Don't import FastString in HsVersions.h
[ghc-hetmet.git] / compiler / simplCore / SimplUtils.lhs
index e8714d4..6d22505 100644 (file)
@@ -20,7 +20,7 @@ module SimplUtils (
        activeInline, activeRule, inlineMode,
 
        -- The continuation type
-       SimplCont(..), DupFlag(..), LetRhsFlag(..), 
+       SimplCont(..), DupFlag(..), ArgInfo(..),
        contIsDupable, contResultType, contIsTrivial, contArgs, dropArgs, 
        countValArgs, countArgs, splitInlineCont,
        mkBoringStop, mkLazyArgStop, mkRhsStop, contIsRhsOrArg,
@@ -49,15 +49,17 @@ import Id
 import Var     ( isCoVar )
 import NewDemand
 import SimplMonad
-import Type    ( Type, funArgTy, mkForAllTys, mkTyVarTys, 
-                 splitTyConApp_maybe, tyConAppArgs )
+import Type    hiding( substTy )
 import TyCon
 import DataCon
 import Unify   ( dataConCannotMatch )
 import VarSet
 import BasicTypes
 import Util
+import MonadUtils
 import Outputable
+import FastString
+
 import List( nub )
 \end{code}
 
@@ -92,14 +94,11 @@ Key points:
 data SimplCont 
   = Stop               -- An empty context, or hole, []     
        OutType         -- Type of the result
-       LetRhsFlag
-       Bool            -- True <=> There is something interesting about
+       CallCtxt        -- True <=> There is something interesting about
                        --          the context, and hence the inliner
                        --          should be a bit keener (see interestingCallContext)
-                       -- Two cases:
-                       -- (a) This is the RHS of a thunk whose type suggests
-                       --     that update-in-place would be possible
-                       -- (b) This is an argument of a function that has RULES
+                       -- Specifically:
+                       --     This is an argument of a function that has RULES
                        --     Inlining the call might allow the rule to fire
 
   | CoerceIt           -- C `cast` co
@@ -124,22 +123,28 @@ data SimplCont
 
   | StrictArg          -- e C
        OutExpr OutType         -- e and its type
-       (Bool,[Bool])           -- Whether the function at the head of e has rules,
-       SimplCont               --     plus strictness flags for further args
-
-data LetRhsFlag = AnArg                -- It's just an argument not a let RHS
-               | AnRhs         -- It's the RHS of a let (so please float lets out of big lambdas)
-
-instance Outputable LetRhsFlag where
-  ppr AnArg = ptext SLIT("arg")
-  ppr AnRhs = ptext SLIT("rhs")
+       CallCtxt                -- Whether *this* argument position is interesting
+       ArgInfo                 -- Whether the function at the head of e has rules, etc
+       SimplCont               --     plus strictness flags for *further* args
+
+data ArgInfo 
+  = ArgInfo {
+       ai_rules :: Bool,       -- Function has rules (recursively)
+                               --      => be keener to inline in all args
+       ai_strs :: [Bool],      -- Strictness of arguments
+                               --   Usually infinite, but if it is finite it guarantees
+                               --   that the function diverges after being given
+                               --   that number of args
+       ai_discs :: [Int]       -- Discounts for arguments; non-zero => be keener to inline
+                               --   Always infinite
+    }
 
 instance Outputable SimplCont where
-  ppr (Stop ty is_rhs _)            = ptext SLIT("Stop") <> brackets (ppr is_rhs) <+> ppr ty
+  ppr (Stop ty _)                   = ptext SLIT("Stop") <+> ppr ty
   ppr (ApplyTo dup arg se cont)      = ((ptext SLIT("ApplyTo") <+> ppr dup <+> pprParendExpr arg)
                                          {-  $$ nest 2 (pprSimplEnv se) -}) $$ ppr cont
   ppr (StrictBind b _ _ _ cont)      = (ptext SLIT("StrictBind") <+> ppr b) $$ ppr cont
-  ppr (StrictArg f _ _ cont)         = (ptext SLIT("StrictArg") <+> ppr f) $$ ppr cont
+  ppr (StrictArg f _ _ _ cont)       = (ptext SLIT("StrictArg") <+> ppr f) $$ ppr cont
   ppr (Select dup bndr alts se cont) = (ptext SLIT("Select") <+> ppr dup <+> ppr bndr) $$ 
                                       (nest 4 (ppr alts)) $$ ppr cont 
   ppr (CoerceIt co cont)            = (ptext SLIT("CoerceIt") <+> ppr co) $$ ppr cont
@@ -154,13 +159,13 @@ instance Outputable DupFlag where
 
 -------------------
 mkBoringStop :: OutType -> SimplCont
-mkBoringStop ty = Stop ty AnArg False
+mkBoringStop ty = Stop ty BoringCtxt
 
-mkLazyArgStop :: OutType -> Bool -> SimplCont
-mkLazyArgStop ty has_rules = Stop ty AnArg (canUpdateInPlace ty || has_rules)
+mkLazyArgStop :: OutType -> CallCtxt -> SimplCont
+mkLazyArgStop ty cci = Stop ty cci
 
 mkRhsStop :: OutType -> SimplCont
-mkRhsStop ty = Stop ty AnRhs (canUpdateInPlace ty)
+mkRhsStop ty = Stop ty BoringCtxt
 
 -------------------
 contIsRhsOrArg (Stop {})                = True
@@ -185,8 +190,8 @@ contIsTrivial other                   = False
 
 -------------------
 contResultType :: SimplCont -> OutType
-contResultType (Stop to_ty _ _)                 = to_ty
-contResultType (StrictArg _ _ _ cont)   = contResultType cont
+contResultType (Stop to_ty _)           = to_ty
+contResultType (StrictArg _ _ _ _ cont)  = contResultType cont
 contResultType (StrictBind _ _ _ _ cont) = contResultType cont
 contResultType (ApplyTo _ _ _ cont)     = contResultType cont
 contResultType (CoerceIt _ cont)        = contResultType cont
@@ -227,9 +232,9 @@ splitInlineCont :: SimplCont -> Maybe (SimplCont, SimplCont)
 
 splitInlineCont (ApplyTo dup (Type ty) se c)
   | Just (c1, c2) <- splitInlineCont c                 = Just (ApplyTo dup (Type ty) se c1, c2)
-splitInlineCont cont@(Stop ty _ _)             = Just (mkBoringStop ty, cont)
+splitInlineCont cont@(Stop ty _)               = Just (mkBoringStop ty, cont)
 splitInlineCont cont@(StrictBind bndr _ _ se _) = Just (mkBoringStop (substTy se (idType bndr)), cont)
-splitInlineCont cont@(StrictArg _ fun_ty _ _)   = Just (mkBoringStop (funArgTy fun_ty), cont)
+splitInlineCont cont@(StrictArg _ fun_ty _ _ _) = Just (mkBoringStop (funArgTy fun_ty), cont)
 splitInlineCont other                          = Nothing
        -- NB: the calculation of the type for mkBoringStop is an annoying
        --     duplication of the same calucation in mkDupableCont
@@ -303,62 +308,28 @@ applies when x is bound to a lambda expression.  Hence
 contIsInteresting looks for case expressions with just a single
 default case.
 
+
 \begin{code}
-interestingCallContext :: Bool                 -- False <=> no args at all
-                      -> Bool          -- False <=> no value args
-                      -> SimplCont -> Bool
-       -- The "lone-variable" case is important.  I spent ages
-       -- messing about with unsatisfactory varaints, but this is nice.
-       -- The idea is that if a variable appear all alone
-       --      as an arg of lazy fn, or rhs    Stop
-       --      as scrutinee of a case          Select
-       --      as arg of a strict fn           ArgOf
-       -- then we should not inline it (unless there is some other reason,
-       -- e.g. is is the sole occurrence).  We achieve this by making
-       -- interestingCallContext return False for a lone variable.
-       --
-       -- Why?  At least in the case-scrutinee situation, turning
-       --      let x = (a,b) in case x of y -> ...
-       -- into
-       --      let x = (a,b) in case (a,b) of y -> ...
-       -- and thence to 
-       --      let x = (a,b) in let y = (a,b) in ...
-       -- is bad if the binding for x will remain.
-       --
-       -- Another example: I discovered that strings
-       -- were getting inlined straight back into applications of 'error'
-       -- because the latter is strict.
-       --      s = "foo"
-       --      f = \x -> ...(error s)...
-
-       -- Fundamentally such contexts should not ecourage inlining because
-       -- the context can ``see'' the unfolding of the variable (e.g. case or a RULE)
-       -- so there's no gain.
-       --
-       -- However, even a type application or coercion isn't a lone variable.
-       -- Consider
-       --      case $fMonadST @ RealWorld of { :DMonad a b c -> c }
-       -- We had better inline that sucker!  The case won't see through it.
-       --
-       -- For now, I'm treating treating a variable applied to types 
-       -- in a *lazy* context "lone". The motivating example was
-       --      f = /\a. \x. BIG
-       --      g = /\a. \y.  h (f a)
-       -- There's no advantage in inlining f here, and perhaps
-       -- a significant disadvantage.  Hence some_val_args in the Stop case
-
-interestingCallContext some_args some_val_args cont
+interestingCallContext :: SimplCont -> CallCtxt
+interestingCallContext cont
   = interesting cont
   where
-    interesting (Select {})              = some_args
-    interesting (ApplyTo {})             = True        -- Can happen if we have (coerce t (f x)) y
-                                               -- Perhaps True is a bit over-keen, but I've
-                                               -- seen (coerce f) x, where f has an INLINE prag,
-                                               -- So we have to give some motivaiton for inlining it
-    interesting (StrictArg {})          = some_val_args
-    interesting (StrictBind {})                 = some_val_args        -- ??
-    interesting (Stop ty _ interesting)  = some_val_args && interesting
-    interesting (CoerceIt _ cont)        = interesting cont
+    interestingCtxt = ArgCtxt False 2  -- Give *some* incentive!
+
+    interesting (Select _ bndr _ _ _)
+       | isDeadBinder bndr       = CaseCtxt
+       | otherwise               = interestingCtxt
+               
+    interesting (ApplyTo {})      = interestingCtxt
+                               -- Can happen if we have (coerce t (f x)) y
+                               -- Perhaps interestingCtxt is a bit over-keen, but I've
+                               -- seen (coerce f) x, where f has an INLINE prag,
+                               -- So we have to give some motivation for inlining it
+
+    interesting (StrictArg _ _ cci _ _)        = cci
+    interesting (StrictBind {})                = BoringCtxt
+    interesting (Stop ty cci)          = cci
+    interesting (CoerceIt _ cont)      = interesting cont
        -- If this call is the arg of a strict function, the context
        -- is a bit interesting.  If we inline here, we may get useful
        -- evaluation information to avoid repeated evals: e.g.
@@ -379,21 +350,24 @@ interestingCallContext some_args some_val_args cont
 mkArgInfo :: Id
          -> Int        -- Number of value args
          -> SimplCont  -- Context of the cal
-         -> (Bool, [Bool])     -- Arg info
--- The arg info consists of
---  * A Bool indicating if the function has rules (recursively)
---  * A [Bool] indicating strictness for each arg
--- The [Bool] is usually infinite, but if it is finite it 
--- guarantees that the function diverges after being given
--- that number of args
+         -> ArgInfo
 
 mkArgInfo fun n_val_args call_cont
-  = (interestingArgContext fun call_cont, fun_stricts)
+  = ArgInfo { ai_rules = interestingArgContext fun call_cont
+           , ai_strs  = arg_stricts
+           , ai_discs = arg_discounts }
   where
-    vanilla_stricts, fun_stricts :: [Bool]
+    vanilla_discounts, arg_discounts :: [Int]
+    vanilla_discounts = repeat 0
+    arg_discounts = case idUnfolding fun of
+                       CoreUnfolding _ _ _ _ (UnfoldIfGoodArgs _ discounts _ _)
+                             -> discounts ++ vanilla_discounts
+                       other -> vanilla_discounts
+
+    vanilla_stricts, arg_stricts :: [Bool]
     vanilla_stricts  = repeat False
 
-    fun_stricts
+    arg_stricts
       = case splitStrictSig (idNewStrictness fun) of
          (demands, result_info)
                | not (demands `lengthExceeds` n_val_args)
@@ -419,7 +393,9 @@ interestingArgContext :: Id -> SimplCont -> Bool
 -- where g has rules, then we *do* want to inline f, in case it
 -- exposes a rule that might fire.  Similarly, if the context is
 --     h (g (f x x))
--- where h has rules, then we do want to inline f.
+-- where h has rules, then we do want to inline f; hence the
+-- call_cont argument to interestingArgContext
+--
 -- The interesting_arg_ctxt flag makes this happen; if it's
 -- set, the inliner gets just enough keener to inline f 
 -- regardless of how boring f's arguments are, if it's marked INLINE
@@ -427,36 +403,18 @@ interestingArgContext :: Id -> SimplCont -> Bool
 -- The alternative would be to *always* inline an INLINE function,
 -- regardless of how boring its context is; but that seems overkill
 -- For example, it'd mean that wrapper functions were always inlined
-interestingArgContext fn cont
-  = idHasRules fn || go cont
+interestingArgContext fn call_cont
+  = idHasRules fn || go call_cont
   where
-    go (Select {})           = False
-    go (ApplyTo {})          = False
-    go (StrictArg {})        = True
-    go (StrictBind {})       = False   -- ??
-    go (CoerceIt _ c)        = go c
-    go (Stop _ _ interesting) = interesting
-
--------------------
-canUpdateInPlace :: Type -> Bool
--- Consider   let x = <wurble> in ...
--- If <wurble> returns an explicit constructor, we might be able
--- to do update in place.  So we treat even a thunk RHS context
--- as interesting if update in place is possible.  We approximate
--- this by seeing if the type has a single constructor with a
--- small arity.  But arity zero isn't good -- we share the single copy
--- for that case, so no point in sharing.
-
-canUpdateInPlace ty 
-  | not opt_UF_UpdateInPlace = False
-  | otherwise
-  = case splitTyConApp_maybe ty of 
-       Nothing         -> False 
-       Just (tycon, _) -> case tyConDataCons_maybe tycon of
-                               Just [dc]  -> arity == 1 || arity == 2
-                                          where
-                                             arity = dataConRepArity dc
-                               other -> False
+    go (Select {})            = False
+    go (ApplyTo {})           = False
+    go (StrictArg _ _ cci _ _) = interesting cci
+    go (StrictBind {})        = False  -- ??
+    go (CoerceIt _ c)         = go c
+    go (Stop _ cci)            = interesting cci
+
+    interesting (ArgCtxt rules _) = rules
+    interesting other            = False
 \end{code}
 
 
@@ -476,7 +434,7 @@ settings:
                        (d) Simplifying a GHCi expression or Template 
                                Haskell splice
 
-       SimplPhase n    Used at all other times
+       SimplPhase n _   Used at all other times
 
 The key thing about SimplGently is that it does no call-site inlining.
 Before full laziness we must be careful not to inline wrappers,
@@ -591,7 +549,7 @@ y's occurrence info, which breaks the invariant.  It matters: y
 might have a BIG rhs, which will now be dup'd at every occurrenc of x.
 
 
-Evne RHSs labelled InlineMe aren't caught here, because there might be
+Even RHSs labelled InlineMe aren't caught here, because there might be
 no benefit from inlining at the call site.
 
 [Sept 01] Don't unconditionally inline a top-level thing, because that
@@ -625,8 +583,8 @@ preInlineUnconditionally env top_lvl bndr rhs
   where
     phase = getMode env
     active = case phase of
-                  SimplGently  -> isAlwaysActive prag
-                  SimplPhase n -> isActive n prag
+                  SimplGently    -> isAlwaysActive prag
+                  SimplPhase n _ -> isActive n prag
     prag = idInlinePragma bndr
 
     try_once in_lam int_cxt    -- There's one textual occurrence
@@ -660,8 +618,8 @@ preInlineUnconditionally env top_lvl bndr rhs
     canInlineInLam _                   = False
 
     early_phase = case phase of
-                       SimplPhase 0 -> False
-                       other        -> True
+                       SimplPhase 0 _ -> False
+                       other          -> True
 -- If we don't have this early_phase test, consider
 --     x = length [1,2,3]
 -- The full laziness pass carefully floats all the cons cells to
@@ -781,8 +739,8 @@ postInlineUnconditionally env top_lvl bndr occ_info rhs unfolding
 
   where
     active = case getMode env of
-                  SimplGently  -> isAlwaysActive prag
-                  SimplPhase n -> isActive n prag
+                  SimplGently    -> isAlwaysActive prag
+                  SimplPhase n _ -> isActive n prag
     prag = idInlinePragma bndr
 
 activeInline :: SimplEnv -> OutId -> Bool
@@ -804,7 +762,7 @@ activeInline env id
        -- and they are now constructed as Compulsory unfoldings (in MkId)
        -- so they'll happen anyway.
 
-      SimplPhase n -> isActive n prag
+      SimplPhase n _ -> isActive n prag
   where
     prag = idInlinePragma id
 
@@ -815,13 +773,13 @@ activeRule dflags env
   = Nothing    -- Rewriting is off
   | otherwise
   = case getMode env of
-       SimplGently  -> Just isAlwaysActive
+       SimplGently    -> Just isAlwaysActive
                        -- Used to be Nothing (no rules in gentle mode)
                        -- Main motivation for changing is that I wanted
                        --      lift String ===> ...
                        -- to work in Template Haskell when simplifying
                        -- splices, so we get simpler code for literal strings
-       SimplPhase n -> Just (isActive n)
+       SimplPhase n _ -> Just (isActive n)
 \end{code}
 
 
@@ -844,12 +802,14 @@ mkLam bndrs body
        ; mkLam' dflags bndrs body }
   where
     mkLam' :: DynFlags -> [OutBndr] -> OutExpr -> SimplM OutExpr
-    mkLam' dflags bndrs (Cast body@(Lam _ _) co)
+    mkLam' dflags bndrs (Cast body co)
+      | not (any bad bndrs)
        -- Note [Casts and lambdas]
-      = do { lam <- mkLam' dflags (bndrs ++ bndrs') body'
+      = do { lam <- mkLam' dflags bndrs body
           ; return (mkCoerce (mkPiTypes bndrs co) lam) }
-      where    
-       (bndrs',body') = collectBinders body
+      where
+       co_vars  = tyVarsOfType co
+       bad bndr = isCoVar bndr && bndr `elemVarSet` co_vars      
 
     mkLam' dflags bndrs body
       | dopt Opt_DoEtaReduction dflags,
@@ -863,7 +823,7 @@ mkLam bndrs body
           ; return (mkLams bndrs body') }
    
       | otherwise 
-      = returnSmpl (mkLams bndrs body)
+      = return (mkLams bndrs body)
 \end{code}
 
 Note [Casts and lambdas]
@@ -877,9 +837,26 @@ So this equation in mkLam' floats the g1 out, thus:
        (\x. e `cast` g1)  -->  (\x.e) `cast` (tx -> g1)
 where x:tx.
 
-In general, this floats casts outside lambdas, where (I hope) they might meet
-and cancel with some other cast.
-
+In general, this floats casts outside lambdas, where (I hope) they
+might meet and cancel with some other cast:
+       \x. e `cast` co   ===>   (\x. e) `cast` (tx -> co)
+       /\a. e `cast` co  ===>   (/\a. e) `cast` (/\a. co)
+       /\g. e `cast` co  ===>   (/\g. e) `cast` (/\g. co)
+                         (if not (g `in` co))
+
+Notice that it works regardless of 'e'.  Originally it worked only
+if 'e' was itself a lambda, but in some cases that resulted in 
+fruitless iteration in the simplifier.  A good example was when
+compiling Text.ParserCombinators.ReadPrec, where we had a definition 
+like   (\x. Get `cast` g)
+where Get is a constructor with nonzero arity.  Then mkLam eta-expanded
+the Get, and the next iteration eta-reduced it, and then eta-expanded 
+it again.
+
+Note also the side condition for the case of coercion binders.
+It does not make sense to transform
+       /\g. e `cast` g  ==>  (/\g.e) `cast` (/\g.g)
+because the latter is not well-kinded.
 
 --     c) floating lets out through big lambdas 
 --             [only if all tyvar lambdas, and only if this lambda
@@ -892,55 +869,97 @@ and cancel with some other cast.
                        -- if this is indeed a right-hand side; otherwise
                        -- we end up floating the thing out, only for float-in
                        -- to float it right back in again!
- = tryRhsTyLam env bndrs body          `thenSmpl` \ (floats, body') ->
-   returnSmpl (floats, mkLams bndrs body')
+ = do (floats, body') <- tryRhsTyLam env bndrs body
+      return (floats, mkLams bndrs body')
 -}
 
 
 %************************************************************************
 %*                                                                     *
-\subsection{Eta expansion and reduction}
+               Eta reduction
 %*                                                                     *
 %************************************************************************
 
-We try for eta reduction here, but *only* if we get all the 
-way to an exprIsTrivial expression.    
-We don't want to remove extra lambdas unless we are going 
-to avoid allocating this thing altogether
+Note [Eta reduction conditions]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+We try for eta reduction here, but *only* if we get all the way to an
+trivial expression.  We don't want to remove extra lambdas unless we
+are going to avoid allocating this thing altogether.
+
+There are some particularly delicate points here:
+
+* Eta reduction is not valid in general:  
+       \x. bot  /=  bot
+  This matters, partly for old-fashioned correctness reasons but,
+  worse, getting it wrong can yield a seg fault. Consider
+       f = \x.f x
+       h y = case (case y of { True -> f `seq` True; False -> False }) of
+               True -> ...; False -> ...
+
+  If we (unsoundly) eta-reduce f to get f=f, the strictness analyser
+  says f=bottom, and replaces the (f `seq` True) with just
+  (f `cast` unsafe-co).  BUT, as thing stand, 'f' got arity 1, and it
+  *keeps* arity 1 (perhaps also wrongly).  So CorePrep eta-expands 
+  the definition again, so that it does not termninate after all.
+  Result: seg-fault because the boolean case actually gets a function value.
+  See Trac #1947.
+
+  So it's important to to the right thing.
+
+* We need to be careful if we just look at f's arity. Currently (Dec07),
+  f's arity is visible in its own RHS (see Note [Arity robustness] in 
+  SimplEnv) so we must *not* trust the arity when checking that 'f' is
+  a value.  Instead, look at the unfolding. 
+
+  However for GlobalIds we can look at the arity; and for primops we
+  must, since they have no unfolding.  
+
+* Regardless of whether 'f' is a vlaue, we always want to 
+  reduce (/\a -> f a) to f
+  This came up in a RULE: foldr (build (/\a -> g a))
+  did not match           foldr (build (/\b -> ...something complex...))
+  The type checker can insert these eta-expanded versions,
+  with both type and dictionary lambdas; hence the slightly 
+  ad-hoc isDictId
+
+These delicacies are why we don't use exprIsTrivial and exprIsHNF here.
+Alas.
 
 \begin{code}
 tryEtaReduce :: [OutBndr] -> OutExpr -> Maybe OutExpr
 tryEtaReduce bndrs body 
-       -- We don't use CoreUtils.etaReduce, because we can be more
-       -- efficient here:
-       --  (a) we already have the binders
-       --  (b) we can do the triviality test before computing the free vars
   = go (reverse bndrs) body
   where
     go (b : bs) (App fun arg) | ok_arg b arg = go bs fun       -- Loop round
     go []       fun           | ok_fun fun   = Just fun                -- Success!
     go _        _                           = Nothing          -- Failure!
 
-    ok_fun fun =  exprIsTrivial fun
-              && not (any (`elemVarSet` (exprFreeVars fun)) bndrs)
-              && (exprIsHNF fun || all ok_lam bndrs)
+       -- Note [Eta reduction conditions]
+    ok_fun (App fun (Type ty)) 
+       | not (any (`elemVarSet` tyVarsOfType ty) bndrs)
+       =  ok_fun fun
+    ok_fun (Var fun_id)
+       =  not (fun_id `elem` bndrs)
+       && (ok_fun_id fun_id || all ok_lam bndrs)
+    ok_fun _fun = False
+
+    ok_fun_id fun
+       | isLocalId fun       = isEvaldUnfolding (idUnfolding fun)
+       | isDataConWorkId fun = True
+       | isGlobalId fun      = idArity fun > 0
+
     ok_lam v = isTyVar v || isDictId v
-       -- The exprIsHNF is because eta reduction is not 
-       -- valid in general:  \x. bot  /=  bot
-       -- So we need to be sure that the "fun" is a value.
-       --
-       -- However, we always want to reduce (/\a -> f a) to f
-       -- This came up in a RULE: foldr (build (/\a -> g a))
-       --      did not match      foldr (build (/\b -> ...something complex...))
-       -- The type checker can insert these eta-expanded versions,
-       -- with both type and dictionary lambdas; hence the slightly 
-       -- ad-hoc isDictTy
 
     ok_arg b arg = varToCoreExpr b `cheapEqExpr` arg
 \end{code}
 
 
-       Try eta expansion for RHSs
+%************************************************************************
+%*                                                                     *
+               Eta expansion
+%*                                                                     *
+%************************************************************************
+
 
 We go for:
    f = \x1..xn -> N  ==>   f = \x1..xn y1..ym -> N y1..ym
@@ -955,6 +974,16 @@ where (in both cases)
        * N is a NORMAL FORM (i.e. no redexes anywhere)
          wanting a suitable number of extra args.
 
+The biggest reason for doing this is for cases like
+
+       f = \x -> case x of
+                   True  -> \y -> e1
+                   False -> \y -> e2
+
+Here we want to get the lambdas together.  A good exmaple is the nofib
+program fibheaps, which gets 25% more allocation if you don't do this
+eta-expansion.
+
 We may have to sandwich some coerces between the lambdas
 to make the types work.   exprEtaExpandArity looks through coerces
 when computing arity; and etaExpand adds the coerces as necessary when
@@ -963,9 +992,9 @@ actually computing the expansion.
 \begin{code}
 tryEtaExpansion :: DynFlags -> OutExpr -> SimplM OutExpr
 -- There is at least one runtime binder in the binders
-tryEtaExpansion dflags body
-  = getUniquesSmpl                     `thenSmpl` \ us ->
-    returnSmpl (etaExpand fun_arity us body (exprType body))
+tryEtaExpansion dflags body = do
+    us <- getUniquesM
+    return (etaExpand fun_arity us body (exprType body))
   where
     fun_arity = exprEtaExpandArity dflags body
 \end{code}
@@ -1057,7 +1086,7 @@ it is guarded by the doFloatFromRhs call in simplLazyBind.
 abstractFloats :: [OutTyVar] -> SimplEnv -> OutExpr -> SimplM ([OutBind], OutExpr)
 abstractFloats main_tvs body_env body
   = ASSERT( notNull body_floats )
-    do { (subst, float_binds) <- mapAccumLSmpl abstract empty_subst body_floats
+    do { (subst, float_binds) <- mapAccumLM abstract empty_subst body_floats
        ; return (float_binds, CoreSubst.substExpr subst body) }
   where
     main_tv_set = mkVarSet main_tvs
@@ -1093,7 +1122,7 @@ abstractFloats main_tvs body_env body
                -- gives rise to problems.   SLPJ June 98
 
     abstract subst (Rec prs)
-       = do { (poly_ids, poly_apps) <- mapAndUnzipSmpl (mk_poly tvs_here) ids
+       = do { (poly_ids, poly_apps) <- mapAndUnzipM (mk_poly tvs_here) ids
            ; let subst' = CoreSubst.extendSubstList subst (ids `zip` poly_apps)
                  poly_rhss = [mkLams tvs_here (CoreSubst.substExpr subst' rhs) | rhs <- rhss]
            ; return (subst', Rec (poly_ids `zip` poly_rhss)) }
@@ -1115,7 +1144,7 @@ abstractFloats main_tvs body_env body
         tvs_here = main_tvs
 
     mk_poly tvs_here var
-      = do { uniq <- getUniqueSmpl
+      = do { uniq <- getUniqueM
           ; let  poly_name = setNameUnique (idName var) uniq           -- Keep same name
                  poly_ty   = mkForAllTys tvs_here (idType var) -- But new type of course
                  poly_id   = mkLocalId poly_name poly_ty 
@@ -1231,8 +1260,8 @@ have to check that r doesn't mention the variables bound by the
 pattern in each alternative, so the binder-info is rather useful.
 
 \begin{code}
-prepareAlts :: OutExpr -> OutId -> [InAlt] -> SimplM ([AltCon], [InAlt])
-prepareAlts scrut case_bndr' alts
+prepareAlts :: SimplEnv -> OutExpr -> OutId -> [InAlt] -> SimplM ([AltCon], [InAlt])
+prepareAlts env scrut case_bndr' alts
   = do { dflags <- getDOptsSmpl
        ; alts <- combineIdenticalAlts case_bndr' alts
 
@@ -1243,7 +1272,7 @@ prepareAlts scrut case_bndr' alts
                --   EITHER by the context, 
                --   OR by a non-DEFAULT branch in this case expression.
 
-       ; default_alts <- prepareDefault dflags scrut case_bndr' mb_tc_app 
+       ; default_alts <- prepareDefault dflags env case_bndr' mb_tc_app 
                                         imposs_deflt_cons maybe_deflt
 
        ; let trimmed_alts = filterOut impossible_alt alts_wo_default
@@ -1289,7 +1318,7 @@ combineIdenticalAlts case_bndr alts = return alts
 --                     Prepare the default alternative
 -------------------------------------------------------------------------
 prepareDefault :: DynFlags
-              -> OutExpr       -- Scrutinee
+              -> SimplEnv
               -> OutId         -- Case binder; need just for its type. Note that as an
                                --   OutId, it has maximum information; this is important.
                                --   Test simpl013 is an example
@@ -1301,10 +1330,16 @@ prepareDefault :: DynFlags
                                        -- And becuase case-merging can cause many to show up
 
 -------        Merge nested cases ----------
-prepareDefault dflags scrut outer_bndr bndr_ty imposs_cons (Just deflt_rhs)
+prepareDefault dflags env outer_bndr bndr_ty imposs_cons (Just deflt_rhs)
   | dopt Opt_CaseMerge dflags
-  , Case (Var scrut_var) inner_bndr _ inner_alts <- deflt_rhs
-  , scruting_same_var scrut_var
+  , Case (Var inner_scrut_var) inner_bndr _ inner_alts <- deflt_rhs
+  , DoneId inner_scrut_var' <- substId env inner_scrut_var
+       -- Remember, inner_scrut_var is an InId, but outer_bndr is an OutId
+  , inner_scrut_var' == outer_bndr
+       -- NB: the substId means that if the outer scrutinee was a 
+       --     variable, and inner scrutinee is the same variable, 
+       --     then inner_scrut_var' will be outer_bndr
+       --     via the magic of simplCaseBinder
   = do { tick (CaseMerge outer_bndr)
 
        ; let munge_rhs rhs = bindCaseBndr inner_bndr (Var outer_bndr) rhs
@@ -1324,17 +1359,10 @@ prepareDefault dflags scrut outer_bndr bndr_ty imposs_cons (Just deflt_rhs)
        -- mkCase applied to them, so they won't have a case in their default
        -- Secondly, if you do, you get an infinite loop, because the bindCaseBndr
        -- in munge_rhs may put a case into the DEFAULT branch!
-  where
-       -- We are scrutinising the same variable if it's
-       -- the outer case-binder, or if the outer case scrutinises a variable
-       -- (and it's the same).  Testing both allows us not to replace the
-       -- outer scrut-var with the outer case-binder (Simplify.simplCaseBinder).
-    scruting_same_var = case scrut of
-                         Var outer_scrut -> \ v -> v == outer_bndr || v == outer_scrut
-                         other           -> \ v -> v == outer_bndr
+
 
 --------- Fill in known constructor -----------
-prepareDefault dflags scrut case_bndr (Just (tycon, inst_tys)) imposs_cons (Just deflt_rhs)
+prepareDefault dflags env case_bndr (Just (tycon, inst_tys)) imposs_cons (Just deflt_rhs)
   |    -- This branch handles the case where we are 
        -- scrutinisng an algebraic data type
     isAlgTyCon tycon           -- It's a data type, tuple, or unboxed tuples.  
@@ -1360,7 +1388,7 @@ prepareDefault dflags scrut case_bndr (Just (tycon, inst_tys)) imposs_cons (Just
 
        [con] ->        -- It matches exactly one constructor, so fill it in
                 do { tick (FillInCaseDefault case_bndr)
-                    ; us <- getUniquesSmpl
+                    ; us <- getUniquesM
                     ; let (ex_tvs, co_tvs, arg_ids) =
                               dataConRepInstPat us con inst_tys
                     ; return [(DataAlt con, ex_tvs ++ co_tvs ++ arg_ids, deflt_rhs)] }
@@ -1368,10 +1396,10 @@ prepareDefault dflags scrut case_bndr (Just (tycon, inst_tys)) imposs_cons (Just
        two_or_more -> return [(DEFAULT, [], deflt_rhs)]
 
 --------- Catch-all cases -----------
-prepareDefault dflags scrut case_bndr bndr_ty imposs_cons (Just deflt_rhs)
+prepareDefault dflags env case_bndr bndr_ty imposs_cons (Just deflt_rhs)
   = return [(DEFAULT, [], deflt_rhs)]
 
-prepareDefault dflags scrut case_bndr bndr_ty imposs_cons Nothing
+prepareDefault dflags env case_bndr bndr_ty imposs_cons Nothing
   = return []  -- No default branch
 \end{code}
 
@@ -1417,8 +1445,8 @@ mkCase scrut case_bndr ty []
 
 mkCase scrut case_bndr ty alts -- Identity case
   | all identity_alt alts
-  = tick (CaseIdentity case_bndr)              `thenSmpl_`
-    returnSmpl (re_cast scrut)
+  = do tick (CaseIdentity case_bndr)
+       return (re_cast scrut)
   where
     identity_alt (con, args, rhs) = check_eq con args (de_cast rhs)
 
@@ -1451,7 +1479,7 @@ mkCase scrut case_bndr ty alts    -- Identity case
 --------------------------------------------------
 --     Catch-all
 --------------------------------------------------
-mkCase scrut bndr ty alts = returnSmpl (Case scrut bndr ty alts)
+mkCase scrut bndr ty alts = return (Case scrut bndr ty alts)
 \end{code}