This BIG PATCH contains most of the work for the New Coercion Representation
[ghc-hetmet.git] / compiler / coreSyn / CoreUtils.lhs
index 70e1db7..a0a229f 100644 (file)
@@ -16,7 +16,7 @@ Utility functions on @Core@ syntax
 -- | Commonly useful utilites for manipulating the Core language
 module CoreUtils (
        -- * Constructing expressions
-       mkSCC, mkCoerce, mkCoerceI,
+       mkSCC, mkCoerce,
        bindNonRec, needsCaseBinding,
        mkAltExpr, mkPiType, mkPiTypes,
 
@@ -45,7 +45,7 @@ module CoreUtils (
 
        -- * Manipulating data constructors and types
        applyTypeToArgs, applyTypeToArg,
-        dataConOrigInstPat, dataConRepInstPat, dataConRepFSInstPat
+        dataConRepInstPat, dataConRepFSInstPat
     ) where
 
 #include "HsVersions.h"
@@ -62,7 +62,6 @@ import DataCon
 import PrimOp
 import Id
 import IdInfo
-import TcType  ( isPredTy )
 import Type
 import Coercion
 import TyCon
@@ -73,6 +72,7 @@ import TysPrim
 import FastString
 import Maybes
 import Util
+import Pair
 import Data.Word
 import Data.Bits
 \end{code}
@@ -91,9 +91,10 @@ exprType :: CoreExpr -> Type
 -- really be said to have a type
 exprType (Var var)          = idType var
 exprType (Lit lit)          = literalType lit
+exprType (Coercion co)      = coercionType co
 exprType (Let _ body)       = exprType body
 exprType (Case _ _ ty _)     = ty
-exprType (Cast _ co)         = snd (coercionKind co)
+exprType (Cast _ co)         = pSnd (coercionKind co)
 exprType (Note _ e)          = exprType e
 exprType (Lam binder expr)   = mkPiType binder (exprType expr)
 exprType e@(App _ _)
@@ -110,7 +111,7 @@ coreAltType (_,bs,rhs)
   where
     ty           = exprType rhs
     free_tvs     = tyVarsOfType ty
-    bad_binder b = isTyCoVar b && b `elemVarSet` free_tvs
+    bad_binder b = isTyVar b && b `elemVarSet` free_tvs
 
 coreAltsType :: [CoreAlt] -> Type
 -- ^ Returns the type of the first alternative, which should be the same as for all alternatives
@@ -143,10 +144,10 @@ Various possibilities suggest themselves:
    we are doing here.  It's not too expensive, I think.
 
 \begin{code}
-mkPiType  :: EvVar -> Type -> Type
+mkPiType  :: Var -> Type -> Type
 -- ^ Makes a @(->)@ type or a forall type, depending
 -- on whether it is given a type variable or a term variable.
-mkPiTypes :: [EvVar] -> Type -> Type
+mkPiTypes :: [Var] -> Type -> Type
 -- ^ 'mkPiType' for multiple type or value arguments
 
 mkPiType v ty
@@ -172,11 +173,11 @@ applyTypeToArgs e op_ty (Type ty : args)
     go [ty] args
   where
     go rev_tys (Type ty : args) = go (ty:rev_tys) args
-    go rev_tys rest_args        = applyTypeToArgs e op_ty' rest_args
-                               where
-                                 op_ty' = applyTysD msg op_ty (reverse rev_tys)
-                                 msg = ptext (sLit "applyTypeToArgs") <+> 
-                                       panic_msg e op_ty
+    go rev_tys rest_args         = applyTypeToArgs e op_ty' rest_args
+                                where
+                                  op_ty' = applyTysD msg op_ty (reverse rev_tys)
+                                  msg = ptext (sLit "applyTypeToArgs") <+> 
+                                        panic_msg e op_ty
 
 applyTypeToArgs e op_ty (_ : args)
   = case (splitFunTy_maybe op_ty) of
@@ -194,25 +195,22 @@ panic_msg e op_ty = pprCoreExpr e $$ ppr op_ty
 %************************************************************************
 
 \begin{code}
--- | Wrap the given expression in the coercion, dropping identity coercions and coalescing nested coercions
-mkCoerceI :: CoercionI -> CoreExpr -> CoreExpr
-mkCoerceI (IdCo _) e = e
-mkCoerceI (ACo co) e = mkCoerce co e
-
--- | Wrap the given expression in the coercion safely, coalescing nested coercions
+-- | Wrap the given expression in the coercion safely, dropping
+-- identity coercions and coalescing nested coercions
 mkCoerce :: Coercion -> CoreExpr -> CoreExpr
+mkCoerce co e | isReflCo co = e
 mkCoerce co (Cast expr co2)
-  = ASSERT(let { (from_ty, _to_ty) = coercionKind co; 
-                 (_from_ty2, to_ty2) = coercionKind co2} in
-           from_ty `coreEqType` to_ty2 )
-    mkCoerce (mkTransCoercion co2 co) expr
+  = ASSERT(let { Pair  from_ty  _to_ty  = coercionKind co; 
+                 Pair _from_ty2  to_ty2 = coercionKind co2} in
+           from_ty `eqType` to_ty2 )
+    mkCoerce (mkTransCo co2 co) expr
 
 mkCoerce co expr 
-  = let (from_ty, _to_ty) = coercionKind co in
---    if to_ty `coreEqType` from_ty
+  = let Pair from_ty _to_ty = coercionKind co in
+--    if to_ty `eqType` from_ty
 --    then expr
 --    else 
-        WARN(not (from_ty `coreEqType` exprType expr), text "Trying to coerce" <+> text "(" <> ppr expr $$ text "::" <+> ppr (exprType expr) <> text ")" $$ ppr co $$ pprEqPred (coercionKind co))
+        WARN(not (from_ty `eqType` exprType expr), text "Trying to coerce" <+> text "(" <> ppr expr $$ text "::" <+> ppr (exprType expr) <> text ")" $$ ppr co $$ pprEqPred (coercionKind co))
          (Cast expr co)
 \end{code}
 
@@ -415,7 +413,8 @@ discount.
 \begin{code}
 exprIsTrivial :: CoreExpr -> Bool
 exprIsTrivial (Var _)          = True        -- See Note [Variables are trivial]
-exprIsTrivial (Type _)         = True
+exprIsTrivial (Type _)        = True
+exprIsTrivial (Coercion _)     = True
 exprIsTrivial (Lit lit)        = litIsTrivial lit
 exprIsTrivial (App e arg)      = not (isRuntimeArg arg) && exprIsTrivial e
 exprIsTrivial (Note _       e) = exprIsTrivial e  -- See Note [SCCs are trivial]
@@ -469,10 +468,11 @@ exprIsDupable e
   = isJust (go dupAppSize e)
   where
     go :: Int -> CoreExpr -> Maybe Int
-    go n (Type {}) = Just n
-    go n (Var {})  = decrement n
-    go n (Note _ e) = go n e
-    go n (Cast e _) = go n e
+    go n (Type {})     = Just n
+    go n (Coercion {}) = Just n
+    go n (Var {})      = decrement n
+    go n (Note _ e)    = go n e
+    go n (Cast e _)    = go n e
     go n (App f a) | Just n' <- go n a = go n' f
     go n (Lit lit) | litIsDupable lit = decrement n
     go _ _ = Nothing
@@ -540,13 +540,14 @@ exprIsExpandable = exprIsCheap' isExpandableApp   -- See Note [CONLIKE pragma] in
 
 type CheapAppFun = Id -> Int -> Bool
 exprIsCheap' :: CheapAppFun -> CoreExpr -> Bool
-exprIsCheap' _          (Lit _)   = True
-exprIsCheap' _          (Type _)  = True
-exprIsCheap' _          (Var _)   = True
-exprIsCheap' good_app (Note _ e)  = exprIsCheap' good_app e
-exprIsCheap' good_app (Cast e _)  = exprIsCheap' good_app e
-exprIsCheap' good_app (Lam x e)   = isRuntimeVar x
-                                 || exprIsCheap' good_app e
+exprIsCheap' _        (Lit _)      = True
+exprIsCheap' _        (Type _)    = True
+exprIsCheap' _        (Coercion _) = True
+exprIsCheap' _        (Var _)      = True
+exprIsCheap' good_app (Note _ e)   = exprIsCheap' good_app e
+exprIsCheap' good_app (Cast e _)   = exprIsCheap' good_app e
+exprIsCheap' good_app (Lam x e)    = isRuntimeVar x
+                                  || exprIsCheap' good_app e
 
 exprIsCheap' good_app (Case e _ _ alts) = exprIsCheap' good_app e && 
                                          and [exprIsCheap' good_app rhs | (_,_,rhs) <- alts]
@@ -684,8 +685,9 @@ it's applied only to dictionaries.
 -- We can only do this if the @y + 1@ is ok for speculation: it has no
 -- side effects, and can't diverge or raise an exception.
 exprOkForSpeculation :: CoreExpr -> Bool
-exprOkForSpeculation (Lit _)     = True
-exprOkForSpeculation (Type _)    = True
+exprOkForSpeculation (Lit _)      = True
+exprOkForSpeculation (Type _)     = True
+exprOkForSpeculation (Coercion _) = True
 
 exprOkForSpeculation (Var v)     
   | isTickBoxOp v = False     -- Tick boxes are *not* suitable for speculation
@@ -865,12 +867,14 @@ exprIsHNFlike is_con is_con_unf = is_hnf_like
        -- we could get an infinite loop
 
     is_hnf_like (Lit _)          = True
-    is_hnf_like (Type _)         = True       -- Types are honorary Values;
+    is_hnf_like (Type _)        = True       -- Types are honorary Values;
                                               -- we don't mind copying them
+    is_hnf_like (Coercion _)     = True       -- Same for coercions
     is_hnf_like (Lam b e)        = isRuntimeVar b || is_hnf_like e
     is_hnf_like (Note _ e)       = is_hnf_like e
     is_hnf_like (Cast e _)       = is_hnf_like e
-    is_hnf_like (App e (Type _)) = is_hnf_like e
+    is_hnf_like (App e (Type _))    = is_hnf_like e
+    is_hnf_like (App e (Coercion _)) = is_hnf_like e
     is_hnf_like (App e a)        = app_is_value e [a]
     is_hnf_like (Let _ e)        = is_hnf_like e  -- Lazy let(rec)s don't affect us
     is_hnf_like _                = False
@@ -896,36 +900,26 @@ exprIsHNFlike is_con is_con_unf = is_hnf_like
 These InstPat functions go here to avoid circularity between DataCon and Id
 
 \begin{code}
-dataConRepInstPat, dataConOrigInstPat :: [Unique] -> DataCon -> [Type] -> ([TyVar], [CoVar], [Id])
-dataConRepFSInstPat :: [FastString] -> [Unique] -> DataCon -> [Type] -> ([TyVar], [CoVar], [Id])
+dataConRepInstPat   ::                 [Unique] -> DataCon -> [Type] -> ([TyVar], [Id])
+dataConRepFSInstPat :: [FastString] -> [Unique] -> DataCon -> [Type] -> ([TyVar], [Id])
 
-dataConRepInstPat   = dataConInstPat dataConRepArgTys (repeat ((fsLit "ipv")))
-dataConRepFSInstPat = dataConInstPat dataConRepArgTys
-dataConOrigInstPat  = dataConInstPat dc_arg_tys       (repeat ((fsLit "ipv")))
-  where 
-    dc_arg_tys dc = map mkPredTy (dataConEqTheta dc) ++ map mkPredTy (dataConDictTheta dc) ++ dataConOrigArgTys dc
-       -- Remember to include the existential dictionaries
-
-dataConInstPat :: (DataCon -> [Type])      -- function used to find arg tys
-                  -> [FastString]          -- A long enough list of FSs to use for names
-                  -> [Unique]              -- An equally long list of uniques, at least one for each binder
-                  -> DataCon
-                 -> [Type]                -- Types to instantiate the universally quantified tyvars
-              -> ([TyVar], [CoVar], [Id]) -- Return instantiated variables
+dataConRepInstPat   = dataConInstPat (repeat ((fsLit "ipv")))
+dataConRepFSInstPat = dataConInstPat 
+
+dataConInstPat :: [FastString]          -- A long enough list of FSs to use for names
+               -> [Unique]              -- An equally long list of uniques, at least one for each binder
+               -> DataCon
+              -> [Type]                -- Types to instantiate the universally quantified tyvars
+              -> ([TyVar], [Id])          -- Return instantiated variables
 -- dataConInstPat arg_fun fss us con inst_tys returns a triple 
--- (ex_tvs, co_tvs, arg_ids),
+-- (ex_tvs, arg_ids),
 --
 --   ex_tvs are intended to be used as binders for existential type args
 --
---   co_tvs are intended to be used as binders for coercion args and the kinds
---     of these vars have been instantiated by the inst_tys and the ex_tys
---     The co_tvs include both GADT equalities (dcEqSpec) and 
---     programmer-specified equalities (dcEqTheta)
---
 --   arg_ids are indended to be used as binders for value arguments, 
 --     and their types have been instantiated with inst_tys and ex_tys
---     The arg_ids include both dicts (dcDictTheta) and
---     programmer-specified arguments (after rep-ing) (deRepArgTys)
+--     The arg_ids include both evidence and
+--     programmer-specified arguments (both after rep-ing)
 --
 -- Example.
 --  The following constructor T1
@@ -940,29 +934,22 @@ dataConInstPat :: (DataCon -> [Type])      -- function used to find arg tys
 --
 --  dataConInstPat fss us T1 (a1',b') will return
 --
---  ([a1'', b''], [c :: (a1', b')~(a1'', b'')], [x :: Int, y :: b''])
+--  ([a1'', b''], [c :: (a1', b')~(a1'', b''), x :: Int, y :: b''])
 --
 --  where the double-primed variables are created with the FastStrings and
 --  Uniques given as fss and us
-dataConInstPat arg_fun fss uniqs con inst_tys 
-  = (ex_bndrs, co_bndrs, arg_ids)
+dataConInstPat fss uniqs con inst_tys 
+  = (ex_bndrs, arg_ids)
   where 
     univ_tvs = dataConUnivTyVars con
     ex_tvs   = dataConExTyVars con
-    arg_tys  = arg_fun con
-    eq_spec  = dataConEqSpec con
-    eq_theta = dataConEqTheta con
-    eq_preds = eqSpecPreds eq_spec ++ eq_theta
+    arg_tys  = dataConRepArgTys con
 
     n_ex = length ex_tvs
-    n_co = length eq_preds
 
       -- split the Uniques and FastStrings
-    (ex_uniqs, uniqs')   = splitAt n_ex uniqs
-    (co_uniqs, id_uniqs) = splitAt n_co uniqs'
-
-    (ex_fss, fss')     = splitAt n_ex fss
-    (co_fss, id_fss)   = splitAt n_co fss'
+    (ex_uniqs, id_uniqs) = splitAt n_ex uniqs
+    (ex_fss,   id_fss)   = splitAt n_ex fss
 
       -- Make existential type variables
     ex_bndrs = zipWith3 mk_ex_var ex_uniqs ex_fss ex_tvs
@@ -974,17 +961,9 @@ dataConInstPat arg_fun fss uniqs con inst_tys
       -- Make the instantiating substitution
     subst = zipOpenTvSubst (univ_tvs ++ ex_tvs) (inst_tys ++ map mkTyVarTy ex_bndrs)
 
-      -- Make new coercion vars, instantiating kind
-    co_bndrs = zipWith3 mk_co_var co_uniqs co_fss eq_preds
-    mk_co_var uniq fs eq_pred = mkCoVar new_name co_kind
-       where
-         new_name = mkSysTvName uniq fs
-         co_kind  = substTy subst (mkPredTy eq_pred)
-
-      -- make value vars, instantiating types
-    mk_id_var uniq fs ty = mkUserLocal (mkVarOccFS fs) uniq (substTy subst ty) noSrcSpan
+      -- Make value vars, instantiating types
+    mk_id_var uniq fs ty = mkUserLocal (mkVarOccFS fs) uniq (Type.substTy subst ty) noSrcSpan
     arg_ids = zipWith3 mk_id_var id_uniqs id_fss arg_tys
-
 \end{code}
 
 %************************************************************************
@@ -1003,7 +982,8 @@ cheapEqExpr :: Expr b -> Expr b -> Bool
 
 cheapEqExpr (Var v1)   (Var v2)   = v1==v2
 cheapEqExpr (Lit lit1) (Lit lit2) = lit1 == lit2
-cheapEqExpr (Type t1)  (Type t2)  = t1 `coreEqType` t2
+cheapEqExpr (Type t1) (Type t2) = t1 `eqType` t2
+cheapEqExpr (Coercion c1) (Coercion c2) = c1 `coreEqCoercion` c2
 
 cheapEqExpr (App f1 a1) (App f2 a2)
   = f1 `cheapEqExpr` f2 && a1 `cheapEqExpr` a2
@@ -1019,7 +999,8 @@ exprIsBig :: Expr b -> Bool
 -- ^ Returns @True@ of expressions that are too big to be compared by 'cheapEqExpr'
 exprIsBig (Lit _)      = False
 exprIsBig (Var _)      = False
-exprIsBig (Type _)     = False
+exprIsBig (Type _)    = False
+exprIsBig (Coercion _) = False
 exprIsBig (Lam _ e)    = exprIsBig e
 exprIsBig (App f a)    = exprIsBig f || exprIsBig a
 exprIsBig (Cast e _)   = exprIsBig e   -- Hopefully coercions are not too big!
@@ -1061,14 +1042,15 @@ eqExprX id_unfolding_fun env e1 e2
       , Just e2' <- expandUnfolding_maybe (id_unfolding_fun (lookupRnInScope env v2))
       = go (nukeRnEnvR env) e1 e2'
 
-    go _   (Lit lit1)    (Lit lit2)    = lit1 == lit2
-    go env (Type t1)     (Type t2)     = tcEqTypeX env t1 t2
-    go env (Cast e1 co1) (Cast e2 co2) = tcEqTypeX env co1 co2 && go env e1 e2
+    go _   (Lit lit1)    (Lit lit2)      = lit1 == lit2
+    go env (Type t1)    (Type t2)        = eqTypeX env t1 t2
+    go env (Coercion co1) (Coercion co2) = coreEqCoercion2 env co1 co2
+    go env (Cast e1 co1) (Cast e2 co2) = coreEqCoercion2 env co1 co2 && go env e1 e2
     go env (App f1 a1)   (App f2 a2)   = go env f1 f2 && go env a1 a2
     go env (Note n1 e1)  (Note n2 e2)  = go_note n1 n2 && go env e1 e2
 
     go env (Lam b1 e1)  (Lam b2 e2)  
-      =  tcEqTypeX env (varType b1) (varType b2)   -- False for Id/TyVar combination
+      =  eqTypeX env (varType b1) (varType b2)   -- False for Id/TyVar combination
       && go (rnBndr2 env b1 b2) e1 e2
 
     go env (Let (NonRec v1 r1) e1) (Let (NonRec v2 r2) e2) 
@@ -1084,7 +1066,7 @@ eqExprX id_unfolding_fun env e1 e2
 
     go env (Case e1 b1 _ a1) (Case e2 b2 _ a2)
       =  go env e1 e2
-      && tcEqTypeX env (idType b1) (idType b2)
+      && eqTypeX env (idType b1) (idType b2)
       && all2 (go_alt (rnBndr2 env b1 b2)) a1 a2
 
     go _ _ _ = False
@@ -1128,16 +1110,17 @@ exprSize (App f a)       = exprSize f + exprSize a
 exprSize (Lam b e)       = varSize b + exprSize e
 exprSize (Let b e)       = bindSize b + exprSize e
 exprSize (Case e b t as) = seqType t `seq` exprSize e + varSize b + 1 + foldr ((+) . altSize) 0 as
-exprSize (Cast e co)     = (seqType co `seq` 1) + exprSize e
+exprSize (Cast e co)     = (seqCo co `seq` 1) + exprSize e
 exprSize (Note n e)      = noteSize n + exprSize e
-exprSize (Type t)        = seqType t `seq` 1
+exprSize (Type t)       = seqType t `seq` 1
+exprSize (Coercion co)   = seqCo co `seq` 1
 
 noteSize :: Note -> Int
 noteSize (SCC cc)       = cc `seq` 1
 noteSize (CoreNote s)   = s `seq` 1  -- hdaume: core annotations
  
 varSize :: Var -> Int
-varSize b  | isTyCoVar b = 1
+varSize b  | isTyVar b = 1
           | otherwise = seqType (idType b)             `seq`
                         megaSeqIdInfo (idInfo b)       `seq`
                         1
@@ -1187,30 +1170,23 @@ bndrStats v = oneTM `plusCS` tyStats (varType v)
 exprStats :: CoreExpr -> CoreStats
 exprStats (Var {})        = oneTM
 exprStats (Lit {})        = oneTM
-exprStats (App f (Type t))= tyCoStats (exprType f) t
+exprStats (Type t)        = tyStats t
+exprStats (Coercion c)    = coStats c
 exprStats (App f a)       = exprStats f `plusCS` exprStats a 
 exprStats (Lam b e)       = bndrStats b `plusCS` exprStats e 
 exprStats (Let b e)       = bindStats b `plusCS` exprStats e 
 exprStats (Case e b _ as) = exprStats e `plusCS` bndrStats b `plusCS` sumCS altStats as
 exprStats (Cast e co)     = coStats co `plusCS` exprStats e
 exprStats (Note _ e)      = exprStats e
-exprStats (Type ty)       = zeroCS { cs_ty = typeSize ty }
-         -- Ugh (might be a co)
 
 altStats :: CoreAlt -> CoreStats
 altStats (_, bs, r) = sumCS bndrStats bs `plusCS` exprStats r
 
-tyCoStats :: Type -> Type -> CoreStats
-tyCoStats fun_ty arg
-  = case splitForAllTy_maybe fun_ty of
-      Just (tv,_) | isCoVar tv -> coStats arg
-      _                        -> tyStats arg
-
 tyStats :: Type -> CoreStats
 tyStats ty = zeroCS { cs_ty = typeSize ty }
 
 coStats :: Coercion -> CoreStats
-coStats co = zeroCS { cs_co = typeSize co }
+coStats co = zeroCS { cs_co = coercionSize co }
 \end{code}
 
 %************************************************************************
@@ -1252,15 +1228,17 @@ hash_expr env (Lam b e)               = hash_expr (extend_env env b) e
 hash_expr _   (Type _)                = WARN(True, text "hash_expr: type") 1
 -- Shouldn't happen.  Better to use WARN than trace, because trace
 -- prevents the CPR optimisation kicking in for hash_expr.
+hash_expr _   (Coercion _)            = WARN(True, text "hash_expr: coercion") 1
 
 fast_hash_expr :: HashEnv -> CoreExpr -> Word32
-fast_hash_expr env (Var v)             = hashVar env v
-fast_hash_expr env (Type t)    = fast_hash_type env t
-fast_hash_expr _   (Lit lit)    = fromIntegral (hashLiteral lit)
-fast_hash_expr env (Cast e _)   = fast_hash_expr env e
-fast_hash_expr env (Note _ e)   = fast_hash_expr env e
-fast_hash_expr env (App _ a)    = fast_hash_expr env a -- A bit idiosyncratic ('a' not 'f')!
-fast_hash_expr _   _            = 1
+fast_hash_expr env (Var v)              = hashVar env v
+fast_hash_expr env (Type t)     = fast_hash_type env t
+fast_hash_expr env (Coercion co) = fast_hash_co env co
+fast_hash_expr _   (Lit lit)     = fromIntegral (hashLiteral lit)
+fast_hash_expr env (Cast e _)    = fast_hash_expr env e
+fast_hash_expr env (Note _ e)    = fast_hash_expr env e
+fast_hash_expr env (App _ a)     = fast_hash_expr env a        -- A bit idiosyncratic ('a' not 'f')!
+fast_hash_expr _   _             = 1
 
 fast_hash_type :: HashEnv -> Type -> Word32
 fast_hash_type env ty 
@@ -1269,6 +1247,13 @@ fast_hash_type env ty
                                              in foldr (\t n -> fast_hash_type env t + n) hash_tc tys
   | otherwise                              = 1
 
+fast_hash_co :: HashEnv -> Coercion -> Word32
+fast_hash_co env co
+  | Just cv <- getCoVar_maybe co              = hashVar env cv
+  | Just (tc,cos) <- splitTyConAppCo_maybe co = let hash_tc = fromIntegral (hashName (tyConName tc))
+                                                in foldr (\c n -> fast_hash_co env c + n) hash_tc cos
+  | otherwise                                 = 1
+
 extend_env :: HashEnv -> Var -> (Int, VarEnv Int)
 extend_env (n,env) b = (n+1, extendVarEnv env b n)
 
@@ -1368,18 +1353,18 @@ need to address that here.
 \begin{code}
 tryEtaReduce :: [Var] -> CoreExpr -> Maybe CoreExpr
 tryEtaReduce bndrs body 
-  = go (reverse bndrs) body (IdCo (exprType body))
+  = go (reverse bndrs) body (mkReflCo (exprType body))
   where
     incoming_arity = count isId bndrs
 
     go :: [Var]                   -- Binders, innermost first, types [a3,a2,a1]
        -> CoreExpr         -- Of type tr
-       -> CoercionI        -- Of type tr ~ ts
+       -> Coercion         -- Of type tr ~ ts
        -> Maybe CoreExpr   -- Of type a1 -> a2 -> a3 -> ts
     -- See Note [Eta reduction with casted arguments]
     -- for why we have an accumulating coercion
     go [] fun co
-      | ok_fun fun = Just (mkCoerceI co fun)
+      | ok_fun fun = Just (mkCoerce co fun)
 
     go (b : bs) (App fun arg) co
       | Just co' <- ok_arg b arg co
@@ -1390,7 +1375,7 @@ tryEtaReduce bndrs body
     ---------------
     -- Note [Eta reduction conditions]
     ok_fun (App fun (Type ty)) 
-       | not (any (`elemVarSet` tyVarsOfType ty) bndrs)
+        | not (any (`elemVarSet` tyVarsOfType ty) bndrs)
        =  ok_fun fun
     ok_fun (Var fun_id)
        =  not (fun_id `elem` bndrs)
@@ -1406,22 +1391,22 @@ tryEtaReduce bndrs body
        | otherwise = idArity fun             
 
     ---------------
-    ok_lam v = isTyCoVar v || isDictId v
+    ok_lam v = isTyVar v || isEvVar v
 
     ---------------
-    ok_arg :: Var              -- Of type bndr_t
-           -> CoreExpr          -- Of type arg_t
-           -> CoercionI         -- Of kind (t1~t2)
-           -> Maybe CoercionI   -- Of type (arg_t -> t1 ~  bndr_t -> t2)
-                               --   (and similarly for tyvars, coercion args)
+    ok_arg :: Var              -- Of type bndr_t
+           -> CoreExpr         -- Of type arg_t
+           -> Coercion         -- Of kind (t1~t2)
+           -> Maybe Coercion   -- Of type (arg_t -> t1 ~  bndr_t -> t2)
+                               --   (and similarly for tyvars, coercion args)
     -- See Note [Eta reduction with casted arguments]
     ok_arg bndr (Type ty) co
        | Just tv <- getTyVar_maybe ty
-       , bndr == tv  = Just (mkForAllTyCoI tv co)
+       , bndr == tv  = Just (mkForAllCo tv co)
     ok_arg bndr (Var v) co
-       | bndr == v   = Just (mkFunTyCoI (IdCo (idType bndr)) co)
+       | bndr == v   = Just (mkFunCo (mkReflCo (idType bndr)) co)
     ok_arg bndr (Cast (Var v) co_arg) co
-       | bndr == v  = Just (mkFunTyCoI (ACo (mkSymCoercion co_arg)) co)
+       | bndr == v  = Just (mkFunCo (mkSymCo co_arg) co)
        -- The simplifier combines multiple casts into one, 
        -- so we can have a simple-minded pattern match here
     ok_arg _ _ _ = Nothing