflt
 
          GT -> ASSERT( not (con1 == DEFAULT) ) go alts deflt
 
-isDefaultAlt :: CoreAlt -> Bool
-isDefaultAlt (DEFAULT, _, _) = True
-isDefaultAlt other          = False
-
 ---------------------------------
 mergeAlts :: [CoreAlt] -> [CoreAlt] -> [CoreAlt]
 ---------------------------------
 mergeAlts :: [CoreAlt] -> [CoreAlt] -> [CoreAlt]
--- Merge preserving order; alternatives in the first arg
--- shadow ones in the second
+-- ^ Merge alternatives preserving order; alternatives in
+-- the first argument shadow ones in the second
 mergeAlts [] as2 = as2
 mergeAlts as1 [] = as1
 mergeAlts (a1:as1) (a2:as2)
 mergeAlts [] as2 = as2
 mergeAlts as1 [] = as1
 mergeAlts (a1:as1) (a2:as2)
@@ -330,60 +332,125 @@ mergeAlts (a1:as1) (a2:as2)
 
 ---------------------------------
 trimConArgs :: AltCon -> [CoreArg] -> [CoreArg]
 
 ---------------------------------
 trimConArgs :: AltCon -> [CoreArg] -> [CoreArg]
--- Given       case (C a b x y) of
---                C b x y -> ...
--- we want to drop the leading type argument of the scrutinee
+-- ^ Given:
+--
+-- > case (C a b x y) of
+-- >        C b x y -> ...
+--
+-- We want to drop the leading type argument of the scrutinee
 -- leaving the arguments to match agains the pattern
 
 trimConArgs DEFAULT      args = ASSERT( null args ) []
 -- leaving the arguments to match agains the pattern
 
 trimConArgs DEFAULT      args = ASSERT( null args ) []
-trimConArgs (LitAlt lit) args = ASSERT( null args ) []
+trimConArgs (LitAlt _)   args = ASSERT( null args ) []
 trimConArgs (DataAlt dc) args = dropList (dataConUnivTyVars dc) args
 \end{code}
 
 trimConArgs (DataAlt dc) args = dropList (dataConUnivTyVars dc) args
 \end{code}
 
+Note [Unreachable code]
+~~~~~~~~~~~~~~~~~~~~~~~
+It is possible (although unusual) for GHC to find a case expression
+that cannot match.  For example: 
+
+     data Col = Red | Green | Blue
+     x = Red
+     f v = case x of 
+              Red -> ...
+             _ -> ...(case x of { Green -> e1; Blue -> e2 })...
+
+Suppose that for some silly reason, x isn't substituted in the case
+expression.  (Perhaps there's a NOINLINE on it, or profiling SCC stuff
+gets in the way; cf Trac #3118.)  Then the full-lazines pass might produce
+this
+
+     x = Red
+     lvl = case x of { Green -> e1; Blue -> e2 })
+     f v = case x of 
+             Red -> ...
+            _ -> ...lvl...
+
+Now if x gets inlined, we won't be able to find a matching alternative
+for 'Red'.  That's because 'lvl' is unreachable.  So rather than crashing
+we generate (error "Inaccessible alternative").
+
+Similar things can happen (augmented by GADTs) when the Simplifier
+filters down the matching alternatives in Simplify.rebuildCase.
+
 
 %************************************************************************
 %*                                                                     *
 
 %************************************************************************
 %*                                                                     *
-\subsection{Figuring out things about expressions}
+             exprIsTrivial
 %*                                                                     *
 %************************************************************************
 
 %*                                                                     *
 %************************************************************************
 
+Note [exprIsTrivial]
+~~~~~~~~~~~~~~~~~~~~
 @exprIsTrivial@ is true of expressions we are unconditionally happy to
                duplicate; simple variables and constants, and type
                applications.  Note that primop Ids aren't considered
                trivial unless 
 
 @exprIsTrivial@ is true of expressions we are unconditionally happy to
                duplicate; simple variables and constants, and type
                applications.  Note that primop Ids aren't considered
                trivial unless 
 
-@exprIsBottom@ is true of expressions that are guaranteed to diverge
-
-
+Note [Variable are trivial]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
 There used to be a gruesome test for (hasNoBinding v) in the
 Var case:
        exprIsTrivial (Var v) | hasNoBinding v = idArity v == 0
 There used to be a gruesome test for (hasNoBinding v) in the
 Var case:
        exprIsTrivial (Var v) | hasNoBinding v = idArity v == 0
-The idea here is that a constructor worker, like $wJust, is
-really short for (\x -> $wJust x), becuase $wJust has no binding.
+The idea here is that a constructor worker, like \$wJust, is
+really short for (\x -> \$wJust x), becuase \$wJust has no binding.
 So it should be treated like a lambda.  Ditto unsaturated primops.
 But now constructor workers are not "have-no-binding" Ids.  And
 completely un-applied primops and foreign-call Ids are sufficiently
 rare that I plan to allow them to be duplicated and put up with
 saturating them.
 
 So it should be treated like a lambda.  Ditto unsaturated primops.
 But now constructor workers are not "have-no-binding" Ids.  And
 completely un-applied primops and foreign-call Ids are sufficiently
 rare that I plan to allow them to be duplicated and put up with
 saturating them.
 
-SCC notes.  We do not treat (_scc_ "foo" x) as trivial, because 
-  a) it really generates code, (and a heap object when it's 
-     a function arg) to capture the cost centre
-  b) see the note [SCC-and-exprIsTrivial] in Simplify.simplLazyBind
+Note [SCCs are trivial]
+~~~~~~~~~~~~~~~~~~~~~~~
+We used not to treat (_scc_ "foo" x) as trivial, because it really
+generates code, (and a heap object when it's a function arg) to
+capture the cost centre.  However, the profiling system discounts the
+allocation costs for such "boxing thunks" whereas the extra costs of
+*not* inlining otherwise-trivial bindings can be high, and are hard to
+discount.
 
 \begin{code}
 
 \begin{code}
-exprIsTrivial (Var v)     = True       -- See notes above
-exprIsTrivial (Type _)    = True
-exprIsTrivial (Lit lit)    = litIsTrivial lit
-exprIsTrivial (App e arg)  = not (isRuntimeArg arg) && exprIsTrivial e
-exprIsTrivial (Note (SCC _) e) = False         -- See notes above
-exprIsTrivial (Note _       e) = exprIsTrivial e
-exprIsTrivial (Cast e co)  = exprIsTrivial e
-exprIsTrivial (Lam b body) = not (isRuntimeVar b) && exprIsTrivial body
-exprIsTrivial other       = False
+exprIsTrivial :: CoreExpr -> Bool
+exprIsTrivial (Var _)          = True        -- See Note [Variables are trivial]
+exprIsTrivial (Type _)        = True
+exprIsTrivial (Coercion _)     = True
+exprIsTrivial (Lit lit)        = litIsTrivial lit
+exprIsTrivial (App e arg)      = not (isRuntimeArg arg) && exprIsTrivial e
+exprIsTrivial (Note _       e) = exprIsTrivial e  -- See Note [SCCs are trivial]
+exprIsTrivial (Cast e _)       = exprIsTrivial e
+exprIsTrivial (Lam b body)     = not (isRuntimeVar b) && exprIsTrivial body
+exprIsTrivial _                = False
 \end{code}
 
 \end{code}
 
+exprIsBottom is a very cheap and cheerful function; it may return
+False for bottoming expressions, but it never costs much to ask.
+See also CoreArity.exprBotStrictness_maybe, but that's a bit more 
+expensive.
 
 
+\begin{code}
+exprIsBottom :: CoreExpr -> Bool
+exprIsBottom e 
+  = go 0 e
+  where
+    go n (Var v) = isBottomingId v &&  n >= idArity v 
+    go n (App e a) | isTypeArg a = go n e 
+                   | otherwise   = go (n+1) e 
+    go n (Note _ e)             = go n e     
+    go n (Cast e _)             = go n e
+    go n (Let _ e)              = go n e
+    go _ _                      = False
+\end{code}
+
+
+%************************************************************************
+%*                                                                     *
+             exprIsDupable
+%*                                                                     *
+%************************************************************************
+
+Note [exprIsDupable]
+~~~~~~~~~~~~~~~~~~~~
 @exprIsDupable@        is true of expressions that can be duplicated at a modest
                cost in code size.  This will only happen in different case
                branches, so there's no issue about duplicating work.
 @exprIsDupable@        is true of expressions that can be duplicated at a modest
                cost in code size.  This will only happen in different case
                branches, so there's no issue about duplicating work.
@@ -396,25 +463,39 @@ exprIsTrivial other          = False
 
 
 \begin{code}
 
 
 \begin{code}
-exprIsDupable (Type _)         = True
-exprIsDupable (Var v)          = True
-exprIsDupable (Lit lit)        = litIsDupable lit
-exprIsDupable (Note InlineMe e) = True
-exprIsDupable (Note _ e)        = exprIsDupable e
-exprIsDupable (Cast e co)       = exprIsDupable e
-exprIsDupable expr          
-  = go expr 0
+exprIsDupable :: CoreExpr -> Bool
+exprIsDupable e
+  = isJust (go dupAppSize e)
   where
   where
-    go (Var v)   n_args = True
-    go (App f a) n_args =  n_args < dupAppSize
-                       && exprIsDupable a
-                       && go f (n_args+1)
-    go other n_args    = False
+    go :: Int -> CoreExpr -> Maybe Int
+    go n (Type {})     = Just n
+    go n (Coercion {}) = Just n
+    go n (Var {})      = decrement n
+    go n (Note _ e)    = go n e
+    go n (Cast e _)    = go n e
+    go n (App f a) | Just n' <- go n a = go n' f
+    go n (Lit lit) | litIsDupable lit = decrement n
+    go _ _ = Nothing
+
+    decrement :: Int -> Maybe Int
+    decrement 0 = Nothing
+    decrement n = Just (n-1)
 
 dupAppSize :: Int
 
 dupAppSize :: Int
-dupAppSize = 4         -- Size of application we are prepared to duplicate
+dupAppSize = 8  -- Size of term we are prepared to duplicate
+                -- This is *just* big enough to make test MethSharing
+                -- inline enough join points.  Really it should be
+                -- smaller, and could be if we fixed Trac #4960.
 \end{code}
 
 \end{code}
 
+%************************************************************************
+%*                                                                     *
+             exprIsCheap, exprIsExpandable
+%*                                                                     *
+%************************************************************************
+
+Note [exprIsCheap]   See also Note [Interaction of exprIsCheap and lone variables]
+~~~~~~~~~~~~~~~~~~   in CoreUnfold.lhs
 @exprIsCheap@ looks at a Core expression and returns \tr{True} if
 it is obviously in weak head normal form, or is cheap to get to WHNF.
 [Note that that's not the same as exprIsDupable; an expression might be
 @exprIsCheap@ looks at a Core expression and returns \tr{True} if
 it is obviously in weak head normal form, or is cheap to get to WHNF.
 [Note that that's not the same as exprIsDupable; an expression might be
@@ -443,118 +524,190 @@ shared.  The main examples of things which aren't WHNF but are
 Notice that a variable is considered 'cheap': we can push it inside a lambda,
 because sharing will make sure it is only evaluated once.
 
 Notice that a variable is considered 'cheap': we can push it inside a lambda,
 because sharing will make sure it is only evaluated once.
 
+Note [exprIsCheap and exprIsHNF]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Note that exprIsHNF does not imply exprIsCheap.  Eg
+       let x = fac 20 in Just x
+This responds True to exprIsHNF (you can discard a seq), but
+False to exprIsCheap.
+
 \begin{code}
 exprIsCheap :: CoreExpr -> Bool
 \begin{code}
 exprIsCheap :: CoreExpr -> Bool
-exprIsCheap (Lit lit)        = True
-exprIsCheap (Type _)          = True
-exprIsCheap (Var _)           = True
-exprIsCheap (Note InlineMe e) = True
-exprIsCheap (Note _ e)        = exprIsCheap e
-exprIsCheap (Cast e co)       = exprIsCheap e
-exprIsCheap (Lam x e)         = isRuntimeVar x || exprIsCheap e
-exprIsCheap (Case e _ _ alts) = exprIsCheap e && 
-                               and [exprIsCheap rhs | (_,_,rhs) <- alts]
+exprIsCheap = exprIsCheap' isCheapApp
+
+exprIsExpandable :: CoreExpr -> Bool
+exprIsExpandable = exprIsCheap' isExpandableApp        -- See Note [CONLIKE pragma] in BasicTypes
+
+type CheapAppFun = Id -> Int -> Bool
+exprIsCheap' :: CheapAppFun -> CoreExpr -> Bool
+exprIsCheap' _        (Lit _)      = True
+exprIsCheap' _        (Type _)    = True
+exprIsCheap' _        (Coercion _) = True
+exprIsCheap' _        (Var _)      = True
+exprIsCheap' good_app (Note _ e)   = exprIsCheap' good_app e
+exprIsCheap' good_app (Cast e _)   = exprIsCheap' good_app e
+exprIsCheap' good_app (Lam x e)    = isRuntimeVar x
+                                  || exprIsCheap' good_app e
+
+exprIsCheap' good_app (Case e _ _ alts) = exprIsCheap' good_app e && 
+                                         and [exprIsCheap' good_app rhs | (_,_,rhs) <- alts]
        -- Experimentally, treat (case x of ...) as cheap
        -- (and case __coerce x etc.)
        -- This improves arities of overloaded functions where
        -- there is only dictionary selection (no construction) involved
        -- Experimentally, treat (case x of ...) as cheap
        -- (and case __coerce x etc.)
        -- This improves arities of overloaded functions where
        -- there is only dictionary selection (no construction) involved
-exprIsCheap (Let (NonRec x _) e)  
-      | isUnLiftedType (idType x) = exprIsCheap e
-      | otherwise                = False
-       -- strict lets always have cheap right hand sides,
-       -- and do no allocation.
 
 
-exprIsCheap other_expr         -- Applications and variables
+exprIsCheap' good_app (Let (NonRec x _) e)  
+  | isUnLiftedType (idType x) = exprIsCheap' good_app e
+  | otherwise                = False
+       -- Strict lets always have cheap right hand sides,
+       -- and do no allocation, so just look at the body
+       -- Non-strict lets do allocation so we don't treat them as cheap
+       -- See also 
+
+exprIsCheap' good_app other_expr       -- Applications and variables
   = go other_expr []
   where
        -- Accumulate value arguments, then decide
   = go other_expr []
   where
        -- Accumulate value arguments, then decide
+    go (Cast e _) val_args                 = go e val_args
     go (App f a) val_args | isRuntimeArg a = go f (a:val_args)
                          | otherwise      = go f val_args
 
     go (App f a) val_args | isRuntimeArg a = go f (a:val_args)
                          | otherwise      = go f val_args
 
-    go (Var f) [] = True       -- Just a type application of a variable
+    go (Var _) [] = True       -- Just a type application of a variable
                                -- (f t1 t2 t3) counts as WHNF
     go (Var f) args
                                -- (f t1 t2 t3) counts as WHNF
     go (Var f) args
-       = case globalIdDetails f of
-               RecordSelId {} -> go_sel args
-               ClassOpId _    -> go_sel args
-               PrimOpId op    -> go_primop op args
-
-               DataConWorkId _ -> go_pap args
-               other | length args < idArity f -> go_pap args
-
-               other -> isBottomingId f
+        = case idDetails f of
+               RecSelId {}                  -> go_sel args
+               ClassOpId {}                 -> go_sel args
+               PrimOpId op                  -> go_primop op args
+               _ | good_app f (length args) -> go_pap args
+                  | isBottomingId f         -> True
+                  | otherwise               -> False
                        -- Application of a function which
                        -- always gives bottom; we treat this as cheap
                        -- because it certainly doesn't need to be shared!
        
                        -- Application of a function which
                        -- always gives bottom; we treat this as cheap
                        -- because it certainly doesn't need to be shared!
        
-    go other args = False
+    go _ _ = False
  
     --------------
  
     --------------
-    go_pap args = all exprIsTrivial args
-       -- For constructor applications and primops, check that all
-       -- the args are trivial.  We don't want to treat as cheap, say,
-       --      (1:2:3:4:5:[])
-       -- We'll put up with one constructor application, but not dozens
-       
+    go_pap args = all (exprIsCheap' good_app) args
+        -- Used to be "all exprIsTrivial args" due to concerns about
+        -- duplicating nested constructor applications, but see #4978.
+
     --------------
     --------------
-    go_primop op args = primOpIsCheap op && all exprIsCheap args
+    go_primop op args = primOpIsCheap op && all (exprIsCheap' good_app) args
        -- In principle we should worry about primops
        -- that return a type variable, since the result
        -- might be applied to something, but I'm not going
        -- to bother to check the number of args
  
     --------------
        -- In principle we should worry about primops
        -- that return a type variable, since the result
        -- might be applied to something, but I'm not going
        -- to bother to check the number of args
  
     --------------
-    go_sel [arg] = exprIsCheap arg     -- I'm experimenting with making record selection
-    go_sel other = False               -- look cheap, so we will substitute it inside a
+    go_sel [arg] = exprIsCheap' good_app arg   -- I'm experimenting with making record selection
+    go_sel _     = False               -- look cheap, so we will substitute it inside a
                                        -- lambda.  Particularly for dictionary field selection.
                -- BUT: Take care with (sel d x)!  The (sel d) might be cheap, but
                --      there's no guarantee that (sel d x) will be too.  Hence (n_val_args == 1)
                                        -- lambda.  Particularly for dictionary field selection.
                -- BUT: Take care with (sel d x)!  The (sel d) might be cheap, but
                --      there's no guarantee that (sel d x) will be too.  Hence (n_val_args == 1)
-\end{code}
-
-exprOkForSpeculation returns True of an expression that it is
 
 
-       * safe to evaluate even if normal order eval might not 
-         evaluate the expression at all, or
+isCheapApp :: CheapAppFun
+isCheapApp fn n_val_args
+  = isDataConWorkId fn 
+  || n_val_args < idArity fn
 
 
-       * safe *not* to evaluate even if normal order would do so
-
-It returns True iff
-
-       the expression guarantees to terminate, 
-       soon, 
-       without raising an exception,
-       without causing a side effect (e.g. writing a mutable variable)
+isExpandableApp :: CheapAppFun
+isExpandableApp fn n_val_args
+  =  isConLikeId fn
+  || n_val_args < idArity fn
+  || go n_val_args (idType fn)
+  where
+  -- See if all the arguments are PredTys (implicit params or classes)
+  -- If so we'll regard it as expandable; see Note [Expandable overloadings]
+     go 0 _ = True
+     go n_val_args ty 
+       | Just (_, ty) <- splitForAllTy_maybe ty   = go n_val_args ty
+       | Just (arg, ty) <- splitFunTy_maybe ty
+       , isPredTy arg                             = go (n_val_args-1) ty
+       | otherwise                                = False
+\end{code}
 
 
-NB: if exprIsHNF e, then exprOkForSpecuation e
+Note [Expandable overloadings]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Suppose the user wrote this
+   {-# RULE  forall x. foo (negate x) = h x #-}
+   f x = ....(foo (negate x))....
+He'd expect the rule to fire. But since negate is overloaded, we might
+get this:
+    f = \d -> let n = negate d in \x -> ...foo (n x)...
+So we treat the application of a function (negate in this case) to a
+*dictionary* as expandable.  In effect, every function is CONLIKE when
+it's applied only to dictionaries.
 
 
-E.G.
-       let x = case y# +# 1# of { r# -> I# r# }
-       in E
-==>
-       case y# +# 1# of { r# -> 
-       let x = I# r#
-       in E 
-       }
 
 
-We can only do this if the (y+1) is ok for speculation: it has no
-side effects, and can't diverge or raise an exception.
+%************************************************************************
+%*                                                                     *
+             exprOkForSpeculation
+%*                                                                     *
+%************************************************************************
 
 \begin{code}
 
 \begin{code}
+-- | 'exprOkForSpeculation' returns True of an expression that is:
+--
+--  * Safe to evaluate even if normal order eval might not 
+--    evaluate the expression at all, or
+--
+--  * Safe /not/ to evaluate even if normal order would do so
+--
+-- It is usually called on arguments of unlifted type, but not always
+-- In particular, Simplify.rebuildCase calls it on lifted types
+-- when a 'case' is a plain 'seq'. See the example in 
+-- Note [exprOkForSpeculation: case expressions] below
+--
+-- Precisely, it returns @True@ iff:
+--
+--  * The expression guarantees to terminate, 
+--  * soon, 
+--  * without raising an exception,
+--  * without causing a side effect (e.g. writing a mutable variable)
+--
+-- Note that if @exprIsHNF e@, then @exprOkForSpecuation e@.
+-- As an example of the considerations in this test, consider:
+--
+-- > let x = case y# +# 1# of { r# -> I# r# }
+-- > in E
+--
+-- being translated to:
+--
+-- > case y# +# 1# of { r# -> 
+-- >    let x = I# r#
+-- >    in E 
+-- > }
+-- 
+-- We can only do this if the @y + 1@ is ok for speculation: it has no
+-- side effects, and can't diverge or raise an exception.
 exprOkForSpeculation :: CoreExpr -> Bool
 exprOkForSpeculation :: CoreExpr -> Bool
-exprOkForSpeculation (Lit _)     = True
-exprOkForSpeculation (Type _)    = True
-    -- Tick boxes are *not* suitable for speculation
-exprOkForSpeculation (Var v)     = isUnLiftedType (idType v)
-                                && not (isTickBoxOp v)
+exprOkForSpeculation (Lit _)      = True
+exprOkForSpeculation (Type _)     = True
+exprOkForSpeculation (Coercion _) = True
+
+exprOkForSpeculation (Var v)     
+  | isTickBoxOp v = False     -- Tick boxes are *not* suitable for speculation
+  | otherwise     =  isUnLiftedType (idType v) -- c.f. the Var case of exprIsHNF
+                 || isDataConWorkId v          -- Nullary constructors
+                 || idArity v > 0              -- Functions
+                 || isEvaldUnfolding (idUnfolding v)   -- Let-bound values
+
 exprOkForSpeculation (Note _ e)  = exprOkForSpeculation e
 exprOkForSpeculation (Note _ e)  = exprOkForSpeculation e
-exprOkForSpeculation (Cast e co) = exprOkForSpeculation e
+exprOkForSpeculation (Cast e _)  = exprOkForSpeculation e
+
+exprOkForSpeculation (Case e _ _ alts) 
+  =  exprOkForSpeculation e  -- Note [exprOkForSpeculation: case expressions]
+  && all (\(_,_,rhs) -> exprOkForSpeculation rhs) alts
+
 exprOkForSpeculation other_expr
   = case collectArgs other_expr of
 exprOkForSpeculation other_expr
   = case collectArgs other_expr of
-       (Var f, args) -> spec_ok (globalIdDetails f) args
-       other         -> False
+       (Var f, args) -> spec_ok (idDetails f) args
+        _             -> False
  
   where
  
   where
-    spec_ok (DataConWorkId _) args
+    spec_ok (DataConWorkId _) _
       = True   -- The strictness of the constructor has already
                -- been expressed by its "wrapper", so we don't need
                -- to take the arguments into account
       = True   -- The strictness of the constructor has already
                -- been expressed by its "wrapper", so we don't need
                -- to take the arguments into account
@@ -566,17 +719,23 @@ exprOkForSpeculation other_expr
                -- Often there is a literal divisor, and this 
                -- can get rid of a thunk in an inner looop
 
                -- Often there is a literal divisor, and this 
                -- can get rid of a thunk in an inner looop
 
+      | DataToTagOp <- op      -- See Note [dataToTag speculation]
+      = True
+
       | otherwise
       = primOpOkForSpeculation op && 
        all exprOkForSpeculation args
                                -- A bit conservative: we don't really need
                                -- to care about lazy arguments, but this is easy
 
       | otherwise
       = primOpOkForSpeculation op && 
        all exprOkForSpeculation args
                                -- A bit conservative: we don't really need
                                -- to care about lazy arguments, but this is easy
 
-    spec_ok other args = False
+    spec_ok (DFunId _ new_type) _ = not new_type
+         -- DFuns terminate, unless the dict is implemented with a newtype
+        -- in which case they may not
 
 
+    spec_ok _ _ = False
+
+-- | True of dyadic operators that can fail only if the second arg is zero!
 isDivOp :: PrimOp -> Bool
 isDivOp :: PrimOp -> Bool
--- True of dyadic operators that can fail 
--- only if the second arg is zero
 -- This function probably belongs in PrimOp, or even in 
 -- an automagically generated file.. but it's such a 
 -- special case I thought I'd leave it here for now.
 -- This function probably belongs in PrimOp, or even in 
 -- an automagically generated file.. but it's such a 
 -- special case I thought I'd leave it here for now.
@@ -584,116 +743,181 @@ isDivOp IntQuotOp        = True
 isDivOp IntRemOp        = True
 isDivOp WordQuotOp      = True
 isDivOp WordRemOp       = True
 isDivOp IntRemOp        = True
 isDivOp WordQuotOp      = True
 isDivOp WordRemOp       = True
-isDivOp IntegerQuotRemOp = True
-isDivOp IntegerDivModOp  = True
 isDivOp FloatDivOp       = True
 isDivOp DoubleDivOp      = True
 isDivOp FloatDivOp       = True
 isDivOp DoubleDivOp      = True
-isDivOp other           = False
+isDivOp _                = False
 \end{code}
 
 \end{code}
 
+Note [exprOkForSpeculation: case expressions]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
+It's always sound for exprOkForSpeculation to return False, and we
+don't want it to take too long, so it bales out on complicated-looking
+terms.  Notably lets, which can be stacked very deeply; and in any 
+case the argument of exprOkForSpeculation is usually in a strict context,
+so any lets will have been floated away.
+
+However, we keep going on case-expressions.  An example like this one
+showed up in DPH code (Trac #3717):
+    foo :: Int -> Int
+    foo 0 = 0
+    foo n = (if n < 5 then 1 else 2) `seq` foo (n-1)
+
+If exprOkForSpeculation doesn't look through case expressions, you get this:
+    T.$wfoo =
+      \ (ww :: GHC.Prim.Int#) ->
+        case ww of ds {
+          __DEFAULT -> case (case <# ds 5 of _ {
+                          GHC.Types.False -> lvl1;
+                          GHC.Types.True -> lvl})
+                       of _ { __DEFAULT ->
+                       T.$wfoo (GHC.Prim.-# ds_XkE 1) };
+          0 -> 0
+        }
+
+The inner case is redundant, and should be nuked.
+
+Note [dataToTag speculation]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Is this OK?
+   f x = let v::Int# = dataToTag# x
+         in ...
+We say "yes", even though 'x' may not be evaluated.  Reasons
+
+  * dataToTag#'s strictness means that its argument often will be
+    evaluated, but FloatOut makes that temporarily untrue
+         case x of y -> let v = dataToTag# y in ...
+    -->
+         case x of y -> let v = dataToTag# x in ...
+    Note that we look at 'x' instead of 'y' (this is to improve
+    floating in FloatOut).  So Lint complains.    
+    Moreover, it really *might* improve floating to let the
+    v-binding float out
+         
+  * CorePrep makes sure dataToTag#'s argument is evaluated, just
+    before code gen.  Until then, it's not guaranteed
 
 
-\begin{code}
-exprIsBottom :: CoreExpr -> Bool       -- True => definitely bottom
-exprIsBottom e = go 0 e
-              where
-               -- n is the number of args
-                go n (Note _ e)     = go n e
-                 go n (Cast e co)    = go n e
-                go n (Let _ e)      = go n e
-                go n (Case e _ _ _) = go 0 e   -- Just check the scrut
-                go n (App e _)      = go (n+1) e
-                go n (Var v)        = idAppIsBottom v n
-                go n (Lit _)        = False
-                go n (Lam _ _)      = False
-                go n (Type _)       = False
-
-idAppIsBottom :: Id -> Int -> Bool
-idAppIsBottom id n_val_args = appIsBottom (idNewStrictness id) n_val_args
-\end{code}
-
-@exprIsHNF@ returns true for expressions that are certainly *already* 
-evaluated to *head* normal form.  This is used to decide whether it's ok 
-to change
-
-       case x of _ -> e   ===>   e
-
-and to decide whether it's safe to discard a `seq`
-
-So, it does *not* treat variables as evaluated, unless they say they are.
-
-But it *does* treat partial applications and constructor applications
-as values, even if their arguments are non-trivial, provided the argument
-type is lifted; 
-       e.g.  (:) (f x) (map f xs)      is a value
-             map (...redex...)         is a value
-Because `seq` on such things completes immediately
 
 
-For unlifted argument types, we have to be careful:
-               C (f x :: Int#)
-Suppose (f x) diverges; then C (f x) is not a value.  However this can't 
-happen: see CoreSyn Note [CoreSyn let/app invariant].  Args of unboxed
-type must be ok-for-speculation (or trivial).
+%************************************************************************
+%*                                                                     *
+             exprIsHNF, exprIsConLike
+%*                                                                     *
+%************************************************************************
 
 \begin{code}
 
 \begin{code}
+-- Note [exprIsHNF]            See also Note [exprIsCheap and exprIsHNF]
+-- ~~~~~~~~~~~~~~~~
+-- | exprIsHNF returns true for expressions that are certainly /already/ 
+-- evaluated to /head/ normal form.  This is used to decide whether it's ok 
+-- to change:
+--
+-- > case x of _ -> e
+--
+--    into:
+--
+-- > e
+--
+-- and to decide whether it's safe to discard a 'seq'.
+-- 
+-- So, it does /not/ treat variables as evaluated, unless they say they are.
+-- However, it /does/ treat partial applications and constructor applications
+-- as values, even if their arguments are non-trivial, provided the argument
+-- type is lifted. For example, both of these are values:
+--
+-- > (:) (f x) (map f xs)
+-- > map (...redex...)
+--
+-- because 'seq' on such things completes immediately.
+--
+-- For unlifted argument types, we have to be careful:
+--
+-- > C (f x :: Int#)
+--
+-- Suppose @f x@ diverges; then @C (f x)@ is not a value. However this can't 
+-- happen: see "CoreSyn#let_app_invariant". This invariant states that arguments of
+-- unboxed type must be ok-for-speculation (or trivial).
 exprIsHNF :: CoreExpr -> Bool          -- True => Value-lambda, constructor, PAP
 exprIsHNF :: CoreExpr -> Bool          -- True => Value-lambda, constructor, PAP
-exprIsHNF (Var v)      -- NB: There are no value args at this point
-  =  isDataConWorkId v         -- Catches nullary constructors, 
+exprIsHNF = exprIsHNFlike isDataConWorkId isEvaldUnfolding
+\end{code}
+
+\begin{code}
+-- | Similar to 'exprIsHNF' but includes CONLIKE functions as well as
+-- data constructors. Conlike arguments are considered interesting by the
+-- inliner.
+exprIsConLike :: CoreExpr -> Bool      -- True => lambda, conlike, PAP
+exprIsConLike = exprIsHNFlike isConLikeId isConLikeUnfolding
+
+-- | Returns true for values or value-like expressions. These are lambdas,
+-- constructors / CONLIKE functions (as determined by the function argument)
+-- or PAPs.
+--
+exprIsHNFlike :: (Var -> Bool) -> (Unfolding -> Bool) -> CoreExpr -> Bool
+exprIsHNFlike is_con is_con_unf = is_hnf_like
+  where
+    is_hnf_like (Var v) -- NB: There are no value args at this point
+      =  is_con v      -- Catches nullary constructors, 
                        --      so that [] and () are values, for example
                        --      so that [] and () are values, for example
-  || idArity v > 0     -- Catches (e.g.) primops that don't have unfoldings
-  || isEvaldUnfolding (idUnfolding v)
+      || idArity v > 0         -- Catches (e.g.) primops that don't have unfoldings
+      || is_con_unf (idUnfolding v)
        -- Check the thing's unfolding; it might be bound to a value
        -- Check the thing's unfolding; it might be bound to a value
-       -- A worry: what if an Id's unfolding is just itself: 
-       -- then we could get an infinite loop...
-
-exprIsHNF (Lit l)         = True
-exprIsHNF (Type ty)       = True       -- Types are honorary Values; 
-                                       -- we don't mind copying them
-exprIsHNF (Lam b e)       = isRuntimeVar b || exprIsHNF e
-exprIsHNF (Note _ e)      = exprIsHNF e
-exprIsHNF (Cast e co)      = exprIsHNF e
-exprIsHNF (App e (Type _)) = exprIsHNF e
-exprIsHNF (App e a)        = app_is_value e [a]
-exprIsHNF other                   = False
-
--- There is at least one value argument
-app_is_value (Var fun) args
-  = idArity fun > valArgCount args     -- Under-applied function
-    ||  isDataConWorkId fun            --  or data constructor
-app_is_value (Note n f) as = app_is_value f as
-app_is_value (Cast f _) as = app_is_value f as
-app_is_value (App f a)  as = app_is_value f (a:as)
-app_is_value other      as = False
+       -- We don't look through loop breakers here, which is a bit conservative
+       -- but otherwise I worry that if an Id's unfolding is just itself, 
+       -- we could get an infinite loop
+
+    is_hnf_like (Lit _)          = True
+    is_hnf_like (Type _)        = True       -- Types are honorary Values;
+                                              -- we don't mind copying them
+    is_hnf_like (Coercion _)     = True       -- Same for coercions
+    is_hnf_like (Lam b e)        = isRuntimeVar b || is_hnf_like e
+    is_hnf_like (Note _ e)       = is_hnf_like e
+    is_hnf_like (Cast e _)       = is_hnf_like e
+    is_hnf_like (App e (Type _))    = is_hnf_like e
+    is_hnf_like (App e (Coercion _)) = is_hnf_like e
+    is_hnf_like (App e a)        = app_is_value e [a]
+    is_hnf_like (Let _ e)        = is_hnf_like e  -- Lazy let(rec)s don't affect us
+    is_hnf_like _                = False
+
+    -- There is at least one value argument
+    app_is_value :: CoreExpr -> [CoreArg] -> Bool
+    app_is_value (Var fun) args
+      = idArity fun > valArgCount args   -- Under-applied function
+        || is_con fun                    --  or constructor-like
+    app_is_value (Note _ f) as = app_is_value f as
+    app_is_value (Cast f _) as = app_is_value f as
+    app_is_value (App f a)  as = app_is_value f (a:as)
+    app_is_value _          _  = False
 \end{code}
 
 \end{code}
 
+
+%************************************************************************
+%*                                                                     *
+             Instantiating data constructors
+%*                                                                     *
+%************************************************************************
+
+These InstPat functions go here to avoid circularity between DataCon and Id
+
 \begin{code}
 \begin{code}
--- These InstPat functions go here to avoid circularity between DataCon and Id
-dataConRepInstPat   = dataConInstPat dataConRepArgTys (repeat (FSLIT("ipv")))
-dataConRepFSInstPat = dataConInstPat dataConRepArgTys
-dataConOrigInstPat  = dataConInstPat dc_arg_tys       (repeat (FSLIT("ipv")))
-  where 
-    dc_arg_tys dc = map mkPredTy (dataConEqTheta dc) ++ map mkPredTy (dataConDictTheta dc) ++ dataConOrigArgTys dc
-       -- Remember to include the existential dictionaries
-
-dataConInstPat :: (DataCon -> [Type])      -- function used to find arg tys
-                  -> [FastString]          -- A long enough list of FSs to use for names
-                  -> [Unique]              -- An equally long list of uniques, at least one for each binder
-                  -> DataCon
-                 -> [Type]                -- Types to instantiate the universally quantified tyvars
-              -> ([TyVar], [CoVar], [Id]) -- Return instantiated variables
+dataConRepInstPat   ::                 [Unique] -> DataCon -> [Type] -> ([TyVar], [Id])
+dataConRepFSInstPat :: [FastString] -> [Unique] -> DataCon -> [Type] -> ([TyVar], [Id])
+
+dataConRepInstPat   = dataConInstPat (repeat ((fsLit "ipv")))
+dataConRepFSInstPat = dataConInstPat 
+
+dataConInstPat :: [FastString]          -- A long enough list of FSs to use for names
+               -> [Unique]              -- An equally long list of uniques, at least one for each binder
+               -> DataCon
+              -> [Type]                -- Types to instantiate the universally quantified tyvars
+              -> ([TyVar], [Id])          -- Return instantiated variables
 -- dataConInstPat arg_fun fss us con inst_tys returns a triple 
 -- dataConInstPat arg_fun fss us con inst_tys returns a triple 
--- (ex_tvs, co_tvs, arg_ids),
+-- (ex_tvs, arg_ids),
 --
 --   ex_tvs are intended to be used as binders for existential type args
 --
 --
 --   ex_tvs are intended to be used as binders for existential type args
 --
---   co_tvs are intended to be used as binders for coercion args and the kinds
---     of these vars have been instantiated by the inst_tys and the ex_tys
---     The co_tvs include both GADT equalities (dcEqSpec) and 
---     programmer-specified equalities (dcEqTheta)
---
 --   arg_ids are indended to be used as binders for value arguments, 
 --     and their types have been instantiated with inst_tys and ex_tys
 --   arg_ids are indended to be used as binders for value arguments, 
 --     and their types have been instantiated with inst_tys and ex_tys
---     The arg_ids include both dicts (dcDictTheta) and
---     programmer-specified arguments (after rep-ing) (deRepArgTys)
+--     The arg_ids include both evidence and
+--     programmer-specified arguments (both after rep-ing)
 --
 -- Example.
 --  The following constructor T1
 --
 -- Example.
 --  The following constructor T1
@@ -703,34 +927,27 @@ dataConInstPat :: (DataCon -> [Type])      -- function used to find arg tys
 --    ...
 --
 --  has representation type 
 --    ...
 --
 --  has representation type 
---   forall a. forall a1. forall b. (a :=: (a1,b)) => 
+--   forall a. forall a1. forall b. (a ~ (a1,b)) => 
 --     Int -> b -> T a
 --
 --  dataConInstPat fss us T1 (a1',b') will return
 --
 --     Int -> b -> T a
 --
 --  dataConInstPat fss us T1 (a1',b') will return
 --
---  ([a1'', b''], [c :: (a1', b'):=:(a1'', b'')], [x :: Int, y :: b''])
+--  ([a1'', b''], [c :: (a1', b')~(a1'', b''), x :: Int, y :: b''])
 --
 --  where the double-primed variables are created with the FastStrings and
 --  Uniques given as fss and us
 --
 --  where the double-primed variables are created with the FastStrings and
 --  Uniques given as fss and us
-dataConInstPat arg_fun fss uniqs con inst_tys 
-  = (ex_bndrs, co_bndrs, arg_ids)
+dataConInstPat fss uniqs con inst_tys 
+  = (ex_bndrs, arg_ids)
   where 
     univ_tvs = dataConUnivTyVars con
     ex_tvs   = dataConExTyVars con
   where 
     univ_tvs = dataConUnivTyVars con
     ex_tvs   = dataConExTyVars con
-    arg_tys  = arg_fun con
-    eq_spec  = dataConEqSpec con
-    eq_theta = dataConEqTheta con
-    eq_preds = eqSpecPreds eq_spec ++ eq_theta
+    arg_tys  = dataConRepArgTys con
 
     n_ex = length ex_tvs
 
     n_ex = length ex_tvs
-    n_co = length eq_preds
 
       -- split the Uniques and FastStrings
 
       -- split the Uniques and FastStrings
-    (ex_uniqs, uniqs')   = splitAt n_ex uniqs
-    (co_uniqs, id_uniqs) = splitAt n_co uniqs'
-
-    (ex_fss, fss')     = splitAt n_ex fss
-    (co_fss, id_fss)   = splitAt n_co fss'
+    (ex_uniqs, id_uniqs) = splitAt n_ex uniqs
+    (ex_fss,   id_fss)   = splitAt n_ex fss
 
       -- Make existential type variables
     ex_bndrs = zipWith3 mk_ex_var ex_uniqs ex_fss ex_tvs
 
       -- Make existential type variables
     ex_bndrs = zipWith3 mk_ex_var ex_uniqs ex_fss ex_tvs
@@ -742,570 +959,132 @@ dataConInstPat arg_fun fss uniqs con inst_tys
       -- Make the instantiating substitution
     subst = zipOpenTvSubst (univ_tvs ++ ex_tvs) (inst_tys ++ map mkTyVarTy ex_bndrs)
 
       -- Make the instantiating substitution
     subst = zipOpenTvSubst (univ_tvs ++ ex_tvs) (inst_tys ++ map mkTyVarTy ex_bndrs)
 
-      -- Make new coercion vars, instantiating kind
-    co_bndrs = zipWith3 mk_co_var co_uniqs co_fss eq_preds
-    mk_co_var uniq fs eq_pred = mkCoVar new_name co_kind
-       where
-         new_name = mkSysTvName uniq fs
-         co_kind  = substTy subst (mkPredTy eq_pred)
-
-      -- make value vars, instantiating types
-    mk_id_var uniq fs ty = mkUserLocal (mkVarOccFS fs) uniq (substTy subst ty) noSrcSpan
+      -- Make value vars, instantiating types
+    mk_id_var uniq fs ty = mkUserLocal (mkVarOccFS fs) uniq (Type.substTy subst ty) noSrcSpan
     arg_ids = zipWith3 mk_id_var id_uniqs id_fss arg_tys
     arg_ids = zipWith3 mk_id_var id_uniqs id_fss arg_tys
-
-exprIsConApp_maybe :: CoreExpr -> Maybe (DataCon, [CoreExpr])
--- Returns (Just (dc, [x1..xn])) if the argument expression is 
--- a constructor application of the form (dc x1 .. xn)
-exprIsConApp_maybe (Cast expr co)
-  =     -- Here we do the PushC reduction rule as described in the FC paper
-    case exprIsConApp_maybe expr of {
-       Nothing            -> Nothing ;
-       Just (dc, dc_args) -> 
-
-       -- The transformation applies iff we have
-       --      (C e1 ... en) `cast` co
-       -- where co :: (T t1 .. tn) :=: (T s1 ..sn)
-       -- That is, with a T at the top of both sides
-       -- The left-hand one must be a T, because exprIsConApp returned True
-       -- but the right-hand one might not be.  (Though it usually will.)
-
-    let (from_ty, to_ty)          = coercionKind co
-       (from_tc, from_tc_arg_tys) = splitTyConApp from_ty
-               -- The inner one must be a TyConApp
-    in
-    case splitTyConApp_maybe to_ty of {
-       Nothing -> Nothing ;
-       Just (to_tc, to_tc_arg_tys) 
-               | from_tc /= to_tc -> Nothing
-               -- These two Nothing cases are possible; we might see 
-               --      (C x y) `cast` (g :: T a ~ S [a]),
-               -- where S is a type function.  In fact, exprIsConApp
-               -- will probably not be called in such circumstances,
-               -- but there't nothing wrong with it 
-
-               | otherwise  ->
-    let
-       tc_arity = tyConArity from_tc
-
-        (univ_args, rest1)  = splitAt tc_arity dc_args
-        (ex_args, rest2)    = splitAt n_ex_tvs rest1
-       (co_args, val_args) = splitAt n_cos rest2
-
-        arg_tys            = dataConRepArgTys dc
-       dc_univ_tyvars      = dataConUnivTyVars dc
-        dc_ex_tyvars        = dataConExTyVars dc
-       dc_eq_spec          = dataConEqSpec dc
-        dc_tyvars           = dc_univ_tyvars ++ dc_ex_tyvars
-        n_ex_tvs            = length dc_ex_tyvars
-       n_cos               = length dc_eq_spec
-
-       -- Make the "theta" from Fig 3 of the paper
-        gammas              = decomposeCo tc_arity co
-        new_tys             = gammas ++ map (\ (Type t) -> t) ex_args
-        theta               = zipOpenTvSubst dc_tyvars new_tys
-
-          -- First we cast the existential coercion arguments
-        cast_co (tv,ty) (Type co) = Type $ mkSymCoercion (substTyVar theta tv)
-                                          `mkTransCoercion` co
-                                          `mkTransCoercion` (substTy theta ty)
-        new_co_args = zipWith cast_co dc_eq_spec co_args
-  
-          -- ...and now value arguments
-       new_val_args = zipWith cast_arg arg_tys val_args
-       cast_arg arg_ty arg = mkCoerce (substTy theta arg_ty) arg
-
-    in
-    ASSERT( length univ_args == tc_arity )
-    ASSERT( from_tc == dataConTyCon dc )
-    ASSERT( and (zipWith coreEqType [t | Type t <- univ_args] from_tc_arg_tys) )
-    ASSERT( all isTypeArg (univ_args ++ ex_args) )
-    ASSERT2( equalLength val_args arg_tys, ppr dc $$ ppr dc_tyvars $$ ppr dc_ex_tyvars $$ ppr arg_tys $$ ppr dc_args $$ ppr univ_args $$ ppr ex_args $$ ppr val_args $$ ppr arg_tys  )
-
-    Just (dc, map Type to_tc_arg_tys ++ ex_args ++ new_co_args ++ new_val_args)
-    }}
-
-{-
--- We do not want to tell the world that we have a
--- Cons, to *stop* Case of Known Cons, which removes
--- the TickBox.
-exprIsConApp_maybe (Note (TickBox {}) expr)
-  = Nothing
-exprIsConApp_maybe (Note (BinaryTickBox {}) expr)
-  = Nothing
--}
-
-exprIsConApp_maybe (Note _ expr)
-  = exprIsConApp_maybe expr
-    -- We ignore InlineMe notes in case we have
-    -- x = __inline_me__ (a,b)
-    -- All part of making sure that INLINE pragmas never hurt
-    -- Marcin tripped on this one when making dictionaries more inlinable
-    --
-    -- In fact, we ignore all notes.  For example,
-    --         case _scc_ "foo" (C a b) of
-    --                 C a b -> e
-    -- should be optimised away, but it will be only if we look
-    -- through the SCC note.
-
-exprIsConApp_maybe expr = analyse (collectArgs expr)
-  where
-    analyse (Var fun, args)
-       | Just con <- isDataConWorkId_maybe fun,
-         args `lengthAtLeast` dataConRepArity con
-               -- Might be > because the arity excludes type args
-       = Just (con,args)
-
-       -- Look through unfoldings, but only cheap ones, because
-       -- we are effectively duplicating the unfolding
-    analyse (Var fun, [])
-       | let unf = idUnfolding fun,
-         isCheapUnfolding unf
-       = exprIsConApp_maybe (unfoldingTemplate unf)
-
-    analyse other = Nothing
 \end{code}
 
 \end{code}
 
-
-
 %************************************************************************
 %*                                                                     *
 %************************************************************************
 %*                                                                     *
-\subsection{Eta reduction and expansion}
+         Equality
 %*                                                                     *
 %************************************************************************
 
 \begin{code}
 %*                                                                     *
 %************************************************************************
 
 \begin{code}
-exprEtaExpandArity :: DynFlags -> CoreExpr -> Arity
-{- The Arity returned is the number of value args the 
-   thing can be applied to without doing much work
-
-exprEtaExpandArity is used when eta expanding
-       e  ==>  \xy -> e x y
-
-It returns 1 (or more) to:
-       case x of p -> \s -> ...
-because for I/O ish things we really want to get that \s to the top.
-We are prepared to evaluate x each time round the loop in order to get that
-
-It's all a bit more subtle than it looks:
-
-1.  One-shot lambdas
-
-Consider one-shot lambdas
-               let x = expensive in \y z -> E
-We want this to have arity 2 if the \y-abstraction is a 1-shot lambda
-Hence the ArityType returned by arityType
-
-2.  The state-transformer hack
-
-The one-shot lambda special cause is particularly important/useful for
-IO state transformers, where we often get
-       let x = E in \ s -> ...
-
-and the \s is a real-world state token abstraction.  Such abstractions
-are almost invariably 1-shot, so we want to pull the \s out, past the
-let x=E, even if E is expensive.  So we treat state-token lambdas as 
-one-shot even if they aren't really.  The hack is in Id.isOneShotBndr.
-
-3.  Dealing with bottom
-
-Consider also 
-       f = \x -> error "foo"
-Here, arity 1 is fine.  But if it is
-       f = \x -> case x of 
-                       True  -> error "foo"
-                       False -> \y -> x+y
-then we want to get arity 2.  Tecnically, this isn't quite right, because
-       (f True) `seq` 1
-should diverge, but it'll converge if we eta-expand f.  Nevertheless, we
-do so; it improves some programs significantly, and increasing convergence
-isn't a bad thing.  Hence the ABot/ATop in ArityType.
-
-Actually, the situation is worse.  Consider
-       f = \x -> case x of
-                       True  -> \y -> x+y
-                       False -> \y -> x-y
-Can we eta-expand here?  At first the answer looks like "yes of course", but
-consider
-       (f bot) `seq` 1
-This should diverge!  But if we eta-expand, it won't.   Again, we ignore this
-"problem", because being scrupulous would lose an important transformation for
-many programs.
-
-
-4. Newtypes
-
-Non-recursive newtypes are transparent, and should not get in the way.
-We do (currently) eta-expand recursive newtypes too.  So if we have, say
-
-       newtype T = MkT ([T] -> Int)
-
-Suppose we have
-       e = coerce T f
-where f has arity 1.  Then: etaExpandArity e = 1; 
-that is, etaExpandArity looks through the coerce.
-
-When we eta-expand e to arity 1: eta_expand 1 e T
-we want to get:                 coerce T (\x::[T] -> (coerce ([T]->Int) e) x)
-
-HOWEVER, note that if you use coerce bogusly you can ge
-       coerce Int negate
-And since negate has arity 2, you might try to eta expand.  But you can't
-decopose Int to a function type.   Hence the final case in eta_expand.
--}
-
-
-exprEtaExpandArity dflags e = arityDepth (arityType dflags e)
-
--- A limited sort of function type
-data ArityType = AFun Bool ArityType   -- True <=> one-shot
-              | ATop                   -- Know nothing
-              | ABot                   -- Diverges
-
-arityDepth :: ArityType -> Arity
-arityDepth (AFun _ ty) = 1 + arityDepth ty
-arityDepth ty         = 0
-
-andArityType ABot          at2           = at2
-andArityType ATop          at2           = ATop
-andArityType (AFun t1 at1)  (AFun t2 at2) = AFun (t1 && t2) (andArityType at1 at2)
-andArityType at1           at2           = andArityType at2 at1
-
-arityType :: DynFlags -> CoreExpr -> ArityType
-       -- (go1 e) = [b1,..,bn]
-       -- means expression can be rewritten \x_b1 -> ... \x_bn -> body
-       -- where bi is True <=> the lambda is one-shot
-
-arityType dflags (Note n e) = arityType dflags e
---     Not needed any more: etaExpand is cleverer
---  | ok_note n = arityType dflags e
---  | otherwise = ATop
-
-arityType dflags (Cast e co) = arityType dflags e
-
-arityType dflags (Var v) 
-  = mk (idArity v) (arg_tys (idType v))
-  where
-    mk :: Arity -> [Type] -> ArityType
-       -- The argument types are only to steer the "state hack"
-       -- Consider case x of
-       --              True  -> foo
-       --              False -> \(s:RealWorld) -> e
-       -- where foo has arity 1.  Then we want the state hack to
-       -- apply to foo too, so we can eta expand the case.
-    mk 0 tys | isBottomingId v                    = ABot
-             | (ty:tys) <- tys, isStateHackType ty = AFun True ATop
-            | otherwise                           = ATop
-    mk n (ty:tys) = AFun (isStateHackType ty) (mk (n-1) tys)
-    mk n []       = AFun False               (mk (n-1) [])
-
-    arg_tys :: Type -> [Type]  -- Ignore for-alls
-    arg_tys ty 
-       | Just (_, ty')  <- splitForAllTy_maybe ty = arg_tys ty'
-       | Just (arg,res) <- splitFunTy_maybe ty    = arg : arg_tys res
-       | otherwise                                = []
-
-       -- Lambdas; increase arity
-arityType dflags (Lam x e)
-  | isId x    = AFun (isOneShotBndr x) (arityType dflags e)
-  | otherwise = arityType dflags e
-
-       -- Applications; decrease arity
-arityType dflags (App f (Type _)) = arityType dflags f
-arityType dflags (App f a)       = case arityType dflags f of
-                                       AFun one_shot xs | exprIsCheap a -> xs
-                                       other                            -> ATop
-                                                          
-       -- Case/Let; keep arity if either the expression is cheap
-       -- or it's a 1-shot lambda
-       -- The former is not really right for Haskell
-       --      f x = case x of { (a,b) -> \y. e }
-       --  ===>
-       --      f x y = case x of { (a,b) -> e }
-       -- The difference is observable using 'seq'
-arityType dflags (Case scrut _ _ alts)
-  = case foldr1 andArityType [arityType dflags rhs | (_,_,rhs) <- alts] of
-       xs | exprIsCheap scrut          -> xs
-       xs@(AFun one_shot _) | one_shot -> AFun True ATop
-       other                           -> ATop
-
-arityType dflags (Let b e) 
-  = case arityType dflags e of
-       xs                   | cheap_bind b -> xs
-       xs@(AFun one_shot _) | one_shot     -> AFun True ATop
-       other                               -> ATop
-  where
-    cheap_bind (NonRec b e) = is_cheap (b,e)
-    cheap_bind (Rec prs)    = all is_cheap prs
-    is_cheap (b,e) = (dopt Opt_DictsCheap dflags && isDictId b)
-                  || exprIsCheap e
-       -- If the experimental -fdicts-cheap flag is on, we eta-expand through
-       -- dictionary bindings.  This improves arities. Thereby, it also
-       -- means that full laziness is less prone to floating out the
-       -- application of a function to its dictionary arguments, which
-       -- can thereby lose opportunities for fusion.  Example:
-       --      foo :: Ord a => a -> ...
-       --      foo = /\a \(d:Ord a). let d' = ...d... in \(x:a). ....
-       --              -- So foo has arity 1
-       --
-       --      f = \x. foo dInt $ bar x
-       --
-       -- The (foo DInt) is floated out, and makes ineffective a RULE 
-       --      foo (bar x) = ...
-       --
-       -- One could go further and make exprIsCheap reply True to any
-       -- dictionary-typed expression, but that's more work.
-
-arityType dflags other = ATop
-
-{- NOT NEEDED ANY MORE: etaExpand is cleverer
-ok_note InlineMe = False
-ok_note other    = True
-    -- Notice that we do not look through __inline_me__
-    -- This may seem surprising, but consider
-    --         f = _inline_me (\x -> e)
-    -- We DO NOT want to eta expand this to
-    --         f = \x -> (_inline_me (\x -> e)) x
-    -- because the _inline_me gets dropped now it is applied, 
-    -- giving just
-    --         f = \x -> e
-    -- A Bad Idea
--}
-\end{code}
-
-
-\begin{code}
-etaExpand :: Arity             -- Result should have this number of value args
-         -> [Unique]
-         -> CoreExpr -> Type   -- Expression and its type
-         -> CoreExpr
--- (etaExpand n us e ty) returns an expression with 
--- the same meaning as 'e', but with arity 'n'.  
+-- | A cheap equality test which bales out fast!
+--      If it returns @True@ the arguments are definitely equal,
+--      otherwise, they may or may not be equal.
 --
 --
--- Given e' = etaExpand n us e ty
--- We should have
---     ty = exprType e = exprType e'
---
--- Note that SCCs are not treated specially.  If we have
---     etaExpand 2 (\x -> scc "foo" e)
---     = (\xy -> (scc "foo" e) y)
--- So the costs of evaluating 'e' (not 'e y') are attributed to "foo"
-
-etaExpand n us expr ty
-  | manifestArity expr >= n = expr             -- The no-op case
-  | otherwise              
-  = eta_expand n us expr ty
-  where
-
--- manifestArity sees how many leading value lambdas there are
-manifestArity :: CoreExpr -> Arity
-manifestArity (Lam v e) | isId v    = 1 + manifestArity e
-                       | otherwise = manifestArity e
-manifestArity (Note _ e)           = manifestArity e
-manifestArity (Cast e _)            = manifestArity e
-manifestArity e                            = 0
-
--- etaExpand deals with for-alls. For example:
---             etaExpand 1 E
--- where  E :: forall a. a -> a
--- would return
---     (/\b. \y::a -> E b y)
---
--- It deals with coerces too, though they are now rare
--- so perhaps the extra code isn't worth it
-
-eta_expand n us expr ty
-  | n == 0 && 
-    -- The ILX code generator requires eta expansion for type arguments
-    -- too, but alas the 'n' doesn't tell us how many of them there 
-    -- may be.  So we eagerly eta expand any big lambdas, and just
-    -- cross our fingers about possible loss of sharing in the ILX case. 
-    -- The Right Thing is probably to make 'arity' include
-    -- type variables throughout the compiler.  (ToDo.)
-    not (isForAllTy ty)        
-    -- Saturated, so nothing to do
-  = expr
-
-       -- Short cut for the case where there already
-       -- is a lambda; no point in gratuitously adding more
-eta_expand n us (Lam v body) ty
-  | isTyVar v
-  = Lam v (eta_expand n us body (applyTy ty (mkTyVarTy v)))
-
-  | otherwise
-  = Lam v (eta_expand (n-1) us body (funResultTy ty))
-
--- We used to have a special case that stepped inside Coerces here,
--- thus:  eta_expand n us (Note note@(Coerce _ ty) e) _  
---             = Note note (eta_expand n us e ty)
--- BUT this led to an infinite loop
--- Example:    newtype T = MkT (Int -> Int)
---     eta_expand 1 (coerce (Int->Int) e)
---     --> coerce (Int->Int) (eta_expand 1 T e)
---             by the bogus eqn
---     --> coerce (Int->Int) (coerce T 
---             (\x::Int -> eta_expand 1 (coerce (Int->Int) e)))
---             by the splitNewType_maybe case below
---     and round we go
-
-eta_expand n us expr ty
-  = ASSERT2 (exprType expr `coreEqType` ty, ppr (exprType expr) $$ ppr ty)
-    case splitForAllTy_maybe ty of { 
-         Just (tv,ty') -> 
-
-              Lam lam_tv (eta_expand n us2 (App expr (Type (mkTyVarTy lam_tv))) (substTyWith [tv] [mkTyVarTy lam_tv] ty'))
-                  where 
-                    lam_tv = setVarName tv (mkSysTvName uniq FSLIT("etaT"))
-                       -- Using tv as a base retains its tyvar/covar-ness
-                    (uniq:us2) = us 
-       ; Nothing ->
-  
-       case splitFunTy_maybe ty of {
-         Just (arg_ty, res_ty) -> Lam arg1 (eta_expand (n-1) us2 (App expr (Var arg1)) res_ty)
-                               where
-                                  arg1       = mkSysLocal FSLIT("eta") uniq arg_ty
-                                  (uniq:us2) = us
-                                  
-       ; Nothing ->
-
-               -- Given this:
-               --      newtype T = MkT ([T] -> Int)
-               -- Consider eta-expanding this
-               --      eta_expand 1 e T
-               -- We want to get
-               --      coerce T (\x::[T] -> (coerce ([T]->Int) e) x)
-
-       case splitNewTypeRepCo_maybe ty of {
-         Just(ty1,co) -> mkCoerce (mkSymCoercion co) 
-                                  (eta_expand n us (mkCoerce co expr) ty1) ;
-         Nothing  -> 
-
-       -- We have an expression of arity > 0, but its type isn't a function
-       -- This *can* legitmately happen: e.g.  coerce Int (\x. x)
-       -- Essentially the programmer is playing fast and loose with types
-       -- (Happy does this a lot).  So we simply decline to eta-expand.
-       expr
-       }}}
-\end{code}
-
-exprArity is a cheap-and-cheerful version of exprEtaExpandArity.
-It tells how many things the expression can be applied to before doing
-any work.  It doesn't look inside cases, lets, etc.  The idea is that
-exprEtaExpandArity will do the hard work, leaving something that's easy
-for exprArity to grapple with.  In particular, Simplify uses exprArity to
-compute the ArityInfo for the Id. 
-
-Originally I thought that it was enough just to look for top-level lambdas, but
-it isn't.  I've seen this
-
-       foo = PrelBase.timesInt
-
-We want foo to get arity 2 even though the eta-expander will leave it
-unchanged, in the expectation that it'll be inlined.  But occasionally it
-isn't, because foo is blacklisted (used in a rule).  
-
-Similarly, see the ok_note check in exprEtaExpandArity.  So 
-       f = __inline_me (\x -> e)
-won't be eta-expanded.
-
-And in any case it seems more robust to have exprArity be a bit more intelligent.
-But note that  (\x y z -> f x y z)
-should have arity 3, regardless of f's arity.
-
-\begin{code}
-exprArity :: CoreExpr -> Arity
-exprArity e = go e
-           where
-             go (Var v)                   = idArity v
-             go (Lam x e) | isId x        = go e + 1
-                          | otherwise     = go e
-             go (Note n e)                = go e
-              go (Cast e _)                = go e
-             go (App e (Type t))          = go e
-             go (App f a) | exprIsCheap a = (go f - 1) `max` 0
-               -- NB: exprIsCheap a!  
-               --      f (fac x) does not have arity 2, 
-               --      even if f has arity 3!
-               -- NB: `max 0`!  (\x y -> f x) has arity 2, even if f is
-               --               unknown, hence arity 0
-             go _                         = 0
-\end{code}
-
-%************************************************************************
-%*                                                                     *
-\subsection{Equality}
-%*                                                                     *
-%************************************************************************
-
-@cheapEqExpr@ is a cheap equality test which bales out fast!
-       True  => definitely equal
-       False => may or may not be equal
-
-\begin{code}
+-- See also 'exprIsBig'
 cheapEqExpr :: Expr b -> Expr b -> Bool
 
 cheapEqExpr (Var v1)   (Var v2)   = v1==v2
 cheapEqExpr (Lit lit1) (Lit lit2) = lit1 == lit2
 cheapEqExpr :: Expr b -> Expr b -> Bool
 
 cheapEqExpr (Var v1)   (Var v2)   = v1==v2
 cheapEqExpr (Lit lit1) (Lit lit2) = lit1 == lit2
-cheapEqExpr (Type t1)  (Type t2)  = t1 `coreEqType` t2
+cheapEqExpr (Type t1) (Type t2) = t1 `eqType` t2
+cheapEqExpr (Coercion c1) (Coercion c2) = c1 `coreEqCoercion` c2
 
 cheapEqExpr (App f1 a1) (App f2 a2)
   = f1 `cheapEqExpr` f2 && a1 `cheapEqExpr` a2
 
 
 cheapEqExpr (App f1 a1) (App f2 a2)
   = f1 `cheapEqExpr` f2 && a1 `cheapEqExpr` a2
 
+cheapEqExpr (Cast e1 t1) (Cast e2 t2)
+  = e1 `cheapEqExpr` e2 && t1 `coreEqCoercion` t2
+
 cheapEqExpr _ _ = False
 cheapEqExpr _ _ = False
+\end{code}
 
 
+\begin{code}
 exprIsBig :: Expr b -> Bool
 exprIsBig :: Expr b -> Bool
--- Returns True of expressions that are too big to be compared by cheapEqExpr
+-- ^ Returns @True@ of expressions that are too big to be compared by 'cheapEqExpr'
 exprIsBig (Lit _)      = False
 exprIsBig (Lit _)      = False
-exprIsBig (Var v)      = False
-exprIsBig (Type t)     = False
+exprIsBig (Var _)      = False
+exprIsBig (Type _)    = False
+exprIsBig (Coercion _) = False
+exprIsBig (Lam _ e)    = exprIsBig e
 exprIsBig (App f a)    = exprIsBig f || exprIsBig a
 exprIsBig (Cast e _)   = exprIsBig e   -- Hopefully coercions are not too big!
 exprIsBig (App f a)    = exprIsBig f || exprIsBig a
 exprIsBig (Cast e _)   = exprIsBig e   -- Hopefully coercions are not too big!
-exprIsBig other               = True
+exprIsBig _            = True
 \end{code}
 
 \end{code}
 
-
 \begin{code}
 \begin{code}
-tcEqExpr :: CoreExpr -> CoreExpr -> Bool
--- Used in rule matching, so does *not* look through 
--- newtypes, predicate types; hence tcEqExpr
+eqExpr :: InScopeSet -> CoreExpr -> CoreExpr -> Bool
+-- Compares for equality, modulo alpha
+eqExpr in_scope e1 e2
+  = eqExprX id_unf (mkRnEnv2 in_scope) e1 e2
+  where
+    id_unf _ = noUnfolding     -- Don't expand
+\end{code}
+    
+\begin{code}
+eqExprX :: IdUnfoldingFun -> RnEnv2 -> CoreExpr -> CoreExpr -> Bool
+-- ^ Compares expressions for equality, modulo alpha.
+-- Does /not/ look through newtypes or predicate types
+-- Used in rule matching, and also CSE
 
 
-tcEqExpr e1 e2 = tcEqExprX rn_env e1 e2
+eqExprX id_unfolding_fun env e1 e2
+  = go env e1 e2
   where
   where
-    rn_env = mkRnEnv2 (mkInScopeSet (exprFreeVars e1 `unionVarSet` exprFreeVars e2))
-
-tcEqExprX :: RnEnv2 -> CoreExpr -> CoreExpr -> Bool
-tcEqExprX env (Var v1)    (Var v2)     = rnOccL env v1 == rnOccR env v2
-tcEqExprX env (Lit lit1)   (Lit lit2)   = lit1 == lit2
-tcEqExprX env (App f1 a1)  (App f2 a2)  = tcEqExprX env f1 f2 && tcEqExprX env a1 a2
-tcEqExprX env (Lam v1 e1)  (Lam v2 e2)  = tcEqExprX (rnBndr2 env v1 v2) e1 e2
-tcEqExprX env (Let (NonRec v1 r1) e1)
-             (Let (NonRec v2 r2) e2)   = tcEqExprX env r1 r2 
-                                      && tcEqExprX (rnBndr2 env v1 v2) e1 e2
-tcEqExprX env (Let (Rec ps1) e1)
-             (Let (Rec ps2) e2)        =  equalLength ps1 ps2
-                                       && and (zipWith eq_rhs ps1 ps2)
-                                       && tcEqExprX env' e1 e2
-                                    where
-                                      env' = foldl2 rn_bndr2 env ps2 ps2
-                                      rn_bndr2 env (b1,_) (b2,_) = rnBndr2 env b1 b2
-                                      eq_rhs       (_,r1) (_,r2) = tcEqExprX env' r1 r2
-tcEqExprX env (Case e1 v1 t1 a1)
-             (Case e2 v2 t2 a2)     =  tcEqExprX env e1 e2
-                                     && tcEqTypeX env t1 t2                      
-                                    && equalLength a1 a2
-                                    && and (zipWith (eq_alt env') a1 a2)
-                                    where
-                                      env' = rnBndr2 env v1 v2
-
-tcEqExprX env (Note n1 e1) (Note n2 e2) = eq_note env n1 n2 && tcEqExprX env e1 e2
-tcEqExprX env (Cast e1 co1) (Cast e2 co2) = tcEqTypeX env co1 co2 && tcEqExprX env e1 e2
-tcEqExprX env (Type t1)    (Type t2)    = tcEqTypeX env t1 t2
-tcEqExprX env e1               e2      = False
-                                        
-eq_alt env (c1,vs1,r1) (c2,vs2,r2) = c1==c2 && tcEqExprX (rnBndrs2 env vs1  vs2) r1 r2
-
-eq_note env (SCC cc1)      (SCC cc2)      = cc1 == cc2
-eq_note env (CoreNote s1)  (CoreNote s2)  = s1 == s2
-eq_note env other1            other2     = False
+    go env (Var v1) (Var v2)
+      | rnOccL env v1 == rnOccR env v2
+      = True
+
+    -- The next two rules expand non-local variables
+    -- C.f. Note [Expanding variables] in Rules.lhs
+    -- and  Note [Do not expand locally-bound variables] in Rules.lhs
+    go env (Var v1) e2
+      | not (locallyBoundL env v1)
+      , Just e1' <- expandUnfolding_maybe (id_unfolding_fun (lookupRnInScope env v1))
+      = go (nukeRnEnvL env) e1' e2
+
+    go env e1 (Var v2)
+      | not (locallyBoundR env v2)
+      , Just e2' <- expandUnfolding_maybe (id_unfolding_fun (lookupRnInScope env v2))
+      = go (nukeRnEnvR env) e1 e2'
+
+    go _   (Lit lit1)    (Lit lit2)      = lit1 == lit2
+    go env (Type t1)    (Type t2)        = eqTypeX env t1 t2
+    go env (Coercion co1) (Coercion co2) = coreEqCoercion2 env co1 co2
+    go env (Cast e1 co1) (Cast e2 co2) = coreEqCoercion2 env co1 co2 && go env e1 e2
+    go env (App f1 a1)   (App f2 a2)   = go env f1 f2 && go env a1 a2
+    go env (Note n1 e1)  (Note n2 e2)  = go_note n1 n2 && go env e1 e2
+
+    go env (Lam b1 e1)  (Lam b2 e2)  
+      =  eqTypeX env (varType b1) (varType b2)   -- False for Id/TyVar combination
+      && go (rnBndr2 env b1 b2) e1 e2
+
+    go env (Let (NonRec v1 r1) e1) (Let (NonRec v2 r2) e2) 
+      =  go env r1 r2  -- No need to check binder types, since RHSs match
+      && go (rnBndr2 env v1 v2) e1 e2
+
+    go env (Let (Rec ps1) e1) (Let (Rec ps2) e2) 
+      = all2 (go env') rs1 rs2 && go env' e1 e2
+      where
+        (bs1,rs1) = unzip ps1     
+        (bs2,rs2) = unzip ps2
+        env' = rnBndrs2 env bs1 bs2
+
+    go env (Case e1 b1 _ a1) (Case e2 b2 _ a2)
+      =  go env e1 e2
+      && eqTypeX env (idType b1) (idType b2)
+      && all2 (go_alt (rnBndr2 env b1 b2)) a1 a2
+
+    go _ _ _ = False
+
+    -----------
+    go_alt env (c1, bs1, e1) (c2, bs2, e2)
+      = c1 == c2 && go (rnBndrs2 env bs1 bs2) e1 e2
+
+    -----------
+    go_note (SCC cc1)     (SCC cc2)      = cc1 == cc2
+    go_note (CoreNote s1) (CoreNote s2)  = s1 == s2
+    go_note _             _              = False
+\end{code}
+
+Auxiliary functions
+
+\begin{code}
+locallyBoundL, locallyBoundR :: RnEnv2 -> Var -> Bool
+locallyBoundL rn_env v = inRnEnvL rn_env v
+locallyBoundR rn_env v = inRnEnvR rn_env v
 \end{code}
 
 
 \end{code}
 
 
@@ -1320,20 +1099,22 @@ coreBindsSize :: [CoreBind] -> Int
 coreBindsSize bs = foldr ((+) . bindSize) 0 bs
 
 exprSize :: CoreExpr -> Int
 coreBindsSize bs = foldr ((+) . bindSize) 0 bs
 
 exprSize :: CoreExpr -> Int
-       -- A measure of the size of the expressions
-       -- It also forces the expression pretty drastically as a side effect
+-- ^ A measure of the size of the expressions, strictly greater than 0
+-- It also forces the expression pretty drastically as a side effect
+-- Counts *leaves*, not internal nodes. Types and coercions are not counted.
 exprSize (Var v)         = v `seq` 1
 exprSize (Lit lit)       = lit `seq` 1
 exprSize (App f a)       = exprSize f + exprSize a
 exprSize (Lam b e)       = varSize b + exprSize e
 exprSize (Let b e)       = bindSize b + exprSize e
 exprSize (Case e b t as) = seqType t `seq` exprSize e + varSize b + 1 + foldr ((+) . altSize) 0 as
 exprSize (Var v)         = v `seq` 1
 exprSize (Lit lit)       = lit `seq` 1
 exprSize (App f a)       = exprSize f + exprSize a
 exprSize (Lam b e)       = varSize b + exprSize e
 exprSize (Let b e)       = bindSize b + exprSize e
 exprSize (Case e b t as) = seqType t `seq` exprSize e + varSize b + 1 + foldr ((+) . altSize) 0 as
-exprSize (Cast e co)     = (seqType co `seq` 1) + exprSize e
+exprSize (Cast e co)     = (seqCo co `seq` 1) + exprSize e
 exprSize (Note n e)      = noteSize n + exprSize e
 exprSize (Note n e)      = noteSize n + exprSize e
-exprSize (Type t)        = seqType t `seq` 1
+exprSize (Type t)       = seqType t `seq` 1
+exprSize (Coercion co)   = seqCo co `seq` 1
 
 
+noteSize :: Note -> Int
 noteSize (SCC cc)       = cc `seq` 1
 noteSize (SCC cc)       = cc `seq` 1
-noteSize InlineMe       = 1
 noteSize (CoreNote s)   = s `seq` 1  -- hdaume: core annotations
  
 varSize :: Var -> Int
 noteSize (CoreNote s)   = s `seq` 1  -- hdaume: core annotations
  
 varSize :: Var -> Int
@@ -1342,16 +1123,69 @@ varSize b  | isTyVar b = 1
                         megaSeqIdInfo (idInfo b)       `seq`
                         1
 
                         megaSeqIdInfo (idInfo b)       `seq`
                         1
 
-varsSize = foldr ((+) . varSize) 0
+varsSize :: [Var] -> Int
+varsSize = sum . map varSize
 
 
+bindSize :: CoreBind -> Int
 bindSize (NonRec b e) = varSize b + exprSize e
 bindSize (Rec prs)    = foldr ((+) . pairSize) 0 prs
 
 bindSize (NonRec b e) = varSize b + exprSize e
 bindSize (Rec prs)    = foldr ((+) . pairSize) 0 prs
 
+pairSize :: (Var, CoreExpr) -> Int
 pairSize (b,e) = varSize b + exprSize e
 
 pairSize (b,e) = varSize b + exprSize e
 
+altSize :: CoreAlt -> Int
 altSize (c,bs,e) = c `seq` varsSize bs + exprSize e
 \end{code}
 
 altSize (c,bs,e) = c `seq` varsSize bs + exprSize e
 \end{code}
 
+\begin{code}
+data CoreStats = CS { cs_tm, cs_ty, cs_co :: Int }
+
+plusCS :: CoreStats -> CoreStats -> CoreStats
+plusCS (CS { cs_tm = p1, cs_ty = q1, cs_co = r1 })
+       (CS { cs_tm = p2, cs_ty = q2, cs_co = r2 })
+  = CS { cs_tm = p1+p2, cs_ty = q1+q2, cs_co = r1+r2 }
+  
+zeroCS, oneTM :: CoreStats
+zeroCS = CS { cs_tm = 0, cs_ty = 0, cs_co = 0 }
+oneTM  = zeroCS { cs_tm = 1 }
+
+sumCS :: (a -> CoreStats) -> [a] -> CoreStats
+sumCS f = foldr (plusCS . f) zeroCS 
+coreBindsStats :: [CoreBind] -> CoreStats
+coreBindsStats = sumCS bindStats
+
+bindStats :: CoreBind -> CoreStats
+bindStats (NonRec v r) = bindingStats v r
+bindStats (Rec prs)    = sumCS (\(v,r) -> bindingStats v r) prs
+
+bindingStats :: Var -> CoreExpr -> CoreStats
+bindingStats v r = bndrStats v `plusCS` exprStats r
+
+bndrStats :: Var -> CoreStats
+bndrStats v = oneTM `plusCS` tyStats (varType v)
+
+exprStats :: CoreExpr -> CoreStats
+exprStats (Var {})        = oneTM
+exprStats (Lit {})        = oneTM
+exprStats (Type t)        = tyStats t
+exprStats (Coercion c)    = coStats c
+exprStats (App f a)       = exprStats f `plusCS` exprStats a 
+exprStats (Lam b e)       = bndrStats b `plusCS` exprStats e 
+exprStats (Let b e)       = bindStats b `plusCS` exprStats e 
+exprStats (Case e b _ as) = exprStats e `plusCS` bndrStats b `plusCS` sumCS altStats as
+exprStats (Cast e co)     = coStats co `plusCS` exprStats e
+exprStats (Note _ e)      = exprStats e
+
+altStats :: CoreAlt -> CoreStats
+altStats (_, bs, r) = sumCS bndrStats bs `plusCS` exprStats r
+
+tyStats :: Type -> CoreStats
+tyStats ty = zeroCS { cs_ty = typeSize ty }
+
+coStats :: Coercion -> CoreStats
+coStats co = zeroCS { cs_co = coercionSize co }
+\end{code}
 
 %************************************************************************
 %*                                                                     *
 
 %************************************************************************
 %*                                                                     *
@@ -1361,45 +1195,48 @@ altSize (c,bs,e) = c `seq` varsSize bs + exprSize e
 
 \begin{code}
 hashExpr :: CoreExpr -> Int
 
 \begin{code}
 hashExpr :: CoreExpr -> Int
--- Two expressions that hash to the same Int may be equal (but may not be)
--- Two expressions that hash to the different Ints are definitely unequal
--- 
--- But "unequal" here means "not identical"; two alpha-equivalent 
--- expressions may hash to the different Ints
+-- ^ Two expressions that hash to the same @Int@ may be equal (but may not be)
+-- Two expressions that hash to the different Ints are definitely unequal.
 --
 --
--- The emphasis is on a crude, fast hash, rather than on high precision
+-- The emphasis is on a crude, fast hash, rather than on high precision.
+-- 
+-- But unequal here means \"not identical\"; two alpha-equivalent 
+-- expressions may hash to the different Ints.
 --
 --
--- We must be careful that \x.x and \y.y map to the same hash code,
--- (at least if we want the above invariant to be true)
+-- We must be careful that @\\x.x@ and @\\y.y@ map to the same hash code,
+-- (at least if we want the above invariant to be true).
 
 hashExpr e = fromIntegral (hash_expr (1,emptyVarEnv) e .&. 0x7fffffff)
              -- UniqFM doesn't like negative Ints
 
 
 hashExpr e = fromIntegral (hash_expr (1,emptyVarEnv) e .&. 0x7fffffff)
              -- UniqFM doesn't like negative Ints
 
-type HashEnv = (Int, VarEnv Int)       -- Hash code for bound variables
+type HashEnv = (Int, VarEnv Int)  -- Hash code for bound variables
 
 hash_expr :: HashEnv -> CoreExpr -> Word32
 -- Word32, because we're expecting overflows here, and overflowing
 -- signed types just isn't cool.  In C it's even undefined.
 hash_expr env (Note _ e)             = hash_expr env e
 
 hash_expr :: HashEnv -> CoreExpr -> Word32
 -- Word32, because we're expecting overflows here, and overflowing
 -- signed types just isn't cool.  In C it's even undefined.
 hash_expr env (Note _ e)             = hash_expr env e
-hash_expr env (Cast e co)             = hash_expr env e
+hash_expr env (Cast e _)              = hash_expr env e
 hash_expr env (Var v)                = hashVar env v
 hash_expr env (Var v)                = hashVar env v
-hash_expr env (Lit lit)                      = fromIntegral (hashLiteral lit)
+hash_expr _   (Lit lit)               = fromIntegral (hashLiteral lit)
 hash_expr env (App f e)              = hash_expr env f * fast_hash_expr env e
 hash_expr env (Let (NonRec b r) e)    = hash_expr (extend_env env b) e * fast_hash_expr env r
 hash_expr env (App f e)              = hash_expr env f * fast_hash_expr env e
 hash_expr env (Let (NonRec b r) e)    = hash_expr (extend_env env b) e * fast_hash_expr env r
-hash_expr env (Let (Rec ((b,r):_)) e) = hash_expr (extend_env env b) e
+hash_expr env (Let (Rec ((b,_):_)) e) = hash_expr (extend_env env b) e
 hash_expr env (Case e _ _ _)         = hash_expr env e
 hash_expr env (Lam b e)                      = hash_expr (extend_env env b) e
 hash_expr env (Case e _ _ _)         = hash_expr env e
 hash_expr env (Lam b e)                      = hash_expr (extend_env env b) e
-hash_expr env (Type t)               = WARN(True, text "hash_expr: type") 1
+hash_expr _   (Type _)                = WARN(True, text "hash_expr: type") 1
 -- Shouldn't happen.  Better to use WARN than trace, because trace
 -- prevents the CPR optimisation kicking in for hash_expr.
 -- Shouldn't happen.  Better to use WARN than trace, because trace
 -- prevents the CPR optimisation kicking in for hash_expr.
-
-fast_hash_expr env (Var v)             = hashVar env v
-fast_hash_expr env (Type t)    = fast_hash_type env t
-fast_hash_expr env (Lit lit)   = fromIntegral (hashLiteral lit)
-fast_hash_expr env (Cast e co)  = fast_hash_expr env e
-fast_hash_expr env (Note n e)   = fast_hash_expr env e
-fast_hash_expr env (App f a)    = fast_hash_expr env a -- A bit idiosyncratic ('a' not 'f')!
-fast_hash_expr env other        = 1
+hash_expr _   (Coercion _)            = WARN(True, text "hash_expr: coercion") 1
+
+fast_hash_expr :: HashEnv -> CoreExpr -> Word32
+fast_hash_expr env (Var v)              = hashVar env v
+fast_hash_expr env (Type t)     = fast_hash_type env t
+fast_hash_expr env (Coercion co) = fast_hash_co env co
+fast_hash_expr _   (Lit lit)     = fromIntegral (hashLiteral lit)
+fast_hash_expr env (Cast e _)    = fast_hash_expr env e
+fast_hash_expr env (Note _ e)    = fast_hash_expr env e
+fast_hash_expr env (App _ a)     = fast_hash_expr env a        -- A bit idiosyncratic ('a' not 'f')!
+fast_hash_expr _   _             = 1
 
 fast_hash_type :: HashEnv -> Type -> Word32
 fast_hash_type env ty 
 
 fast_hash_type :: HashEnv -> Type -> Word32
 fast_hash_type env ty 
@@ -1408,6 +1245,13 @@ fast_hash_type env ty
                                              in foldr (\t n -> fast_hash_type env t + n) hash_tc tys
   | otherwise                              = 1
 
                                              in foldr (\t n -> fast_hash_type env t + n) hash_tc tys
   | otherwise                              = 1
 
+fast_hash_co :: HashEnv -> Coercion -> Word32
+fast_hash_co env co
+  | Just cv <- getCoVar_maybe co              = hashVar env cv
+  | Just (tc,cos) <- splitTyConAppCo_maybe co = let hash_tc = fromIntegral (hashName (tyConName tc))
+                                                in foldr (\c n -> fast_hash_co env c + n) hash_tc cos
+  | otherwise                                 = 1
+
 extend_env :: HashEnv -> Var -> (Int, VarEnv Int)
 extend_env (n,env) b = (n+1, extendVarEnv env b n)
 
 extend_env :: HashEnv -> Var -> (Int, VarEnv Int)
 extend_env (n,env) b = (n+1, extendVarEnv env b n)
 
@@ -1416,6 +1260,157 @@ hashVar (_,env) v
  = fromIntegral (lookupVarEnv env v `orElse` hashName (idName v))
 \end{code}
 
  = fromIntegral (lookupVarEnv env v `orElse` hashName (idName v))
 \end{code}
 
+
+%************************************************************************
+%*                                                                     *
+               Eta reduction
+%*                                                                     *
+%************************************************************************
+
+Note [Eta reduction conditions]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+We try for eta reduction here, but *only* if we get all the way to an
+trivial expression.  We don't want to remove extra lambdas unless we
+are going to avoid allocating this thing altogether.
+
+There are some particularly delicate points here:
+
+* Eta reduction is not valid in general:  
+       \x. bot  /=  bot
+  This matters, partly for old-fashioned correctness reasons but,
+  worse, getting it wrong can yield a seg fault. Consider
+       f = \x.f x
+       h y = case (case y of { True -> f `seq` True; False -> False }) of
+               True -> ...; False -> ...
+
+  If we (unsoundly) eta-reduce f to get f=f, the strictness analyser
+  says f=bottom, and replaces the (f `seq` True) with just
+  (f `cast` unsafe-co).  BUT, as thing stand, 'f' got arity 1, and it
+  *keeps* arity 1 (perhaps also wrongly).  So CorePrep eta-expands 
+  the definition again, so that it does not termninate after all.
+  Result: seg-fault because the boolean case actually gets a function value.
+  See Trac #1947.
+
+  So it's important to to the right thing.
+
+* Note [Arity care]: we need to be careful if we just look at f's
+  arity. Currently (Dec07), f's arity is visible in its own RHS (see
+  Note [Arity robustness] in SimplEnv) so we must *not* trust the
+  arity when checking that 'f' is a value.  Otherwise we will
+  eta-reduce
+      f = \x. f x
+  to
+      f = f
+  Which might change a terminiating program (think (f `seq` e)) to a 
+  non-terminating one.  So we check for being a loop breaker first.
+
+  However for GlobalIds we can look at the arity; and for primops we
+  must, since they have no unfolding.  
+
+* Regardless of whether 'f' is a value, we always want to 
+  reduce (/\a -> f a) to f
+  This came up in a RULE: foldr (build (/\a -> g a))
+  did not match          foldr (build (/\b -> ...something complex...))
+  The type checker can insert these eta-expanded versions,
+  with both type and dictionary lambdas; hence the slightly 
+  ad-hoc isDictId
+
+* Never *reduce* arity. For example
+      f = \xy. g x y
+  Then if h has arity 1 we don't want to eta-reduce because then
+  f's arity would decrease, and that is bad
+
+These delicacies are why we don't use exprIsTrivial and exprIsHNF here.
+Alas.
+
+Note [Eta reduction with casted arguments]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Consider  
+    (\(x:t3). f (x |> g)) :: t3 -> t2
+  where
+    f :: t1 -> t2
+    g :: t3 ~ t1
+This should be eta-reduced to
+
+    f |> (sym g -> t2)
+
+So we need to accumulate a coercion, pushing it inward (past
+variable arguments only) thus:
+   f (x |> co_arg) |> co  -->  (f |> (sym co_arg -> co)) x
+   f (x:t)         |> co  -->  (f |> (t -> co)) x
+   f @ a           |> co  -->  (f |> (forall a.co)) @ a
+   f @ (g:t1~t2)   |> co  -->  (f |> (t1~t2 => co)) @ (g:t1~t2)
+These are the equations for ok_arg.
+
+It's true that we could also hope to eta reduce these:
+    (\xy. (f x |> g) y)
+    (\xy. (f x y) |> g)
+But the simplifier pushes those casts outwards, so we don't
+need to address that here.
+
+\begin{code}
+tryEtaReduce :: [Var] -> CoreExpr -> Maybe CoreExpr
+tryEtaReduce bndrs body 
+  = go (reverse bndrs) body (mkReflCo (exprType body))
+  where
+    incoming_arity = count isId bndrs
+
+    go :: [Var]                   -- Binders, innermost first, types [a3,a2,a1]
+       -> CoreExpr         -- Of type tr
+       -> Coercion         -- Of type tr ~ ts
+       -> Maybe CoreExpr   -- Of type a1 -> a2 -> a3 -> ts
+    -- See Note [Eta reduction with casted arguments]
+    -- for why we have an accumulating coercion
+    go [] fun co
+      | ok_fun fun = Just (mkCoerce co fun)
+
+    go (b : bs) (App fun arg) co
+      | Just co' <- ok_arg b arg co
+      = go bs fun co'
+
+    go _ _ _  = Nothing                -- Failure!
+
+    ---------------
+    -- Note [Eta reduction conditions]
+    ok_fun (App fun (Type ty)) 
+        | not (any (`elemVarSet` tyVarsOfType ty) bndrs)
+       =  ok_fun fun
+    ok_fun (Var fun_id)
+       =  not (fun_id `elem` bndrs)
+       && (ok_fun_id fun_id || all ok_lam bndrs)
+    ok_fun _fun = False
+
+    ---------------
+    ok_fun_id fun = fun_arity fun >= incoming_arity
+
+    ---------------
+    fun_arity fun            -- See Note [Arity care]
+       | isLocalId fun && isLoopBreaker (idOccInfo fun) = 0
+       | otherwise = idArity fun             
+
+    ---------------
+    ok_lam v = isTyVar v || isEvVar v
+
+    ---------------
+    ok_arg :: Var              -- Of type bndr_t
+           -> CoreExpr         -- Of type arg_t
+           -> Coercion         -- Of kind (t1~t2)
+           -> Maybe Coercion   -- Of type (arg_t -> t1 ~  bndr_t -> t2)
+                               --   (and similarly for tyvars, coercion args)
+    -- See Note [Eta reduction with casted arguments]
+    ok_arg bndr (Type ty) co
+       | Just tv <- getTyVar_maybe ty
+       , bndr == tv  = Just (mkForAllCo tv co)
+    ok_arg bndr (Var v) co
+       | bndr == v   = Just (mkFunCo (mkReflCo (idType bndr)) co)
+    ok_arg bndr (Cast (Var v) co_arg) co
+       | bndr == v  = Just (mkFunCo (mkSymCo co_arg) co)
+       -- The simplifier combines multiple casts into one, 
+       -- so we can have a simple-minded pattern match here
+    ok_arg _ _ _ = Nothing
+\end{code}
+
+
 %************************************************************************
 %*                                                                     *
 \subsection{Determining non-updatable right-hand-sides}
 %************************************************************************
 %*                                                                     *
 \subsection{Determining non-updatable right-hand-sides}
@@ -1428,17 +1423,17 @@ arguments, come from another DLL (because we can't refer to static
 labels in other DLLs).
 
 If this happens we simply make the RHS into an updatable thunk, 
 labels in other DLLs).
 
 If this happens we simply make the RHS into an updatable thunk, 
-and 'exectute' it rather than allocating it statically.
+and 'execute' it rather than allocating it statically.
 
 \begin{code}
 
 \begin{code}
-rhsIsStatic :: PackageId -> CoreExpr -> Bool
--- This function is called only on *top-level* right-hand sides
--- Returns True if the RHS can be allocated statically, with
--- no thunks involved at all.
---
+-- | This function is called only on *top-level* right-hand sides.
+-- Returns @True@ if the RHS can be allocated statically in the output,
+-- with no thunks involved at all.
+rhsIsStatic :: (Name -> Bool) -> CoreExpr -> Bool
 -- It's called (i) in TidyPgm.hasCafRefs to decide if the rhs is, or
 -- It's called (i) in TidyPgm.hasCafRefs to decide if the rhs is, or
--- refers to, CAFs; and (ii) in CoreToStg to decide whether to put an
--- update flag on it.
+-- refers to, CAFs; (ii) in CoreToStg to decide whether to put an
+-- update flag on it and (iii) in DsExpr to decide how to expand
+-- list literals
 --
 -- The basic idea is that rhsIsStatic returns True only if the RHS is
 --     (a) a value lambda
 --
 -- The basic idea is that rhsIsStatic returns True only if the RHS is
 --     (a) a value lambda
@@ -1484,29 +1479,24 @@ rhsIsStatic :: PackageId -> CoreExpr -> Bool
 -- This is a bit like CoreUtils.exprIsHNF, with the following differences:
 --    a) scc "foo" (\x -> ...) is updatable (so we catch the right SCC)
 --
 -- This is a bit like CoreUtils.exprIsHNF, with the following differences:
 --    a) scc "foo" (\x -> ...) is updatable (so we catch the right SCC)
 --
---    b) (C x xs), where C is a contructors is updatable if the application is
+--    b) (C x xs), where C is a contructor is updatable if the application is
 --        dynamic
 -- 
 --    c) don't look through unfolding of f in (f x).
 --        dynamic
 -- 
 --    c) don't look through unfolding of f in (f x).
---
--- When opt_RuntimeTypes is on, we keep type lambdas and treat
--- them as making the RHS re-entrant (non-updatable).
 
 
-rhsIsStatic this_pkg rhs = is_static False rhs
+rhsIsStatic _is_dynamic_name rhs = is_static False rhs
   where
   is_static :: Bool    -- True <=> in a constructor argument; must be atomic
          -> CoreExpr -> Bool
   
   where
   is_static :: Bool    -- True <=> in a constructor argument; must be atomic
          -> CoreExpr -> Bool
   
-  is_static False (Lam b e) = isRuntimeVar b || is_static False e
-  
-  is_static in_arg (Note (SCC _) e) = False
-  is_static in_arg (Note _ e)       = is_static in_arg e
-  is_static in_arg (Cast e co)      = is_static in_arg e
+  is_static False (Lam b e)   = isRuntimeVar b || is_static False e
+  is_static in_arg (Note n e) = notSccNote n && is_static in_arg e
+  is_static in_arg (Cast e _) = is_static in_arg e
   
   
-  is_static in_arg (Lit lit)
+  is_static _      (Lit lit)
     = case lit of
     = case lit of
-       MachLabel _ _ -> False
-       other         -> True
+       MachLabel _ _ _ -> False
+        _             -> True
        -- A MachLabel (foreign import "&foo") in an argument
        -- prevents a constructor application from being static.  The
        -- reason is that it might give rise to unresolvable symbols
        -- A MachLabel (foreign import "&foo") in an argument
        -- prevents a constructor application from being static.  The
        -- reason is that it might give rise to unresolvable symbols
@@ -1520,7 +1510,7 @@ rhsIsStatic this_pkg rhs = is_static False rhs
    where
     go (Var f) n_val_args
 #if mingw32_TARGET_OS
    where
     go (Var f) n_val_args
 #if mingw32_TARGET_OS
-        | not (isDllName this_pkg (idName f))
+        | not (_is_dynamic_name (idName f))
 #endif
        =  saturated_data_con f n_val_args
        || (in_arg && n_val_args == 0)  
 #endif
        =  saturated_data_con f n_val_args
        || (in_arg && n_val_args == 0)  
@@ -1542,11 +1532,9 @@ rhsIsStatic this_pkg rhs = is_static False rhs
         --   x = D# (1.0## /## 2.0##)
         -- can't float because /## can fail.
 
         --   x = D# (1.0## /## 2.0##)
         -- can't float because /## can fail.
 
-    go (Note (SCC _) f) n_val_args = False
-    go (Note _ f) n_val_args       = go f n_val_args
-    go (Cast e co) n_val_args      = go e n_val_args
-
-    go other n_val_args = False
+    go (Note n f) n_val_args = notSccNote n && go f n_val_args
+    go (Cast e _) n_val_args = go e n_val_args
+    go _          _          = False
 
     saturated_data_con f n_val_args
        = case isDataConWorkId_maybe f of
 
     saturated_data_con f n_val_args
        = case isDataConWorkId_maybe f of