Fix CodingStyle#Warnings URLs
[ghc-hetmet.git] / compiler / ghci / RtClosureInspect.hs
index e24b942..e2a4f8e 100644 (file)
@@ -6,20 +6,24 @@
 --
 -----------------------------------------------------------------------------
 
+{-# OPTIONS -w #-}
+-- The above warning supression flag is a temporary kludge.
+-- While working on this module you are encouraged to remove it and fix
+-- any warnings in the module. See
+--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#Warnings
+-- for details
+
 module RtClosureInspect(
   
-     cvObtainTerm,       -- :: HscEnv -> Bool -> Maybe Type -> HValue -> IO Term
-
-     ClosureType(..), 
-     getClosureData,     -- :: a -> IO Closure
-     Closure ( tipe, infoPtr, ptrs, nonPtrs ), 
-     isConstr,           -- :: ClosureType -> Bool
-     isIndirection,      -- :: ClosureType -> Bool
-
-     Term(..), 
-     printTerm, 
-     customPrintTerm, 
-     customPrintTermBase,
+     cvObtainTerm,      -- :: HscEnv -> Int -> Bool -> Maybe Type -> HValue -> IO Term
+
+     Term(..),
+     isTerm,
+     isSuspension,
+     isPrim,
+     pprTerm, 
+     cPprTerm, 
+     cPprTermBase,
      termType,
      foldTerm, 
      TermFold(..), 
@@ -28,54 +32,63 @@ module RtClosureInspect(
      isFullyEvaluated, 
      isPointed,
      isFullyEvaluatedTerm,
+     mapTermType,
+     termTyVars,
 --     unsafeDeepSeq, 
+     cvReconstructType,
+     computeRTTIsubst, 
+     sigmaType,
+     Closure(..),
+     getClosureData,
+     ClosureType(..),
+     isConstr,
+     isIndirection
  ) where 
 
 #include "HsVersions.h"
 
 import ByteCodeItbls    ( StgInfoTable )
 import qualified ByteCodeItbls as BCI( StgInfoTable(..) )
-import ByteCodeLink     ( HValue )
 import HscTypes         ( HscEnv )
+import Linker
 
 import DataCon          
 import Type             
-import TcRnMonad        ( TcM, initTcPrintErrors, ioToTcRn, recoverM, writeMutVar )
+import TcRnMonad        ( TcM, initTc, ioToTcRn, 
+                          tryTcErrs)
 import TcType
 import TcMType
 import TcUnify
 import TcGadt
+import TcEnv
+import DriverPhases
 import TyCon           
-import Var
 import Name 
 import VarEnv
-import OccName
+import Util
 import VarSet
-import {-#SOURCE#-} TcRnDriver ( tcRnRecoverDataCon )
 
 import TysPrim         
 import PrelNames
 import TysWiredIn
 
-import Constants        ( wORD_SIZE )
+import Constants
 import Outputable
 import Maybes
 import Panic
-import FiniteMap
 
 import GHC.Arr          ( Array(..) )
-import GHC.Ptr          ( Ptr(..), castPtr )
-import GHC.Exts         
-import GHC.Int          ( Int32(..),  Int64(..) )
-import GHC.Word         ( Word32(..), Word64(..) )
+import GHC.Exts
 
 import Control.Monad
 import Data.Maybe
 import Data.Array.Base
 import Data.List        ( partition )
-import Foreign.Storable
-
-import IO
+import qualified Data.Sequence as Seq
+import Data.Monoid
+import Data.Sequence hiding (null, length, index, take, drop, splitAt, reverse)
+import Foreign
+import System.IO.Unsafe
 
 ---------------------------------------------
 -- * A representation of semi evaluated Terms
@@ -87,18 +100,22 @@ import IO
 
   > (('a',_,_),_,('b',_,_)) = 
       Term ((Char,b,c),d,(Char,e,f)) (,,) (('a',_,_),_,('b',_,_))
-          [ Term (Char, b, c) (,,) ('a',_,_) [Term Char C# "a", Thunk, Thunk]
-          , Thunk
-          , Term (Char, e, f) (,,) ('b',_,_) [Term Char C# "b", Thunk, Thunk]]
+          [ Term (Char, b, c) (,,) ('a',_,_) [Term Char C# "a", Suspension, Suspension]
+          , Suspension
+          , Term (Char, e, f) (,,) ('b',_,_) [Term Char C# "b", Suspension, Suspension]]
 -}
 
 data Term = Term { ty        :: Type 
-                 , dc        :: DataCon 
+                 , dc        :: Either String DataCon
+                               -- The heap datacon. If ty is a newtype,
+                               -- this is NOT the newtype datacon.
+                               -- Empty if the datacon aint exported by the .hi
+                               -- (private constructors in -O0 libraries)
                  , val       :: HValue 
                  , subTerms  :: [Term] }
 
           | Prim { ty        :: Type
-                 , value     :: String }
+                 , value     :: [Word] }
 
           | Suspension { ctype    :: ClosureType
                        , mb_ty    :: Maybe Type
@@ -106,6 +123,7 @@ data Term = Term { ty        :: Type
                        , bound_to :: Maybe Name   -- Useful for printing
                        }
 
+isTerm, isSuspension, isPrim :: Term -> Bool
 isTerm Term{} = True
 isTerm   _    = False
 isSuspension Suspension{} = True
@@ -113,6 +131,7 @@ isSuspension      _       = False
 isPrim Prim{} = True
 isPrim   _    = False
 
+termType :: Term -> Maybe Type
 termType t@(Suspension {}) = mb_ty t
 termType t = Just$ ty t
 
@@ -122,7 +141,7 @@ isFullyEvaluatedTerm Suspension {}      = False
 isFullyEvaluatedTerm Prim {}            = True
 
 instance Outputable (Term) where
- ppr = head . customPrintTerm customPrintTermBase
+ ppr = head . cPprTerm cPprTermBase
 
 -------------------------------------------------------------------------
 -- Runtime Closure Datatype and functions for retrieving closure related stuff
@@ -142,8 +161,7 @@ data Closure = Closure { tipe         :: ClosureType
                        , infoPtr      :: Ptr ()
                        , infoTable    :: StgInfoTable
                        , ptrs         :: Array Int HValue
-                        -- What would be the type here? HValue is ok? Should I build a Ptr?
-                       , nonPtrs      :: ByteArray# 
+                       , nonPtrs      :: [Word]
                        }
 
 instance Outputable ClosureType where
@@ -162,9 +180,13 @@ getClosureData a =
      (# iptr, ptrs, nptrs #) -> do
            itbl <- peek (Ptr iptr)
            let tipe = readCType (BCI.tipe itbl)
-               elems = BCI.ptrs itbl 
-               ptrsList = Array 0 (fromIntegral$ elems) ptrs
-           ptrsList `seq` return (Closure tipe (Ptr iptr) itbl ptrsList nptrs)
+               elems = fromIntegral (BCI.ptrs itbl)
+               ptrsList = Array 0 (elems - 1) elems ptrs
+               nptrs_data = [W# (indexWordArray# nptrs i)
+                              | I# i <- [0.. fromIntegral (BCI.nptrs itbl)] ]
+           ASSERT(fromIntegral elems >= 0) return ()
+           ptrsList `seq` 
+            return (Closure tipe (Ptr iptr) itbl ptrsList nptrs_data)
 
 readCType :: Integral a => a -> ClosureType
 readCType i
@@ -175,10 +197,11 @@ readCType i
  | i == BLACKHOLE                          = Blackhole
  | i >= IND    && i <= IND_STATIC          = Indirection (fromIntegral i)
  | fromIntegral i == aP_CODE               = AP
+ | i == AP_STACK                           = AP
  | fromIntegral i == pAP_CODE              = PAP
  | otherwise                               = Other (fromIntegral i)
 
-isConstr, isIndirection :: ClosureType -> Bool
+isConstr, isIndirection, isThunk :: ClosureType -> Bool
 isConstr Constr = True
 isConstr    _   = False
 
@@ -186,6 +209,11 @@ isIndirection (Indirection _) = True
 --isIndirection ThunkSelector = True
 isIndirection _ = False
 
+isThunk (Thunk _)     = True
+isThunk ThunkSelector = True
+isThunk AP            = True
+isThunk _             = False
+
 isFullyEvaluated :: a -> IO Bool
 isFullyEvaluated a = do 
   closure <- getClosureData a 
@@ -195,16 +223,16 @@ isFullyEvaluated a = do
     otherwise -> return False
   where amapM f = sequence . amap' f
 
-amap' f (Array i0 i arr#) = map (\(I# i#) -> case indexArray# arr# i# of
-                                   (# e #) -> f e)
-                                [0 .. i - i0]
+amap' f (Array i0 i _ arr#) = map g [0 .. i - i0]
+    where g (I# i#) = case indexArray# arr# i# of
+                          (# e #) -> f e
 
 -- TODO: Fix it. Probably the otherwise case is failing, trace/debug it
 {-
 unsafeDeepSeq :: a -> b -> b
 unsafeDeepSeq = unsafeDeepSeq1 2
  where unsafeDeepSeq1 0 a b = seq a $! b
-       unsafeDeepSeq1 i a b                -- 1st case avoids infinite loops for non reducible thunks
+       unsafeDeepSeq1 i a b   -- 1st case avoids infinite loops for non reducible thunks
         | not (isConstr tipe) = seq a $! unsafeDeepSeq1 (i-1) a b     
      -- | unsafePerformIO (isFullyEvaluated a) = b
         | otherwise = case unsafePerformIO (getClosureData a) of
@@ -212,59 +240,31 @@ unsafeDeepSeq = unsafeDeepSeq1 2
         where tipe = unsafePerformIO (getClosureType a)
 -}
 isPointed :: Type -> Bool
-isPointed t | Just (t, _) <- splitTyConApp_maybe t = not$ isUnliftedTypeKind (tyConKind t)
+isPointed t | Just (t, _) <- splitTyConApp_maybe t 
+            = not$ isUnliftedTypeKind (tyConKind t)
 isPointed _ = True
 
-#define MKDECODER(offset,cons,builder) (offset, show$ cons (builder addr 0#))
-
-extractUnboxed  :: [Type] -> ByteArray# -> [String]
-extractUnboxed tt ba = helper tt (byteArrayContents# ba)
-   where helper :: [Type] -> Addr# -> [String]
-         helper (t:tt) addr 
-          | Just ( tycon,_) <- splitTyConApp_maybe t 
-          =  let (offset, txt) = decode tycon addr
-                 (I# word_offset)   = offset*wORD_SIZE
-             in txt : helper tt (plusAddr# addr word_offset)
-          | otherwise 
-          = -- ["extractUnboxed.helper: Urk. I got a " ++ showSDoc (ppr t)]
-            panic$ "extractUnboxed.helper: Urk. I got a " ++ showSDoc (ppr t)
-         helper [] addr = []
-         decode :: TyCon -> Addr# -> (Int, String)
-         decode t addr                             
-           | t == charPrimTyCon   = MKDECODER(1,C#,indexCharOffAddr#)
-           | t == intPrimTyCon    = MKDECODER(1,I#,indexIntOffAddr#)
-           | t == wordPrimTyCon   = MKDECODER(1,W#,indexWordOffAddr#)
-           | t == floatPrimTyCon  = MKDECODER(1,F#,indexFloatOffAddr#)
-           | t == doublePrimTyCon = MKDECODER(2,D#,indexDoubleOffAddr#)
-           | t == int32PrimTyCon  = MKDECODER(1,I32#,indexInt32OffAddr#)
-           | t == word32PrimTyCon = MKDECODER(1,W32#,indexWord32OffAddr#)
-           | t == int64PrimTyCon  = MKDECODER(2,I64#,indexInt64OffAddr#)
-           | t == word64PrimTyCon = MKDECODER(2,W64#,indexWord64OffAddr#)
-           | t == addrPrimTyCon   = MKDECODER(1,I#,(\x off-> addr2Int# (indexAddrOffAddr# x off)))  --OPT Improve the presentation of addresses
-           | t == stablePtrPrimTyCon  = (1, "<stablePtr>")
-           | t == stableNamePrimTyCon = (1, "<stableName>")
-           | t == statePrimTyCon      = (1, "<statethread>")
-           | t == realWorldTyCon      = (1, "<realworld>")
-           | t == threadIdPrimTyCon   = (1, "<ThreadId>")
-           | t == weakPrimTyCon       = (1, "<Weak>")
-           | t == arrayPrimTyCon      = (1,"<array>")
-           | t == byteArrayPrimTyCon  = (1,"<bytearray>")
-           | t == mutableArrayPrimTyCon = (1, "<mutableArray>")
-           | t == mutableByteArrayPrimTyCon = (1, "<mutableByteArray>")
-           | t == mutVarPrimTyCon= (1, "<mutVar>")
-           | t == mVarPrimTyCon  = (1, "<mVar>")
-           | t == tVarPrimTyCon  = (1, "<tVar>")
-           | otherwise = (1, showSDoc (char '<' <> ppr t <> char '>')) 
-                 -- We cannot know the right offset in the otherwise case, so 1 is just a wild dangerous guess!
-           -- TODO: Improve the offset handling in decode (make it machine dependant)
+extractUnboxed  :: [Type] -> Closure -> [[Word]]
+extractUnboxed tt clos = go tt (nonPtrs clos)
+   where sizeofType t
+           | Just (tycon,_) <- splitTyConApp_maybe t
+           = ASSERT (isPrimTyCon tycon) sizeofTyCon tycon
+           | otherwise = pprPanic "Expected a TcTyCon" (ppr t)
+         go [] _ = []
+         go (t:tt) xx 
+           | (x, rest) <- splitAt ((sizeofType t + wORD_SIZE - 1) `div` wORD_SIZE) xx 
+           = x : go tt rest
+
+sizeofTyCon = sizeofPrimRep . tyConPrimRep
 
 -----------------------------------
 -- * Traversals for Terms
 -----------------------------------
 
-data TermFold a = TermFold { fTerm :: Type -> DataCon -> HValue -> [a] -> a
-                           , fPrim :: Type -> String -> a
-                           , fSuspension :: ClosureType -> Maybe Type -> HValue -> Maybe Name -> a
+data TermFold a = TermFold { fTerm :: Type -> Either String DataCon -> HValue -> [a] -> a
+                           , fPrim :: Type -> [Word] -> a
+                           , fSuspension :: ClosureType -> Maybe Type -> HValue
+                                           -> Maybe Name -> a
                            }
 
 foldTerm :: TermFold a -> Term -> a
@@ -285,83 +285,109 @@ idTermFoldM = TermFold {
               fSuspension = (((return.).).). Suspension
                        }
 
+mapTermType :: (Type -> Type) -> Term -> Term
+mapTermType f = foldTerm idTermFold {
+          fTerm       = \ty dc hval tt -> Term (f ty) dc hval tt,
+          fSuspension = \ct mb_ty hval n ->
+                          Suspension ct (fmap f mb_ty) hval n }
+
+termTyVars :: Term -> TyVarSet
+termTyVars = foldTerm TermFold {
+            fTerm       = \ty _ _ tt   -> 
+                          tyVarsOfType ty `plusVarEnv` concatVarEnv tt,
+            fSuspension = \_ mb_ty _ _ -> 
+                          maybe emptyVarEnv tyVarsOfType mb_ty,
+            fPrim       = \ _ _ -> emptyVarEnv }
+    where concatVarEnv = foldr plusVarEnv emptyVarEnv
 ----------------------------------
 -- Pretty printing of terms
 ----------------------------------
 
-parensCond True  = parens
-parensCond False = id
-app_prec::Int
+app_prec,cons_prec ::Int
 app_prec = 10
+cons_prec = 5 -- TODO Extract this info from GHC itself
 
-printTerm :: Term -> SDoc
-printTerm Prim{value=value} = text value 
-printTerm t@Term{} = printTerm1 0 t 
-printTerm Suspension{bound_to=Nothing} =  char '_' -- <> ppr ct <> char '_'
-printTerm Suspension{mb_ty=Just ty, bound_to=Just n}
-  | Just _ <- splitFunTy_maybe ty = text "<function>"
-  | otherwise = parens$ ppr n <> text "::" <> ppr ty 
-
-printTerm1 p Term{dc=dc, subTerms=tt} 
-{-  | dataConIsInfix dc, (t1:t2:tt') <- tt 
-  = parens (printTerm1 True t1 <+> ppr dc <+> printTerm1 True ppr t2) 
-    <+> hsep (map (printTerm1 True) tt) 
--}
-  | null tt   = ppr dc
-  | otherwise = parensCond (p > app_prec) 
-                     (ppr dc <+> sep (map (printTerm1 (app_prec+1)) tt))
-
-  where fixity   = undefined 
-
-printTerm1 _ t = printTerm t
-
-customPrintTerm :: forall m. Monad m => ((Int->Term->m SDoc)->[Term->m (Maybe SDoc)]) -> Term -> m SDoc
-customPrintTerm custom = go 0 where
---  go :: Monad m => Int -> Term -> m SDoc
-  go prec t@Term{subTerms=tt, dc=dc} = do
-    let mb_customDocs = map ($t) (custom go) :: [m (Maybe SDoc)]    
-    first_success <- firstJustM mb_customDocs
-    case first_success of
-      Just doc -> return$ parensCond (prec>app_prec+1) doc
---    | dataConIsInfix dc, (t1:t2:tt') <- tt =
-      Nothing  -> do pprSubterms <- mapM (go (app_prec+1)) tt
-                     return$ parensCond (prec>app_prec+1) 
-                                        (ppr dc <+> sep pprSubterms)
-  go _ t = return$ printTerm t
+pprTerm y p t | Just doc <- pprTermM y p t = doc
+
+pprTermM :: Monad m => (Int -> Term -> m SDoc) -> Int -> Term -> m SDoc
+pprTermM y p t@Term{dc=Left dc_tag, subTerms=tt, ty=ty} = do
+  tt_docs <- mapM (y app_prec) tt
+  return$ cparen (not(null tt) && p >= app_prec) (text dc_tag <+> sep tt_docs)
+  
+pprTermM y p t@Term{dc=Right dc, subTerms=tt, ty=ty} 
+{-  | dataConIsInfix dc, (t1:t2:tt') <- tt  --TODO fixity
+  = parens (pprTerm1 True t1 <+> ppr dc <+> pprTerm1 True ppr t2) 
+    <+> hsep (map (pprTerm1 True) tt) 
+-} -- TODO Printing infix constructors properly
+  | null tt   = return$ ppr dc
+  | Just (tc,_) <- splitNewTyConApp_maybe ty
+  , isNewTyCon tc
+  , Just new_dc <- maybeTyConSingleCon tc = do 
+         real_value <- y 10 t{ty=repType ty}
+         return$ cparen (p >= app_prec) (ppr new_dc <+> real_value)
+  | otherwise = do
+         tt_docs <- mapM (y app_prec) tt
+         return$ cparen (p >= app_prec) (ppr dc <+> sep tt_docs)
+
+pprTermM y _ t = pprTermM1 y t
+pprTermM1 _ Prim{value=words, ty=ty} = 
+    return$ text$ repPrim (tyConAppTyCon ty) words
+pprTermM1 y t@Term{} = panic "pprTermM1 - unreachable"
+pprTermM1 _ Suspension{bound_to=Nothing} = return$ char '_'
+pprTermM1 _ Suspension{mb_ty=Just ty, bound_to=Just n}
+  | Just _ <- splitFunTy_maybe ty = return$ ptext SLIT("<function>")
+  | otherwise = return$ parens$ ppr n <> text "::" <> ppr ty 
+
+-- Takes a list of custom printers with a explicit recursion knot and a term, 
+-- and returns the output of the first succesful printer, or the default printer
+cPprTerm :: forall m. Monad m => 
+           ((Int->Term->m SDoc)->[Int->Term->m (Maybe SDoc)]) -> Term -> m SDoc
+cPprTerm custom = go 0 where
+  go prec t@Term{} = do
+    let default_ prec t = Just `liftM` pprTermM go prec t
+        mb_customDocs = [pp prec t | pp <- custom go ++ [default_]]
+    Just doc <- firstJustM mb_customDocs
+    return$ cparen (prec>app_prec+1) doc
+  go _ t = pprTermM1 go t
   firstJustM (mb:mbs) = mb >>= maybe (firstJustM mbs) (return . Just)
   firstJustM [] = return Nothing
 
-customPrintTermBase :: Monad m => (Int->Term-> m SDoc)->[Term->m (Maybe SDoc)]
-customPrintTermBase showP =
+-- Default set of custom printers. Note that the recursion knot is explicit
+cPprTermBase :: Monad m => (Int->Term-> m SDoc)->[Int->Term->m (Maybe SDoc)]
+cPprTermBase y =
   [ 
-    test isTupleDC (liftM (parens . hcat . punctuate comma) . mapM (showP 0) . subTerms)
-  , test (isDC consDataCon) (\Term{subTerms=[h,t]} -> doList h t)
-  , test (isDC intDataCon)  (coerceShow$ \(a::Int)->a)
-  , test (isDC charDataCon) (coerceShow$ \(a::Char)->a)
---  , test (isDC wordDataCon) (coerceShow$ \(a::Word)->a)
-  , test (isDC floatDataCon) (coerceShow$ \(a::Float)->a)
-  , test (isDC doubleDataCon) (coerceShow$ \(a::Double)->a)
-  , test isIntegerDC (coerceShow$ \(a::Integer)->a)
+    ifTerm isTupleTy             (\_ -> liftM (parens . hcat . punctuate comma) 
+                                 . mapM (y (-1)) . subTerms)
+  , ifTerm (\t -> isTyCon listTyCon t && subTerms t `lengthIs` 2)
+                                 (\ p Term{subTerms=[h,t]} -> doList p h t)
+  , ifTerm (isTyCon intTyCon)    (coerceShow$ \(a::Int)->a)
+  , ifTerm (isTyCon charTyCon)   (coerceShow$ \(a::Char)->a)
+--  , ifTerm (isTyCon wordTyCon) (coerceShow$ \(a::Word)->a)
+  , ifTerm (isTyCon floatTyCon)  (coerceShow$ \(a::Float)->a)
+  , ifTerm (isTyCon doubleTyCon) (coerceShow$ \(a::Double)->a)
+  , ifTerm isIntegerTy           (coerceShow$ \(a::Integer)->a)
   ] 
-     where test pred f t = if pred t then liftM Just (f t) else return Nothing
-           isIntegerDC Term{dc=dc} = 
-              dataConName dc `elem` [ smallIntegerDataConName
-                                    , largeIntegerDataConName] 
-           isTupleDC Term{dc=dc}   = dc `elem` snd (unzip (elems boxedTupleArr))
-           isDC a_dc Term{dc=dc}   = a_dc == dc
-           coerceShow f = return . text . show . f . unsafeCoerce# . val
+     where ifTerm pred f p t@Term{} | pred t = liftM Just (f p t) 
+           ifTerm _    _ _ _                 = return Nothing
+           isIntegerTy Term{ty=ty} = fromMaybe False $ do
+             (tc,_) <- splitTyConApp_maybe ty 
+             return (tyConName tc == integerTyConName)
+           isTupleTy Term{ty=ty} = fromMaybe False $ do 
+             (tc,_) <- splitTyConApp_maybe ty 
+             return (tc `elem` (fst.unzip.elems) boxedTupleArr)
+           isTyCon a_tc Term{ty=ty} = fromMaybe False $ do 
+             (tc,_) <- splitTyConApp_maybe ty
+             return (a_tc == tc)
+           coerceShow f _ = return . text . show . f . unsafeCoerce# . val
            --TODO pprinting of list terms is not lazy
-           doList h t = do
+           doList p h t = do
                let elems = h : getListTerms t
-                   isConsLast = isSuspension (last elems) && 
-                                (mb_ty$ last elems) /= (termType h)
-               init <- mapM (showP 0) (init elems) 
-               last0 <- showP 0 (last elems)
-               let last = case length elems of 
-                            1 -> last0 
-                            _ | isConsLast -> text " | " <> last0
-                            _ -> comma <> last0
-               return$ brackets (hcat (punctuate comma init ++ [last]))
+                   isConsLast = termType(last elems) /= termType h
+               print_elems <- mapM (y cons_prec) elems
+               return$ if isConsLast
+                     then cparen (p >= cons_prec) . hsep . punctuate (space<>colon) 
+                           $ print_elems
+                     else brackets (hcat$ punctuate comma print_elems)
 
                 where Just a /= Just b = not (a `coreEqType` b)
                       _      /=   _    = True
@@ -370,26 +396,280 @@ customPrintTermBase showP =
                       getListTerms t@Suspension{}       = [t]
                       getListTerms t = pprPanic "getListTerms" (ppr t)
 
+
+repPrim :: TyCon -> [Word] -> String
+repPrim t = rep where 
+   rep x
+    | t == charPrimTyCon   = show (build x :: Char)
+    | t == intPrimTyCon    = show (build x :: Int)
+    | t == wordPrimTyCon   = show (build x :: Word)
+    | t == floatPrimTyCon  = show (build x :: Float)
+    | t == doublePrimTyCon = show (build x :: Double)
+    | t == int32PrimTyCon  = show (build x :: Int32)
+    | t == word32PrimTyCon = show (build x :: Word32)
+    | t == int64PrimTyCon  = show (build x :: Int64)
+    | t == word64PrimTyCon = show (build x :: Word64)
+    | t == addrPrimTyCon   = show (nullPtr `plusPtr` build x)
+    | t == stablePtrPrimTyCon  = "<stablePtr>"
+    | t == stableNamePrimTyCon = "<stableName>"
+    | t == statePrimTyCon      = "<statethread>"
+    | t == realWorldTyCon      = "<realworld>"
+    | t == threadIdPrimTyCon   = "<ThreadId>"
+    | t == weakPrimTyCon       = "<Weak>"
+    | t == arrayPrimTyCon      = "<array>"
+    | t == byteArrayPrimTyCon  = "<bytearray>"
+    | t == mutableArrayPrimTyCon = "<mutableArray>"
+    | t == mutableByteArrayPrimTyCon = "<mutableByteArray>"
+    | t == mutVarPrimTyCon= "<mutVar>"
+    | t == mVarPrimTyCon  = "<mVar>"
+    | t == tVarPrimTyCon  = "<tVar>"
+    | otherwise = showSDoc (char '<' <> ppr t <> char '>')
+    where build ww = unsafePerformIO $ withArray ww (peek . castPtr) 
+--   This ^^^ relies on the representation of Haskell heap values being 
+--   the same as in a C array. 
+
 -----------------------------------
 -- Type Reconstruction
 -----------------------------------
+{-
+Type Reconstruction is type inference done on heap closures.
+The algorithm walks the heap generating a set of equations, which
+are solved with syntactic unification.
+A type reconstruction equation looks like:
+
+  <datacon reptype>  =  <actual heap contents> 
+
+The full equation set is generated by traversing all the subterms, starting
+from a given term.
+
+The only difficult part is that newtypes are only found in the lhs of equations.
+Right hand sides are missing them. We can either (a) drop them from the lhs, or 
+(b) reconstruct them in the rhs when possible. 
+
+The function congruenceNewtypes takes a shot at (b)
+-}
 
 -- The Type Reconstruction monad
 type TR a = TcM a
 
-runTR :: HscEnv -> TR Term -> IO Term
+runTR :: HscEnv -> TR a -> IO a
 runTR hsc_env c = do 
-  mb_term <- initTcPrintErrors hsc_env iNTERACTIVE (c >>= zonkTerm)
+  mb_term <- runTR_maybe hsc_env c
   case mb_term of 
     Nothing -> panic "Can't unify"
-    Just term -> return term
+    Just x  -> return x
+
+runTR_maybe :: HscEnv -> TR a -> IO (Maybe a)
+runTR_maybe hsc_env = fmap snd . initTc hsc_env HsSrcFile False iNTERACTIVE
 
 trIO :: IO a -> TR a 
 trIO = liftTcM . ioToTcRn
 
+liftTcM :: TcM a -> TR a
+liftTcM = id
+
+newVar :: Kind -> TR TcType
+newVar = liftTcM . fmap mkTyVarTy . newFlexiTyVar
+
+-- | Returns the instantiated type scheme ty', and the substitution sigma 
+--   such that sigma(ty') = ty 
+instScheme :: Type -> TR (TcType, TvSubst)
+instScheme ty | (tvs, rho) <- tcSplitForAllTys ty = liftTcM$ do
+   (tvs',theta,ty') <- tcInstType (mapM tcInstTyVar) ty
+   return (ty', zipTopTvSubst tvs' (mkTyVarTys tvs))
+
+-- Adds a constraint of the form t1 == t2
+-- t1 is expected to come from walking the heap
+-- t2 is expected to come from a datacon signature
+-- Before unification, congruenceNewtypes needs to
+-- do its magic.
 addConstraint :: TcType -> TcType -> TR ()
 addConstraint t1 t2  = congruenceNewtypes t1 t2 >>= uncurry unifyType 
+                      >> return () -- TOMDO: what about the coercion?
+                                   -- we should consider family instances 
+
+-- Type & Term reconstruction 
+cvObtainTerm :: HscEnv -> Int -> Bool -> Maybe Type -> HValue -> IO Term
+cvObtainTerm hsc_env bound force mb_ty hval = runTR hsc_env $ do
+   tv <- newVar argTypeKind
+   case mb_ty of
+     Nothing -> go bound tv tv hval >>= zonkTerm
+     Just ty | isMonomorphic ty -> go bound ty ty hval >>= zonkTerm
+     Just ty -> do 
+              (ty',rev_subst) <- instScheme (sigmaType ty)
+              addConstraint tv ty'
+              term <- go bound tv tv hval >>= zonkTerm
+              --restore original Tyvars
+              return$ mapTermType (substTy rev_subst) term
+    where 
+  go bound _ _ _ | seq bound False = undefined
+  go 0 tv ty a = do
+    clos <- trIO $ getClosureData a
+    return (Suspension (tipe clos) (Just tv) a Nothing)
+  go bound tv ty a = do 
+    let monomorphic = not(isTyVarTy tv)   
+    -- This ^^^ is a convention. The ancestor tests for
+    -- monomorphism and passes a type instead of a tv
+    clos <- trIO $ getClosureData a
+    case tipe clos of
+-- Thunks we may want to force
+-- NB. this won't attempt to force a BLACKHOLE.  Even with :force, we never
+-- force blackholes, because it would almost certainly result in deadlock,
+-- and showing the '_' is more useful.
+      t | isThunk t && force -> seq a $ go (pred bound) tv ty a
+-- We always follow indirections 
+      Indirection _ -> go (pred bound) tv ty $! (ptrs clos ! 0)
+ -- The interesting case
+      Constr -> do
+        Right dcname <- dataConInfoPtrToName (infoPtr clos)
+        (_,mb_dc)    <- tryTcErrs (tcLookupDataCon dcname)
+        case mb_dc of
+          Nothing -> do -- This can happen for private constructors compiled -O0
+                        -- where the .hi descriptor does not export them
+                        -- In such case, we return a best approximation:
+                        --  ignore the unpointed args, and recover the pointeds
+                        -- This preserves laziness, and should be safe.
+                       let tag = showSDoc (ppr dcname)
+                       vars     <- replicateM (length$ elems$ ptrs clos) 
+                                              (newVar (liftedTypeKind))
+                       subTerms <- sequence [appArr (go (pred bound) tv tv) (ptrs clos) i 
+                                              | (i, tv) <- zip [0..] vars]
+                       return (Term tv (Left ('<' : tag ++ ">")) a subTerms)
+          Just dc -> do 
+            let extra_args = length(dataConRepArgTys dc) - 
+                             length(dataConOrigArgTys dc)
+                subTtypes  = matchSubTypes dc ty
+                (subTtypesP, subTtypesNP) = partition isPointed subTtypes
+            subTermTvs <- sequence
+                 [ if isMonomorphic t then return t 
+                                      else (newVar k)
+                   | (t,k) <- zip subTtypesP (map typeKind subTtypesP)]
+            -- It is vital for newtype reconstruction that the unification step
+            --  is done right here, _before_ the subterms are RTTI reconstructed
+            when (not monomorphic) $ do
+                  let myType = mkFunTys (reOrderTerms subTermTvs 
+                                                      subTtypesNP 
+                                                      subTtypes) 
+                                        tv
+                  (signatureType,_) <- instScheme(dataConRepType dc) 
+                  addConstraint myType signatureType
+            subTermsP <- sequence $ drop extra_args 
+                                 -- ^^^  all extra arguments are pointed
+                  [ appArr (go (pred bound) tv t) (ptrs clos) i
+                   | (i,tv,t) <- zip3 [0..] subTermTvs subTtypesP]
+            let unboxeds   = extractUnboxed subTtypesNP clos
+                subTermsNP = map (uncurry Prim) (zip subTtypesNP unboxeds)      
+                subTerms   = reOrderTerms subTermsP subTermsNP 
+                                (drop extra_args subTtypes)
+            return (Term tv (Right dc) a subTerms)
+-- The otherwise case: can be a Thunk,AP,PAP,etc.
+      tipe_clos -> 
+         return (Suspension tipe_clos (Just tv) a Nothing)
 
+--  matchSubTypes dc ty | pprTrace "matchSubtypes" (ppr dc <+> ppr ty) False = undefined
+  matchSubTypes dc ty
+    | Just (_,ty_args) <- splitTyConApp_maybe (repType ty) 
+--     assumption:             ^^^ looks through newtypes 
+    , isVanillaDataCon dc  --TODO non-vanilla case
+    = dataConInstArgTys dc ty_args
+    | otherwise = dataConRepArgTys dc
+
+-- This is used to put together pointed and nonpointed subterms in the 
+--  correct order.
+  reOrderTerms _ _ [] = []
+  reOrderTerms pointed unpointed (ty:tys) 
+   | isPointed ty = ASSERT2(not(null pointed)
+                            , ptext SLIT("reOrderTerms") $$ 
+                                        (ppr pointed $$ ppr unpointed))
+                    head pointed : reOrderTerms (tail pointed) unpointed tys
+   | otherwise    = ASSERT2(not(null unpointed)
+                           , ptext SLIT("reOrderTerms") $$ 
+                                       (ppr pointed $$ ppr unpointed))
+                    head unpointed : reOrderTerms pointed (tail unpointed) tys
+
+
+
+-- Fast, breadth-first Type reconstruction
+max_depth = 10 :: Int
+cvReconstructType :: HscEnv -> Bool -> Maybe Type -> HValue -> IO (Maybe Type)
+cvReconstructType hsc_env force mb_ty hval = runTR_maybe hsc_env $ do
+   tv <- newVar argTypeKind
+   case mb_ty of
+     Nothing -> do search (isMonomorphic `fmap` zonkTcType tv)
+                          (uncurry go)
+                          (Seq.singleton (tv, hval))
+                          max_depth
+                   zonkTcType tv  -- TODO untested!
+     Just ty | isMonomorphic ty -> return ty
+     Just ty -> do
+              (ty',rev_subst) <- instScheme (sigmaType ty)
+              addConstraint tv ty'
+              search (isMonomorphic `fmap` zonkTcType tv)
+                     (\(ty,a) -> go ty a)
+                     (Seq.singleton (tv, hval))
+                     max_depth
+              substTy rev_subst `fmap` zonkTcType tv
+    where 
+--  search :: m Bool -> ([a] -> [a] -> [a]) -> [a] -> m ()
+  search stop expand l depth | Seq.null l = return ()
+  search stop expand x 0 = fail$ "Failed to reconstruct a type after " ++
+                                show max_depth ++ " steps"
+  search stop expand l d | x :< xx <- viewl l = unlessM stop $ do
+    new <- expand x
+    search stop expand (xx `mappend` Seq.fromList new) $! (pred d)
+
+   -- returns unification tasks,since we are going to want a breadth-first search
+  go :: Type -> HValue -> TR [(Type, HValue)]
+  go tv a = do
+    clos <- trIO $ getClosureData a
+    case tipe clos of
+      Indirection _ -> go tv $! (ptrs clos ! 0)
+      Constr -> do
+        Right dcname <- dataConInfoPtrToName (infoPtr clos)
+        (_,mb_dc)    <- tryTcErrs (tcLookupDataCon dcname)
+        case mb_dc of
+          Nothing-> do
+                     --  TODO: Check this case
+            vars     <- replicateM (length$ elems$ ptrs clos)
+                                   (newVar (liftedTypeKind))
+            subTerms <- sequence [ appArr (go tv) (ptrs clos) i
+                                   | (i, tv) <- zip [0..] vars]    
+            forM [0..length (elems $ ptrs clos)] $ \i -> do
+                        tv <- newVar liftedTypeKind
+                        return$ appArr (\e->(tv,e)) (ptrs clos) i
+
+          Just dc -> do
+            let extra_args = length(dataConRepArgTys dc) -
+                             length(dataConOrigArgTys dc)
+            subTtypes <- mapMif (not . isMonomorphic)
+                                (\t -> newVar (typeKind t))
+                                (dataConRepArgTys dc)
+
+            -- It is vital for newtype reconstruction that the unification step
+            -- is done right here, _before_ the subterms are RTTI reconstructed
+            let myType         = mkFunTys subTtypes tv
+            (signatureType,_) <- instScheme(dataConRepType dc) 
+            addConstraint myType signatureType
+            return $ [ appArr (\e->(t,e)) (ptrs clos) i
+                       | (i,t) <- drop extra_args $ 
+                                     zip [0..] (filter isPointed subTtypes)]
+      otherwise -> return []
+
+     -- This helper computes the difference between a base type t and the 
+     -- improved rtti_t computed by RTTI
+     -- The main difference between RTTI types and their normal counterparts
+     --  is that the former are _not_ polymorphic, thus polymorphism must
+     --  be stripped. Syntactically, forall's must be stripped
+computeRTTIsubst ty rtti_ty = 
+     -- In addition, we strip newtypes too, since the reconstructed type might
+     --   not have recovered them all
+           tcUnifyTys (const BindMe) 
+                      [repType' $ dropForAlls$ ty]
+                      [repType' $ rtti_ty]  
+-- TODO stripping newtypes shouldn't be necessary, test
+
+
+-- Dealing with newtypes
 {-
    A parallel fold over two Type values, 
  compensating for missing newtypes on both sides. 
@@ -420,150 +700,61 @@ addConstraint t1 t2  = congruenceNewtypes t1 t2 >>= uncurry unifyType
  using TcM wrongly).
 -}
 congruenceNewtypes ::  TcType -> TcType -> TcM (TcType,TcType)
-congruenceNewtypes = go True
-  where 
-   go rewriteRHS lhs rhs  
+congruenceNewtypes lhs rhs 
  -- TyVar lhs inductive case
     | Just tv <- getTyVar_maybe lhs 
-    = recoverM (return (lhs,rhs)) $ do  
+    = recoverTc (return (lhs,rhs)) $ do  
          Indirect ty_v <- readMetaTyVar tv
-         (lhs', rhs') <- go rewriteRHS ty_v rhs
-         writeMutVar (metaTvRef tv) (Indirect lhs')
-         return (lhs, rhs')
- -- TyVar rhs inductive case
-    | Just tv <- getTyVar_maybe rhs 
-    = recoverM (return (lhs,rhs)) $ do  
-         Indirect ty_v <- readMetaTyVar tv
-         (lhs', rhs') <- go rewriteRHS lhs ty_v
-         writeMutVar (metaTvRef tv) (Indirect rhs')
-         return (lhs', rhs)
+         (lhs1, rhs1) <- congruenceNewtypes ty_v rhs
+         return (lhs, rhs1)
 -- FunTy inductive case
     | Just (l1,l2) <- splitFunTy_maybe lhs
     , Just (r1,r2) <- splitFunTy_maybe rhs
-    = do (l2',r2') <- go True l2 r2
-         (l1',r1') <- go False l1 r1
+    = do (l2',r2') <- congruenceNewtypes l2 r2
+         (l1',r1') <- congruenceNewtypes l1 r1
          return (mkFunTy l1' l2', mkFunTy r1' r2')
 -- TyconApp Inductive case; this is the interesting bit.
     | Just (tycon_l, args_l) <- splitNewTyConApp_maybe lhs
-    , Just (tycon_r, args_r) <- splitNewTyConApp_maybe rhs = do
-
-      let (tycon_l',args_l') = if isNewTyCon tycon_r && not(isNewTyCon tycon_l)
-                                then (tycon_r, rewrite tycon_r lhs)
-                                else (tycon_l, args_l)
-          (tycon_r',args_r') = if rewriteRHS && isNewTyCon tycon_l && not(isNewTyCon tycon_r)
-                                then (tycon_l, rewrite tycon_l rhs)
-                                else (tycon_r, args_r)
-      (args_l'', args_r'') <- unzip `liftM` zipWithM (go rewriteRHS) args_l' args_r'
-      return (mkTyConApp tycon_l' args_l'', mkTyConApp tycon_r' args_r'') 
+    , Just (tycon_r, args_r) <- splitNewTyConApp_maybe rhs 
+    , tycon_l /= tycon_r 
+    = return (lhs, upgrade tycon_l rhs)
 
     | otherwise = return (lhs,rhs)
 
-    where rewrite newtyped_tc lame_tipe
-           | (tvs, tipe) <- newTyConRep newtyped_tc 
-           = case tcUnifyTys (const BindMe) [tipe] [lame_tipe] of
-               Just subst -> substTys subst (map mkTyVarTy tvs)
-               otherwise  -> panic "congruenceNewtypes: Can't unify a newtype"
-
-newVar :: Kind -> TR TcTyVar
-newVar = liftTcM . newFlexiTyVar
-
-liftTcM = id
-
-instScheme :: Type -> TR TcType
-instScheme ty = liftTcM$ liftM trd (tcInstType (liftM fst3 . tcInstTyVars) ty)
-    where fst3 (x,y,z) = x
-          trd  (x,y,z) = z
-
-cvObtainTerm :: HscEnv -> Bool -> Maybe Type -> HValue -> IO Term
-cvObtainTerm hsc_env force mb_ty a = do
-   -- Obtain the term and tidy the type before returning it
-   term <- cvObtainTerm1 hsc_env force mb_ty a
-   return $ tidyTypes term
-   where 
-         tidyTypes = foldTerm idTermFold {
-            fTerm = \ty dc hval tt -> Term (tidy ty) dc hval tt,
-            fSuspension = \ct mb_ty hval n -> 
-                          Suspension ct (fmap tidy mb_ty) hval n
-            }
-         tidy ty = tidyType (emptyTidyOccEnv, tidyVarEnv ty) ty  
-         tidyVarEnv ty = mkVarEnv$ 
-                         [ (v, setTyVarName v (tyVarName tv))
-                           | (tv,v) <- zip alphaTyVars vars]
-             where vars = varSetElems$ tyVarsOfType ty
-
-cvObtainTerm1 :: HscEnv -> Bool -> Maybe Type -> HValue -> IO Term
-cvObtainTerm1 hsc_env force mb_ty hval = runTR hsc_env $ do
-   tv <- case (isMonomorphic `fmap` mb_ty) of
-          Just True -> return (fromJust mb_ty)
-          _         -> do
-            tv_ <- liftM mkTyVarTy (newVar argTypeKind)
-            when (isJust mb_ty) $ 
-                 instScheme (sigmaType$ fromJust mb_ty) >>= addConstraint tv_
-            return tv_
-   go tv (fromMaybe tv mb_ty) hval
-    where 
-  go tv ty a = do 
-    let monomorphic = not(isTyVarTy tv)   -- This is a convention. The ancestor tests for
-                                         -- monomorphism and passes a type instead of a tv
-    clos <- trIO $ getClosureData a
-    case tipe clos of
--- Thunks we may want to force
-      Thunk _ | force -> seq a $ go tv ty a
--- We always follow indirections 
-      Indirection _ -> go tv ty $! (ptrs clos ! 0)
- -- The interesting case
-      Constr -> do
-        m_dc <- trIO$ tcRnRecoverDataCon hsc_env (infoPtr clos)
-        case m_dc of
-          Nothing -> panic "Can't find the DataCon for a term"
-          Just dc -> do 
-            let extra_args = length(dataConRepArgTys dc) - length(dataConOrigArgTys dc)
-                subTtypes  = matchSubTypes dc ty
-                (subTtypesP, subTtypesNP) = partition isPointed subTtypes
-            subTermTvs <- sequence
-                 [ if isMonomorphic t then return t else (mkTyVarTy `fmap` newVar k)
-                   | (t,k) <- zip subTtypesP (map typeKind subTtypesP)]
-            -- It is vital for newtype reconstruction that the unification step is done
-            --     right here, _before_ the subterms are RTTI reconstructed.
-            when (not monomorphic) $ do
-                  let myType = mkFunTys (reOrderTerms subTermTvs subTtypesNP subTtypes) tv
-                  instScheme(dataConRepType dc) >>= addConstraint myType 
-            subTermsP <- sequence $ drop extra_args -- all extra arguments are pointed
-                  [ appArr (go tv t) (ptrs clos) i
-                   | (i,tv,t) <- zip3 [0..] subTermTvs subTtypesP]
-            let unboxeds   = extractUnboxed subTtypesNP (nonPtrs clos)
-                subTermsNP = map (uncurry Prim) (zip subTtypesNP unboxeds)      
-                subTerms   = reOrderTerms subTermsP subTermsNP (drop extra_args subTtypes)
-            return (Term tv dc a subTerms)
--- The otherwise case: can be a Thunk,AP,PAP,etc.
-      otherwise -> 
-         return (Suspension (tipe clos) (Just tv) a Nothing)
-
--- Access the array of pointers and recurse down. Needs to be done with
--- care of no introducing a thunk! or go will fail to do its job 
-  appArr f arr (I# i#) = case arr of 
-                 (Array _ _ ptrs#) -> case indexArray# ptrs# i# of 
-                       (# e #) -> f e
-
-  matchSubTypes dc ty
-    | Just (_,ty_args) <- splitTyConApp_maybe (repType ty) 
-    , null (dataConExTyVars dc)  --TODO Handle the case of extra existential tyvars
-    = dataConInstArgTys dc ty_args
-
-    | otherwise = dataConRepArgTys dc
-
--- This is used to put together pointed and nonpointed subterms in the 
---  correct order.
-  reOrderTerms _ _ [] = []
-  reOrderTerms pointed unpointed (ty:tys) 
-   | isPointed ty = ASSERT2(not(null pointed)
-                           , ptext SLIT("reOrderTerms") $$ (ppr pointed $$ ppr unpointed))
-                    head pointed : reOrderTerms (tail pointed) unpointed tys
-   | otherwise    = ASSERT2(not(null unpointed)
-                           , ptext SLIT("reOrderTerms") $$ (ppr pointed $$ ppr unpointed))
-                    head unpointed : reOrderTerms pointed (tail unpointed) tys
-
-isMonomorphic = isEmptyVarSet . tyVarsOfType
+    where upgrade :: TyCon -> Type -> Type
+          upgrade new_tycon ty
+            | not (isNewTyCon new_tycon) = ty 
+            | ty' <- mkTyConApp new_tycon (map mkTyVarTy $ tyConTyVars new_tycon)
+            , Just subst <- tcUnifyTys (const BindMe) [ty] [repType ty']
+            = substTy subst ty'
+        -- assumes that reptype doesn't touch tyconApp args ^^^
+
+
+--------------------------------------------------------------------------------
+-- Semantically different to recoverM in TcRnMonad 
+-- recoverM retains the errors in the first action,
+--  whereas recoverTc here does not
+recoverTc recover thing = do 
+  (_,mb_res) <- tryTcErrs thing
+  case mb_res of 
+    Nothing  -> recover
+    Just res -> return res
+
+isMonomorphic ty | (tvs, ty') <- splitForAllTys ty
+                 = null tvs && (isEmptyVarSet . tyVarsOfType) ty'
+
+mapMif :: Monad m => (a -> Bool) -> (a -> m a) -> [a] -> m [a]
+mapMif pred f xx = sequence $ mapMif_ pred f xx
+mapMif_ pred f []     = []
+mapMif_ pred f (x:xx) = (if pred x then f x else return x) : mapMif_ pred f xx
+
+unlessM condM acc = condM >>= \c -> unless c acc
+
+-- Strict application of f at index i
+appArr f a@(Array _ _ _ ptrs#) i@(I# i#)
+ = ASSERT (i < length(elems a))
+   case indexArray# ptrs# i# of
+       (# e #) -> f e
 
 zonkTerm :: Term -> TcM Term
 zonkTerm = foldTerm idTermFoldM {
@@ -578,53 +769,4 @@ zonkTerm = foldTerm idTermFoldM {
 -- Generalize the type: find all free tyvars and wrap in the appropiate ForAll.
 sigmaType ty = mkForAllTys (varSetElems$ tyVarsOfType (dropForAlls ty)) ty
 
-{-
-Example of Type Reconstruction
---------------------------------
-Suppose we have an existential type such as
-
-data Opaque = forall a. Opaque a
-
-And we have a term built as:
-
-t = Opaque (map Just [[1,1],[2,2]])
-
-The type of t as far as the typechecker goes is t :: Opaque
-If we seq the head of t, we obtain:
-
-t - O (_1::a) 
-
-seq _1 ()
-
-t - O ( (_3::b) : (_4::[b]) ) 
 
-seq _3 ()
-
-t - O ( (Just (_5::c)) : (_4::[b]) ) 
-
-At this point, we know that b = (Maybe c)
-
-seq _5 ()
-
-t - O ( (Just ((_6::d) : (_7::[d]) )) : (_4::[b]) )
-
-At this point, we know that c = [d]
-
-seq _6 ()
-
-t - O ( (Just (1 : (_7::[d]) )) : (_4::[b]) )
-
-At this point, we know that d = Integer
-
-The fully reconstructed expressions, with propagation, would be:
-
-t - O ( (Just (_5::c)) : (_4::[Maybe c]) ) 
-t - O ( (Just ((_6::d) : (_7::[d]) )) : (_4::[Maybe [d]]) )
-t - O ( (Just (1 : (_7::[Integer]) )) : (_4::[Maybe [Integer]]) )
-
-
-For reference, the type of the thing inside the opaque is 
-map Just [[1,1],[2,2]] :: [Maybe [Integer]]
-
-NOTE: (Num t) contexts have been manually replaced by Integer for clarity
--}