Move error-ids to MkCore (from PrelRules)
[ghc-hetmet.git] / compiler / typecheck / TcInstDcls.lhs
index 3e55844..2e74b6a 100644 (file)
@@ -1,44 +1,59 @@
 %
 %
+% (c) The University of Glasgow 2006
 % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
 %
 % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
 %
-\section[TcInstDecls]{Typechecking instance declarations}
+
+TcInstDecls: Typechecking instance declarations
 
 \begin{code}
 module TcInstDcls ( tcInstDecls1, tcInstDecls2 ) where
 
 
 \begin{code}
 module TcInstDcls ( tcInstDecls1, tcInstDecls2 ) where
 
-#include "HsVersions.h"
-
 import HsSyn
 import HsSyn
-import TcBinds         ( mkPragFun, tcPrags, badBootDeclErr )
-import TcClassDcl      ( tcMethodBind, mkMethodBind, badMethodErr, 
-                         tcClassDecl2, getGenericInstances )
-import TcRnMonad       
-import TcMType         ( tcSkolSigType, checkValidInstance, checkValidInstHead )
-import TcType          ( mkClassPred, tcSplitSigmaTy, tcSplitDFunHead, mkTyVarTys,
-                         SkolemInfo(InstSkol), tcSplitDFunTy )
-import Inst            ( tcInstClassOp, newDicts, instToId, showLIE, 
-                         getOverlapFlag, tcExtendLocalInstEnv )
-import InstEnv         ( mkLocalInstance, instanceDFunId )
-import TcDeriv         ( tcDeriving )
-import TcEnv           ( InstInfo(..), InstBindings(..), 
-                         newDFunName, tcExtendIdEnv
-                       )
-import TcHsType                ( kcHsSigType, tcHsKindedType )
-import TcUnify         ( checkSigTyVars )
-import TcSimplify      ( tcSimplifyCheck, tcSimplifySuperClasses )
-import Type            ( zipOpenTvSubst, substTheta, substTys )
-import DataCon         ( classDataCon )
-import Class           ( classBigSig )
-import Var             ( Id, idName, idType )
-import MkId            ( mkDictFunId )
-import Name            ( Name, getSrcLoc )
-import Maybe           ( catMaybes )
-import SrcLoc          ( srcLocSpan, unLoc, noLoc, Located(..), srcSpanStart )
-import ListSetOps      ( minusList )
+import TcBinds
+import TcTyClsDecls
+import TcClassDcl
+import TcRnMonad
+import TcMType
+import TcType
+import Inst
+import InstEnv
+import FamInst
+import FamInstEnv
+import MkCore  ( nO_METHOD_BINDING_ERROR_ID )
+import TcDeriv
+import TcEnv
+import RnSource ( addTcgDUs )
+import TcSimplify( simplifySuperClass )
+import TcHsType
+import TcUnify
+import Type
+import Coercion
+import TyCon
+import DataCon
+import Class
+import Var
+import VarSet    ( emptyVarSet )
+import CoreUtils  ( mkPiTypes )
+import CoreUnfold ( mkDFunUnfolding )
+import CoreSyn   ( Expr(Var) )
+import Id
+import MkId
+import Name
+import NameSet
+import DynFlags
+import SrcLoc
+import Util
 import Outputable
 import Bag
 import Outputable
 import Bag
-import BasicTypes      ( Activation( AlwaysActive ), InlineSpec(..) )
+import BasicTypes
+import HscTypes
 import FastString
 import FastString
+import Maybes  ( orElse )
+import Data.Maybe
+import Control.Monad
+import Data.List
+
+#include "HsVersions.h"
 \end{code}
 
 Typechecking instance declarations is done in two passes. The first
 \end{code}
 
 Typechecking instance declarations is done in two passes. The first
@@ -51,628 +66,1122 @@ pass, when the class-instance envs and GVE contain all the info from
 all the instance and value decls.  Indeed that's the reason we need
 two passes over the instance decls.
 
 all the instance and value decls.  Indeed that's the reason we need
 two passes over the instance decls.
 
-Here is the overall algorithm.
-Assume that we have an instance declaration
-
-    instance c => k (t tvs) where b
-
-\begin{enumerate}
-\item
-$LIE_c$ is the LIE for the context of class $c$
-\item
-$betas_bar$ is the free variables in the class method type, excluding the
-   class variable
-\item
-$LIE_cop$ is the LIE constraining a particular class method
-\item
-$tau_cop$ is the tau type of a class method
-\item
-$LIE_i$ is the LIE for the context of instance $i$
-\item
-$X$ is the instance constructor tycon
-\item
-$gammas_bar$ is the set of type variables of the instance
-\item
-$LIE_iop$ is the LIE for a particular class method instance
-\item
-$tau_iop$ is the tau type for this instance of a class method
-\item
-$alpha$ is the class variable
-\item
-$LIE_cop' = LIE_cop [X gammas_bar / alpha, fresh betas_bar]$
-\item
-$tau_cop' = tau_cop [X gammas_bar / alpha, fresh betas_bar]$
-\end{enumerate}
-
-ToDo: Update the list above with names actually in the code.
-
-\begin{enumerate}
-\item
-First, make the LIEs for the class and instance contexts, which means
-instantiate $thetaC [X inst_tyvars / alpha ]$, yielding LIElistC' and LIEC',
-and make LIElistI and LIEI.
-\item
-Then process each method in turn.
-\item
-order the instance methods according to the ordering of the class methods
-\item
-express LIEC' in terms of LIEI, yielding $dbinds_super$ or an error
-\item
-Create final dictionary function from bindings generated already
-\begin{pseudocode}
-df = lambda inst_tyvars
-       lambda LIEI
-        let Bop1
-            Bop2
-            ...
-            Bopn
-        and dbinds_super
-             in <op1,op2,...,opn,sd1,...,sdm>
-\end{pseudocode}
-Here, Bop1 \ldots Bopn bind the methods op1 \ldots opn,
-and $dbinds_super$ bind the superclass dictionaries sd1 \ldots sdm.
-\end{enumerate}
+
+Note [How instance declarations are translated]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Here is how we translation instance declarations into Core
+
+Running example:
+       class C a where
+          op1, op2 :: Ix b => a -> b -> b
+          op2 = <dm-rhs>
+
+       instance C a => C [a]
+          {-# INLINE [2] op1 #-}
+          op1 = <rhs>
+===>
+       -- Method selectors
+       op1,op2 :: forall a. C a => forall b. Ix b => a -> b -> b
+       op1 = ...
+       op2 = ...
+
+       -- Default methods get the 'self' dictionary as argument
+       -- so they can call other methods at the same type
+       -- Default methods get the same type as their method selector
+       $dmop2 :: forall a. C a => forall b. Ix b => a -> b -> b
+       $dmop2 = /\a. \(d:C a). /\b. \(d2: Ix b). <dm-rhs>
+              -- NB: type variables 'a' and 'b' are *both* in scope in <dm-rhs>
+              -- Note [Tricky type variable scoping]
+
+       -- A top-level definition for each instance method
+       -- Here op1_i, op2_i are the "instance method Ids"
+       -- The INLINE pragma comes from the user pragma
+       {-# INLINE [2] op1_i #-}  -- From the instance decl bindings
+       op1_i, op2_i :: forall a. C a => forall b. Ix b => [a] -> b -> b
+       op1_i = /\a. \(d:C a). 
+              let this :: C [a]
+                  this = df_i a d
+                    -- Note [Subtle interaction of recursion and overlap]
+
+                  local_op1 :: forall b. Ix b => [a] -> b -> b
+                  local_op1 = <rhs>
+                    -- Source code; run the type checker on this
+                    -- NB: Type variable 'a' (but not 'b') is in scope in <rhs>
+                    -- Note [Tricky type variable scoping]
+
+              in local_op1 a d
+
+       op2_i = /\a \d:C a. $dmop2 [a] (df_i a d) 
+
+       -- The dictionary function itself
+       {-# NOINLINE CONLIKE df_i #-}   -- Never inline dictionary functions
+       df_i :: forall a. C a -> C [a]
+       df_i = /\a. \d:C a. MkC (op1_i a d) (op2_i a d)
+               -- But see Note [Default methods in instances]
+               -- We can't apply the type checker to the default-method call
+
+        -- Use a RULE to short-circuit applications of the class ops
+       {-# RULE "op1@C[a]" forall a, d:C a. 
+                            op1 [a] (df_i d) = op1_i a d #-}
+
+Note [Instances and loop breakers]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+* Note that df_i may be mutually recursive with both op1_i and op2_i.
+  It's crucial that df_i is not chosen as the loop breaker, even 
+  though op1_i has a (user-specified) INLINE pragma.
+
+* Instead the idea is to inline df_i into op1_i, which may then select
+  methods from the MkC record, and thereby break the recursion with
+  df_i, leaving a *self*-recurisve op1_i.  (If op1_i doesn't call op at
+  the same type, it won't mention df_i, so there won't be recursion in
+  the first place.)  
+
+* If op1_i is marked INLINE by the user there's a danger that we won't
+  inline df_i in it, and that in turn means that (since it'll be a
+  loop-breaker because df_i isn't), op1_i will ironically never be 
+  inlined.  But this is OK: the recursion breaking happens by way of
+  a RULE (the magic ClassOp rule above), and RULES work inside InlineRule
+  unfoldings. See Note [RULEs enabled in SimplGently] in SimplUtils
+
+Note [ClassOp/DFun selection]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+One thing we see a lot is stuff like
+    op2 (df d1 d2)
+where 'op2' is a ClassOp and 'df' is DFun.  Now, we could inline *both*
+'op2' and 'df' to get
+     case (MkD ($cop1 d1 d2) ($cop2 d1 d2) ... of
+       MkD _ op2 _ _ _ -> op2
+And that will reduce to ($cop2 d1 d2) which is what we wanted.
+
+But it's tricky to make this work in practice, because it requires us to 
+inline both 'op2' and 'df'.  But neither is keen to inline without having
+seen the other's result; and it's very easy to get code bloat (from the 
+big intermediate) if you inline a bit too much.
+
+Instead we use a cunning trick.
+ * We arrange that 'df' and 'op2' NEVER inline.  
+
+ * We arrange that 'df' is ALWAYS defined in the sylised form
+      df d1 d2 = MkD ($cop1 d1 d2) ($cop2 d1 d2) ...
+
+ * We give 'df' a magical unfolding (DFunUnfolding [$cop1, $cop2, ..])
+   that lists its methods.
+
+ * We make CoreUnfold.exprIsConApp_maybe spot a DFunUnfolding and return
+   a suitable constructor application -- inlining df "on the fly" as it 
+   were.
+
+ * We give the ClassOp 'op2' a BuiltinRule that extracts the right piece
+   iff its argument satisfies exprIsConApp_maybe.  This is done in
+   MkId mkDictSelId
+
+ * We make 'df' CONLIKE, so that shared uses stil match; eg
+      let d = df d1 d2
+      in ...(op2 d)...(op1 d)...
+
+Note [Single-method classes]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+If the class has just one method (or, more accurately, just one element
+of {superclasses + methods}), then we still use the *same* strategy
+
+   class C a where op :: a -> a
+   instance C a => C [a] where op = <blah>
+
+We translate the class decl into a newtype, which just gives
+a top-level axiom:
+
+   axiom Co:C a :: C a ~ (a->a)
+
+   op :: forall a. C a -> (a -> a)
+   op a d = d |> (Co:C a)
+
+   MkC :: forall a. (a->a) -> C a
+   MkC = /\a.\op. op |> (sym Co:C a)
+
+   df :: forall a. C a => C [a]
+   {-# NOINLINE df   DFun[ $cop_list ] #-}
+   df = /\a. \d. MkC ($cop_list a d)
+
+   $cop_list :: forall a. C a => [a] -> [a]
+   $cop_list = <blah>
+
+The "constructor" MkC expands to a cast, as does the class-op selector.
+The RULE works just like for multi-field dictionaries:
+
+  * (df a d) returns (Just (MkC,..,[$cop_list a d])) 
+    to exprIsConApp_Maybe
+
+  * The RULE for op picks the right result
+
+This is a bit of a hack, because (df a d) isn't *really* a constructor
+application.  But it works just fine in this case, exprIsConApp_maybe
+is otherwise used only when we hit a case expression which will have
+a real data constructor in it.
+
+The biggest reason for doing it this way, apart from uniformity, is
+that we want to be very careful when we have
+    instance C a => C [a] where
+      {-# INLINE op #-}
+      op = ...
+then we'll get an INLINE pragma on $cop_list but it's important that
+$cop_list only inlines when it's applied to *two* arguments (the
+dictionary and the list argument
+
+The danger is that we'll get something like
+      op_list :: C a => [a] -> [a]
+      op_list = /\a.\d. $cop_list a d
+and then we'll eta expand, and then we'll inline TOO EARLY. This happened in 
+Trac #3772 and I spent far too long fiddling around trying to fix it.
+Look at the test for Trac #3772.
+
+     (Note: re-reading the above, I can't see how using the
+            uniform story solves the problem.)
+
+Note [Subtle interaction of recursion and overlap]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Consider this
+  class C a where { op1,op2 :: a -> a }
+  instance C a => C [a] where
+    op1 x = op2 x ++ op2 x
+    op2 x = ...
+  instance C [Int] where
+    ...
+
+When type-checking the C [a] instance, we need a C [a] dictionary (for
+the call of op2).  If we look up in the instance environment, we find
+an overlap.  And in *general* the right thing is to complain (see Note
+[Overlapping instances] in InstEnv).  But in *this* case it's wrong to
+complain, because we just want to delegate to the op2 of this same
+instance.  
+
+Why is this justified?  Because we generate a (C [a]) constraint in 
+a context in which 'a' cannot be instantiated to anything that matches
+other overlapping instances, or else we would not be excecuting this
+version of op1 in the first place.
+
+It might even be a bit disguised:
+
+  nullFail :: C [a] => [a] -> [a]
+  nullFail x = op2 x ++ op2 x
+
+  instance C a => C [a] where
+    op1 x = nullFail x
+
+Precisely this is used in package 'regex-base', module Context.hs.
+See the overlapping instances for RegexContext, and the fact that they
+call 'nullFail' just like the example above.  The DoCon package also
+does the same thing; it shows up in module Fraction.hs
+
+Conclusion: when typechecking the methods in a C [a] instance, we want
+to have C [a] available.  That is why we have the strange local
+definition for 'this' in the definition of op1_i in the example above.
+We can typecheck the defintion of local_op1, and when doing tcSimplifyCheck
+we supply 'this' as a given dictionary.  Only needed, though, if there
+are some type variables involved; otherwise there can be no overlap and
+none of this arises.
+
+Note [Tricky type variable scoping]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+In our example
+       class C a where
+          op1, op2 :: Ix b => a -> b -> b
+          op2 = <dm-rhs>
+
+       instance C a => C [a]
+          {-# INLINE [2] op1 #-}
+          op1 = <rhs>
+
+note that 'a' and 'b' are *both* in scope in <dm-rhs>, but only 'a' is
+in scope in <rhs>.  In particular, we must make sure that 'b' is in
+scope when typechecking <dm-rhs>.  This is achieved by subFunTys,
+which brings appropriate tyvars into scope. This happens for both
+<dm-rhs> and for <rhs>, but that doesn't matter: the *renamer* will have
+complained if 'b' is mentioned in <rhs>.
+
 
 
 %************************************************************************
 
 
 %************************************************************************
-%*                                                                     *
+%*                                                                      *
 \subsection{Extracting instance decls}
 \subsection{Extracting instance decls}
-%*                                                                     *
+%*                                                                      *
 %************************************************************************
 
 Gather up the instance declarations from their various sources
 
 \begin{code}
 %************************************************************************
 
 Gather up the instance declarations from their various sources
 
 \begin{code}
-tcInstDecls1   -- Deal with both source-code and imported instance decls
-   :: [LTyClDecl Name]         -- For deriving stuff
-   -> [LInstDecl Name]         -- Source code instance decls
-   -> TcM (TcGblEnv,           -- The full inst env
-          [InstInfo],          -- Source-code instance decls to process; 
-                               -- contains all dfuns for this module
-          HsValBinds Name)     -- Supporting bindings for derived instances
-
-tcInstDecls1 tycl_decls inst_decls
+tcInstDecls1    -- Deal with both source-code and imported instance decls
+   :: [LTyClDecl Name]          -- For deriving stuff
+   -> [LInstDecl Name]          -- Source code instance decls
+   -> [LDerivDecl Name]         -- Source code stand-alone deriving decls
+   -> TcM (TcGblEnv,            -- The full inst env
+           [InstInfo Name],     -- Source-code instance decls to process;
+                                -- contains all dfuns for this module
+           HsValBinds Name)     -- Supporting bindings for derived instances
+
+tcInstDecls1 tycl_decls inst_decls deriv_decls
   = checkNoErrs $
   = checkNoErrs $
-       -- Stop if addInstInfos etc discovers any errors
-       -- (they recover, so that we get more than one error each round)
-
-       -- (1) Do the ordinary instance declarations
-    mappM tcLocalInstDecl1 inst_decls    `thenM` \ local_inst_infos ->
-
-    let
-       local_inst_info = catMaybes local_inst_infos
-       clas_decls      = filter (isClassDecl.unLoc) tycl_decls
-    in
-       -- (2) Instances from generic class declarations
-    getGenericInstances clas_decls     `thenM` \ generic_inst_info -> 
-
-       -- Next, construct the instance environment so far, consisting of
-       --      a) local instance decls
-       --      b) generic instances
-    addInsts local_inst_info   $
-    addInsts generic_inst_info $
-
-       -- (3) Compute instances from "deriving" clauses; 
-       -- This stuff computes a context for the derived instance decl, so it
-       -- needs to know about all the instances possible; hence inst_env4
-    tcDeriving tycl_decls      `thenM` \ (deriv_inst_info, deriv_binds) ->
-    addInsts deriv_inst_info   $
-
-    getGblEnv                  `thenM` \ gbl_env ->
-    returnM (gbl_env, 
-            generic_inst_info ++ deriv_inst_info ++ local_inst_info,
-            deriv_binds)
-
-addInsts :: [InstInfo] -> TcM a -> TcM a
+    do {        -- Stop if addInstInfos etc discovers any errors
+                -- (they recover, so that we get more than one error each
+                -- round)
+
+                -- (1) Do class and family instance declarations
+       ; idx_tycons        <- mapAndRecoverM (tcFamInstDecl TopLevel) $
+                                     filter (isFamInstDecl . unLoc) tycl_decls 
+       ; local_info_tycons <- mapAndRecoverM tcLocalInstDecl1  inst_decls
+
+       ; let { (local_info,
+                at_tycons_s)   = unzip local_info_tycons
+             ; at_idx_tycons   = concat at_tycons_s ++ idx_tycons
+             ; clas_decls      = filter (isClassDecl.unLoc) tycl_decls
+             ; implicit_things = concatMap implicitTyThings at_idx_tycons
+            ; aux_binds       = mkRecSelBinds at_idx_tycons
+             }
+
+                -- (2) Add the tycons of indexed types and their implicit
+                --     tythings to the global environment
+       ; tcExtendGlobalEnv (at_idx_tycons ++ implicit_things) $ do {
+
+                -- (3) Instances from generic class declarations
+       ; generic_inst_info <- getGenericInstances clas_decls
+
+                -- Next, construct the instance environment so far, consisting
+                -- of
+                --   (a) local instance decls
+                --   (b) generic instances
+                --   (c) local family instance decls
+       ; addInsts local_info         $
+         addInsts generic_inst_info  $
+         addFamInsts at_idx_tycons   $ do {
+
+                -- (4) Compute instances from "deriving" clauses;
+                -- This stuff computes a context for the derived instance
+                -- decl, so it needs to know about all the instances possible
+                -- NB: class instance declarations can contain derivings as
+                --     part of associated data type declarations
+        failIfErrsM            -- If the addInsts stuff gave any errors, don't
+                               -- try the deriving stuff, becuase that may give
+                               -- more errors still
+       ; (deriv_inst_info, deriv_binds, deriv_dus) 
+              <- tcDeriving tycl_decls inst_decls deriv_decls
+       ; gbl_env <- addInsts deriv_inst_info getGblEnv
+       ; return ( addTcgDUs gbl_env deriv_dus,
+                  generic_inst_info ++ deriv_inst_info ++ local_info,
+                  aux_binds `plusHsValBinds` deriv_binds)
+    }}}
+
+addInsts :: [InstInfo Name] -> TcM a -> TcM a
 addInsts infos thing_inside
   = tcExtendLocalInstEnv (map iSpec infos) thing_inside
 addInsts infos thing_inside
   = tcExtendLocalInstEnv (map iSpec infos) thing_inside
-\end{code} 
+
+addFamInsts :: [TyThing] -> TcM a -> TcM a
+addFamInsts tycons thing_inside
+  = tcExtendLocalFamInstEnv (map mkLocalFamInstTyThing tycons) thing_inside
+  where
+    mkLocalFamInstTyThing (ATyCon tycon) = mkLocalFamInst tycon
+    mkLocalFamInstTyThing tything        = pprPanic "TcInstDcls.addFamInsts"
+                                                    (ppr tything)
+\end{code}
 
 \begin{code}
 
 \begin{code}
-tcLocalInstDecl1 :: LInstDecl Name 
-                -> TcM (Maybe InstInfo)        -- Nothing if there was an error
-       -- A source-file instance declaration
-       -- Type-check all the stuff before the "where"
-       --
-       -- We check for respectable instance type, and context
-tcLocalInstDecl1 decl@(L loc (InstDecl poly_ty binds uprags ats))
-  -- !!!TODO: Handle the `ats' parameter!!! -=chak
-  =    -- Prime error recovery, set source location
-    recoverM (returnM Nothing)         $
-    setSrcSpan loc                     $
-    addErrCtxt (instDeclCtxt1 poly_ty) $
-
-    do { is_boot <- tcIsHsBoot
-       ; checkTc (not is_boot || (isEmptyLHsBinds binds && null uprags))
-                 badBootDeclErr
-
-       -- Typecheck the instance type itself.  We can't use 
-       -- tcHsSigType, because it's not a valid user type.
-       ; kinded_ty <- kcHsSigType poly_ty
-       ; poly_ty'  <- tcHsKindedType kinded_ty
-       ; let (tyvars, theta, tau) = tcSplitSigmaTy poly_ty'
-       
-       ; (clas, inst_tys) <- checkValidInstHead tau
-       ; checkValidInstance tyvars theta clas inst_tys
-
-       ; dfun_name <- newDFunName clas inst_tys (srcSpanStart loc)
-       ; overlap_flag <- getOverlapFlag
-       ; let dfun  = mkDictFunId dfun_name tyvars theta clas inst_tys
-             ispec = mkLocalInstance dfun overlap_flag
-
-       ; return (Just (InstInfo { iSpec = ispec, iBinds = VanillaInst binds uprags })) }
+tcLocalInstDecl1 :: LInstDecl Name
+                 -> TcM (InstInfo Name, [TyThing])
+        -- A source-file instance declaration
+        -- Type-check all the stuff before the "where"
+        --
+        -- We check for respectable instance type, and context
+tcLocalInstDecl1 (L loc (InstDecl poly_ty binds uprags ats))
+  = setSrcSpan loc                     $
+    addErrCtxt (instDeclCtxt1 poly_ty)  $
+
+    do  { is_boot <- tcIsHsBoot
+        ; checkTc (not is_boot || (isEmptyLHsBinds binds && null uprags))
+                  badBootDeclErr
+
+        ; (tyvars, theta, tau) <- tcHsInstHead poly_ty
+
+        -- Now, check the validity of the instance.
+        ; (clas, inst_tys) <- checkValidInstance poly_ty tyvars theta tau
+
+        -- Next, process any associated types.
+        ; idx_tycons <- recoverM (return []) $
+                    do { idx_tycons <- checkNoErrs $ 
+                                        mapAndRecoverM (tcFamInstDecl NotTopLevel) ats
+                       ; checkValidAndMissingATs clas (tyvars, inst_tys)
+                                                 (zip ats idx_tycons)
+                       ; return idx_tycons }
+
+        -- Finally, construct the Core representation of the instance.
+        -- (This no longer includes the associated types.)
+        ; dfun_name <- newDFunName clas inst_tys (getLoc poly_ty)
+               -- Dfun location is that of instance *header*
+        ; overlap_flag <- getOverlapFlag
+        ; let (eq_theta,dict_theta) = partition isEqPred theta
+              theta'         = eq_theta ++ dict_theta
+              dfun           = mkDictFunId dfun_name tyvars theta' clas inst_tys
+              ispec          = mkLocalInstance dfun overlap_flag
+
+        ; return (InstInfo { iSpec  = ispec,
+                             iBinds = VanillaInst binds uprags False },
+                  idx_tycons)
+        }
+  where
+    -- We pass in the source form and the type checked form of the ATs.  We
+    -- really need the source form only to be able to produce more informative
+    -- error messages.
+    checkValidAndMissingATs :: Class
+                            -> ([TyVar], [TcType])     -- instance types
+                            -> [(LTyClDecl Name,       -- source form of AT
+                                 TyThing)]            -- Core form of AT
+                            -> TcM ()
+    checkValidAndMissingATs clas inst_tys ats
+      = do { -- Issue a warning for each class AT that is not defined in this
+             -- instance.
+           ; let class_ats   = map tyConName (classATs clas)
+                 defined_ats = listToNameSet . map (tcdName.unLoc.fst)  $ ats
+                 omitted     = filterOut (`elemNameSet` defined_ats) class_ats
+           ; warn <- doptM Opt_WarnMissingMethods
+           ; mapM_ (warnTc warn . omittedATWarn) omitted
+
+             -- Ensure that all AT indexes that correspond to class parameters
+             -- coincide with the types in the instance head.  All remaining
+             -- AT arguments must be variables.  Also raise an error for any
+             -- type instances that are not associated with this class.
+           ; mapM_ (checkIndexes clas inst_tys) ats
+           }
+
+    checkIndexes clas inst_tys (hsAT, ATyCon tycon)
+-- !!!TODO: check that this does the Right Thing for indexed synonyms, too!
+      = checkIndexes' clas inst_tys hsAT
+                      (tyConTyVars tycon,
+                       snd . fromJust . tyConFamInst_maybe $ tycon)
+    checkIndexes _ _ _ = panic "checkIndexes"
+
+    checkIndexes' clas (instTvs, instTys) hsAT (atTvs, atTys)
+      = let atName = tcdName . unLoc $ hsAT
+        in
+        setSrcSpan (getLoc hsAT)       $
+        addErrCtxt (atInstCtxt atName) $
+        case find ((atName ==) . tyConName) (classATs clas) of
+          Nothing     -> addErrTc $ badATErr clas atName  -- not in this class
+          Just atycon ->
+                -- The following is tricky!  We need to deal with three
+                -- complications: (1) The AT possibly only uses a subset of
+                -- the class parameters as indexes and those it uses may be in
+                -- a different order; (2) the AT may have extra arguments,
+                -- which must be type variables; and (3) variables in AT and
+                -- instance head will be different `Name's even if their
+                -- source lexemes are identical.
+               --
+               -- e.g.    class C a b c where 
+               --           data D b a :: * -> *           -- NB (1) b a, omits c
+               --         instance C [x] Bool Char where 
+               --           data D Bool [x] v = MkD x [v]  -- NB (2) v
+               --                -- NB (3) the x in 'instance C...' have differnt
+               --                --        Names to x's in 'data D...'
+                --
+                -- Re (1), `poss' contains a permutation vector to extract the
+                -- class parameters in the right order.
+                --
+                -- Re (2), we wrap the (permuted) class parameters in a Maybe
+                -- type and use Nothing for any extra AT arguments.  (First
+                -- equation of `checkIndex' below.)
+                --
+                -- Re (3), we replace any type variable in the AT parameters
+                -- that has the same source lexeme as some variable in the
+                -- instance types with the instance type variable sharing its
+                -- source lexeme.
+                --
+                let poss :: [Int]
+                    -- For *associated* type families, gives the position
+                    -- of that 'TyVar' in the class argument list (0-indexed)
+                   -- e.g.  class C a b c where { type F c a :: *->* }
+                   --       Then we get Just [2,0]
+                   poss = catMaybes [ tv `elemIndex` classTyVars clas 
+                                     | tv <- tyConTyVars atycon]
+                       -- We will get Nothings for the "extra" type 
+                       -- variables in an associated data type
+                       -- e.g. class C a where { data D a :: *->* }
+                       -- here D gets arity 2 and has two tyvars
+
+                    relevantInstTys = map (instTys !!) poss
+                    instArgs        = map Just relevantInstTys ++
+                                      repeat Nothing  -- extra arguments
+                    renaming        = substSameTyVar atTvs instTvs
+                in
+                zipWithM_ checkIndex (substTys renaming atTys) instArgs
+
+    checkIndex ty Nothing
+      | isTyVarTy ty         = return ()
+      | otherwise            = addErrTc $ mustBeVarArgErr ty
+    checkIndex ty (Just instTy)
+      | ty `tcEqType` instTy = return ()
+      | otherwise            = addErrTc $ wrongATArgErr ty instTy
+
+    listToNameSet = addListToNameSet emptyNameSet
+
+    substSameTyVar []       _            = emptyTvSubst
+    substSameTyVar (tv:tvs) replacingTvs =
+      let replacement = case find (tv `sameLexeme`) replacingTvs of
+                        Nothing  -> mkTyVarTy tv
+                        Just rtv -> mkTyVarTy rtv
+          --
+          tv1 `sameLexeme` tv2 =
+            nameOccName (tyVarName tv1) == nameOccName (tyVarName tv2)
+      in
+      extendTvSubst (substSameTyVar tvs replacingTvs) tv replacement
 \end{code}
 
 
 %************************************************************************
 \end{code}
 
 
 %************************************************************************
-%*                                                                     *
-\subsection{Type-checking instance declarations, pass 2}
-%*                                                                     *
+%*                                                                      *
+      Type-checking instance declarations, pass 2
+%*                                                                      *
 %************************************************************************
 
 \begin{code}
 %************************************************************************
 
 \begin{code}
-tcInstDecls2 :: [LTyClDecl Name] -> [InstInfo] 
-            -> TcM (LHsBinds Id, TcLclEnv)
--- (a) From each class declaration, 
---     generate any default-method bindings
+tcInstDecls2 :: [LTyClDecl Name] -> [InstInfo Name]
+             -> TcM (LHsBinds Id)
+-- (a) From each class declaration,
+--      generate any default-method bindings
 -- (b) From each instance decl
 -- (b) From each instance decl
---     generate the dfun binding
+--      generate the dfun binding
 
 tcInstDecls2 tycl_decls inst_decls
 
 tcInstDecls2 tycl_decls inst_decls
-  = do {       -- (a) Default methods from class decls
-         (dm_binds_s, dm_ids_s) <- mapAndUnzipM tcClassDecl2 $
-                                   filter (isClassDecl.unLoc) tycl_decls
-       ; tcExtendIdEnv (concat dm_ids_s)       $ do 
-    
-               -- (b) instance declarations
-       ; inst_binds_s <- mappM tcInstDecl2 inst_decls
-
-               -- Done
-       ; let binds = unionManyBags dm_binds_s `unionBags` 
-                     unionManyBags inst_binds_s
-       ; tcl_env <- getLclEnv          -- Default method Ids in here
-       ; returnM (binds, tcl_env) }
+  = do  { -- (a) Default methods from class decls
+          let class_decls = filter (isClassDecl . unLoc) tycl_decls
+        ; dm_binds_s <- mapM tcClassDecl2 class_decls
+        ; let dm_binds = unionManyBags dm_binds_s
+                                    
+          -- (b) instance declarations
+       ; let dm_ids = collectHsBindsBinders dm_binds
+             -- Add the default method Ids (again)
+             -- See Note [Default methods and instances]
+        ; inst_binds_s <- tcExtendIdEnv dm_ids $
+                          mapM tcInstDecl2 inst_decls
+
+          -- Done
+        ; return (dm_binds `unionBags` unionManyBags inst_binds_s) }
+
+tcInstDecl2 :: InstInfo Name -> TcM (LHsBinds Id)
+tcInstDecl2 (InstInfo { iSpec = ispec, iBinds = ibinds })
+  = recoverM (return emptyLHsBinds)             $
+    setSrcSpan loc                              $
+    addErrCtxt (instDeclCtxt2 (idType dfun_id)) $ 
+    tc_inst_decl2 dfun_id ibinds
+ where
+    dfun_id = instanceDFunId ispec
+    loc     = getSrcSpan dfun_id
 \end{code}
 
 \end{code}
 
-======= New documentation starts here (Sept 92)         ==============
-
-The main purpose of @tcInstDecl2@ is to return a @HsBinds@ which defines
-the dictionary function for this instance declaration. For example
-\begin{verbatim}
-       instance Foo a => Foo [a] where
-               op1 x = ...
-               op2 y = ...
-\end{verbatim}
-might generate something like
-\begin{verbatim}
-       dfun.Foo.List dFoo_a = let op1 x = ...
-                                  op2 y = ...
-                              in
-                                  Dict [op1, op2]
-\end{verbatim}
-
-HOWEVER, if the instance decl has no context, then it returns a
-bigger @HsBinds@ with declarations for each method.  For example
-\begin{verbatim}
-       instance Foo [a] where
-               op1 x = ...
-               op2 y = ...
-\end{verbatim}
-might produce
-\begin{verbatim}
-       dfun.Foo.List a = Dict [Foo.op1.List a, Foo.op2.List a]
-       const.Foo.op1.List a x = ...
-       const.Foo.op2.List a y = ...
-\end{verbatim}
-This group may be mutually recursive, because (for example) there may
-be no method supplied for op2 in which case we'll get
-\begin{verbatim}
-       const.Foo.op2.List a = default.Foo.op2 (dfun.Foo.List a)
-\end{verbatim}
-that is, the default method applied to the dictionary at this type.
-
-What we actually produce in either case is:
-
-       AbsBinds [a] [dfun_theta_dicts]
-                [(dfun.Foo.List, d)] ++ (maybe) [(const.Foo.op1.List, op1), ...]
-                { d = (sd1,sd2, ..., op1, op2, ...)
-                  op1 = ...
-                  op2 = ...
-                }
-
-The "maybe" says that we only ask AbsBinds to make global constant methods
-if the dfun_theta is empty.
-
-               
-For an instance declaration, say,
-
-       instance (C1 a, C2 b) => C (T a b) where
-               ...
-
-where the {\em immediate} superclasses of C are D1, D2, we build a dictionary
-function whose type is
-
-       (C1 a, C2 b, D1 (T a b), D2 (T a b)) => C (T a b)
-
-Notice that we pass it the superclass dictionaries at the instance type; this
-is the ``Mark Jones optimisation''.  The stuff before the "=>" here
-is the @dfun_theta@ below.
-
-First comes the easy case of a non-local instance decl.
+See Note [Default methods and instances]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+The default method Ids are already in the type environment (see Note
+[Default method Ids and Template Haskell] in TcTyClsDcls), BUT they
+don't have their InlinePragmas yet.  Usually that would not matter,
+because the simplifier propagates information from binding site to
+use.  But, unusually, when compiling instance decls we *copy* the
+INLINE pragma from the default method to the method for that
+particular operation (see Note [INLINE and default methods] below).
 
 
+So right here in tcInstDecl2 we must re-extend the type envt with
+the default method Ids replete with their INLINE pragmas.  Urk.
 
 \begin{code}
 
 \begin{code}
-tcInstDecl2 :: InstInfo -> TcM (LHsBinds Id)
+tc_inst_decl2 :: Id -> InstBindings Name -> TcM (LHsBinds Id)
 -- Returns a binding for the dfun
 -- Returns a binding for the dfun
+tc_inst_decl2 dfun_id inst_binds
+ = do { let rigid_info = InstSkol
+            inst_ty    = idType dfun_id
+            loc        = getSrcSpan dfun_id
+
+        -- Instantiate the instance decl with skolem constants
+       ; (inst_tyvars', dfun_theta', inst_head') <- tcSkolSigType rigid_info inst_ty
+                -- These inst_tyvars' scope over the 'where' part
+                -- Those tyvars are inside the dfun_id's type, which is a bit
+                -- bizarre, but OK so long as you realise it!
+       ; let
+            (clas, inst_tys') = tcSplitDFunHead inst_head'
+            (class_tyvars, sc_theta, sc_sels, op_items) = classBigSig clas
+
+             -- Instantiate the super-class context with inst_tys
+            sc_theta' = substTheta (zipOpenTvSubst class_tyvars inst_tys') sc_theta
+
+         -- Create dictionary Ids from the specified instance contexts.
+       ; dfun_ev_vars <- newEvVars dfun_theta'
+       ; self_dict    <- newSelfDict clas inst_tys'
+                -- Default-method Ids may be mentioned in synthesised RHSs,
+                -- but they'll already be in the environment.
+
+       -- Cook up a binding for "self = df d1 .. dn",
+       -- to use in each method binding
+       -- Why?  See Note [Subtle interaction of recursion and overlap]
+       ; let self_ev_bind = EvBind self_dict $ 
+                            EvDFunApp dfun_id (mkTyVarTys inst_tyvars') dfun_ev_vars
+
+       -- Deal with 'SPECIALISE instance' pragmas
+       -- See Note [SPECIALISE instance pragmas]
+       ; spec_info <- tcSpecInstPrags dfun_id inst_binds
+
+        -- Typecheck the methods
+       ; (meth_ids, meth_binds) 
+           <- tcExtendTyVarEnv inst_tyvars' $
+              tcInstanceMethods dfun_id clas inst_tyvars' dfun_ev_vars 
+                               inst_tys' self_ev_bind spec_info
+                                op_items inst_binds
+
+         -- Figure out bindings for the superclass context
+       ; let tc_sc = tcSuperClass inst_tyvars' dfun_ev_vars self_ev_bind
+             (sc_eqs, sc_dicts) = splitAt (classSCNEqs clas) sc_theta'
+       ; (sc_dict_ids, sc_binds) <- ASSERT( equalLength sc_sels sc_dicts )
+                                    ASSERT( all isEqPred sc_eqs )
+                                    mapAndUnzipM tc_sc (sc_sels `zip` sc_dicts)
+
+                                   -- NOT FINISHED!
+       ; (_eq_sc_binds, sc_eq_vars) <- checkConstraints InstSkol emptyVarSet 
+                                           inst_tyvars' dfun_ev_vars $
+                                      emitWanteds ScOrigin sc_eqs
+
+       -- Create the result bindings
+       ; let dict_constr       = classDataCon clas
+            dict_bind         = mkVarBind self_dict dict_rhs
+             dict_rhs          = foldl mk_app inst_constr dict_and_meth_ids
+             dict_and_meth_ids = sc_dict_ids ++ meth_ids
+            inst_constr   = L loc $ wrapId (mkWpEvVarApps sc_eq_vars 
+                                             <.> mkWpTyApps inst_tys')
+                                           (dataConWrapId dict_constr)
+                     -- We don't produce a binding for the dict_constr; instead we
+                     -- rely on the simplifier to unfold this saturated application
+                     -- We do this rather than generate an HsCon directly, because
+                     -- it means that the special cases (e.g. dictionary with only one
+                     -- member) are dealt with by the common MkId.mkDataConWrapId code rather
+                     -- than needing to be repeated here.
+
+            mk_app :: LHsExpr Id -> Id -> LHsExpr Id
+            mk_app fun arg_id = L loc (HsApp fun (L loc (wrapId arg_wrapper arg_id)))
+            arg_wrapper = mkWpEvVarApps dfun_ev_vars <.> mkWpTyApps (mkTyVarTys inst_tyvars')
+
+               -- Do not inline the dfun; instead give it a magic DFunFunfolding
+               -- See Note [ClassOp/DFun selection]
+               -- See also note [Single-method classes]
+             dfun_id_w_fun = dfun_id  
+                             `setIdUnfolding`  mkDFunUnfolding inst_ty (map Var dict_and_meth_ids)
+                                                       -- Not right for equality superclasses
+                             `setInlinePragma` dfunInlinePragma
+
+             (spec_inst_prags, _) = spec_info
+             main_bind = AbsBinds { abs_tvs = inst_tyvars'
+                                  , abs_ev_vars = dfun_ev_vars
+                                  , abs_exports = [(inst_tyvars', dfun_id_w_fun, self_dict, 
+                                                    SpecPrags spec_inst_prags)]
+                                  , abs_ev_binds = emptyTcEvBinds
+                                  , abs_binds = unitBag dict_bind }
+
+       ; return (unitBag (L loc main_bind) `unionBags` 
+                listToBag meth_binds      `unionBags` 
+                 listToBag sc_binds)
+       }
+
+------------------------------
+tcSpecInstPrags :: DFunId -> InstBindings Name 
+                -> TcM ([Located TcSpecPrag], PragFun)
+tcSpecInstPrags _ (NewTypeDerived {})
+  = return ([], \_ -> [])
+tcSpecInstPrags dfun_id (VanillaInst binds uprags _)
+  = do { spec_inst_prags <- mapM (wrapLocM (tcSpecInst dfun_id)) $
+                            filter isSpecInstLSig uprags
+            -- The filter removes the pragmas for methods
+       ; return (spec_inst_prags, mkPragFun uprags binds) }
+
+------------------------------
+tcSuperClass :: [TyVar] -> [EvVar]
+            -> EvBind
+            -> (Id, PredType) -> TcM (Id, LHsBind Id)
+-- Build a top level decl like
+--     sc_op = /\a \d. let this = ... in 
+--                     let sc = ... in
+--                     sc
+-- The "this" part is just-in-case (discarded if not used)
+-- See Note [Recursive superclasses]
+tcSuperClass tyvars dicts 
+             self_ev_bind@(EvBind self_dict _)
+            (sc_sel, sc_pred)
+  = do { (ev_binds, wanted, sc_dict)
+             <- newImplication InstSkol emptyVarSet tyvars dicts $
+                emitWanted ScOrigin sc_pred
+
+       ; simplifySuperClass self_dict wanted
+         -- We include self_dict in the 'givens'; the simplifier
+         -- is clever enough to stop sc_pred geting bound by just 
+         -- selecting from self_dict!!
+
+       ; uniq <- newUnique
+       ; let sc_op_ty   = mkForAllTys tyvars $ mkPiTypes dicts (varType sc_dict)
+            sc_op_name = mkDerivedInternalName mkClassOpAuxOcc uniq
+                                               (getName sc_sel)
+            sc_op_id   = mkLocalId sc_op_name sc_op_ty
+            sc_op_bind = VarBind { var_id = sc_op_id, var_inline = False
+                                  , var_rhs = L noSrcSpan $ wrapId sc_wrapper sc_dict }
+             sc_wrapper = mkWpTyLams tyvars
+                          <.> mkWpLams dicts
+                          <.> mkWpLet (EvBinds (unitBag self_ev_bind))
+                         <.> mkWpLet ev_binds
+
+       ; return (sc_op_id, noLoc sc_op_bind) }
+\end{code}
 
 
-               ** Explain superclass stuff ***
+Note [Recursive superclasses]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+See Trac #1470 for why we would *like* to add "self_dict" to the 
+available instances here.  But we can't do so because then the superclases
+get satisfied by selection from self_dict, and that leads to an immediate
+loop.  What we need is to add self_dict to Avails without adding its 
+superclasses, and we currently have no way to do that.
 
 
--- Derived newtype instances
--- In the case of a newtype, things are rather easy
---     class Show a => Foo a b where ...
---     newtype T a = MkT (Tree [a]) deriving( Foo Int )
--- The newtype gives an FC axiom looking like
---     axiom CoT a :: Tree [a] = T a
---
--- So all need is to generate a binding looking like
---     dfunFooT :: forall a. (Show (T a), Foo Int (Tree [a]) => Foo Int (T a)
---     dfunFooT = /\a. \(ds:Show (T a) (df:Foo (Tree [a])).
---               case df `cast` (Foo Int (CoT a)) of
---                  Foo _ op1 .. opn -> Foo ds op1 .. opn
-
-tcInstDecl2 (InstInfo { iSpec = ispec, 
-                       iBinds = NewTypeDerived rep_tys })
-  = do { let dfun_id = instanceDFunId ispec 
-             rigid_info = InstSkol dfun_id
-             origin     = SigOrigin rigid_info
-             inst_ty    = idType dfun_id
-       ; (tvs, theta, inst_head) <- tcSkolSigType rigid_info inst_ty
-       ; ASSERT( isSingleton theta )   -- Always the case for NewTypeDerived
-         rep_dict <- newDict origin (head theta)
-
-       ; let rep_dict_id = instToId rep_dict
-             cast = 
-             co_fn = CoTyLams tvs <.> CoLams [rep_dict_id] <.> ExprCoFn cast
-
-       ; return (unitBag (VarBind dfun_id (HsCoerce co_fn (HsVar rep_dict_id))))
-
-tcMethods origin clas inst_tyvars' dfun_theta' inst_tys' 
-         avail_insts op_items (NewTypeDerived rep_tys)
-  = getInstLoc origin                          `thenM` \ inst_loc ->
-    mapAndUnzip3M (do_one inst_loc) op_items   `thenM` \ (meth_ids, meth_binds, rhs_insts) ->
-    
-    tcSimplifyCheck
-        (ptext SLIT("newtype derived instance"))
-        inst_tyvars' avail_insts rhs_insts     `thenM` \ lie_binds ->
-
-       -- I don't think we have to do the checkSigTyVars thing
-
-    returnM (meth_ids, lie_binds `unionBags` listToBag meth_binds)
+Note [SPECIALISE instance pragmas]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Consider
 
 
-  where
-    do_one inst_loc (sel_id, _)
-       = -- The binding is like "op @ NewTy = op @ RepTy"
-               -- Make the *binder*, like in mkMethodBind
-         tcInstClassOp inst_loc sel_id inst_tys'       `thenM` \ meth_inst ->
-
-               -- Make the *occurrence on the rhs*
-         tcInstClassOp inst_loc sel_id rep_tys'        `thenM` \ rhs_inst ->
-         let
-            meth_id = instToId meth_inst
-         in
-         return (meth_id, noLoc (VarBind meth_id (nlHsVar (instToId rhs_inst))), rhs_inst)
-
-       -- Instantiate rep_tys with the relevant type variables
-       -- This looks a bit odd, because inst_tyvars' are the skolemised version
-       -- of the type variables in the instance declaration; but rep_tys doesn't
-       -- have the skolemised version, so we substitute them in here
-    rep_tys' = substTys subst rep_tys
-    subst    = zipOpenTvSubst inst_tyvars' (mkTyVarTys inst_tyvars')
-
-
-
-tcInstDecl2 (InstInfo { iSpec = ispec, iBinds = VanillaInst monobinds uprags })
-  = let 
-       dfun_id    = instanceDFunId ispec
-       rigid_info = InstSkol dfun_id
-       inst_ty    = idType dfun_id
-    in
-        -- Prime error recovery
-    recoverM (returnM emptyLHsBinds)           $
-    setSrcSpan (srcLocSpan (getSrcLoc dfun_id))        $
-    addErrCtxt (instDeclCtxt2 (idType dfun_id))        $
-
-       -- Instantiate the instance decl with skolem constants 
-    tcSkolSigType rigid_info inst_ty   `thenM` \ (inst_tyvars', dfun_theta', inst_head') ->
-               -- These inst_tyvars' scope over the 'where' part
-               -- Those tyvars are inside the dfun_id's type, which is a bit
-               -- bizarre, but OK so long as you realise it!
-    let
-       (clas, inst_tys') = tcSplitDFunHead inst_head'
-        (class_tyvars, sc_theta, _, op_items) = classBigSig clas
-
-        -- Instantiate the super-class context with inst_tys
-       sc_theta' = substTheta (zipOpenTvSubst class_tyvars inst_tys') sc_theta
-       origin    = SigOrigin rigid_info
-    in
-        -- Create dictionary Ids from the specified instance contexts.
-    newDicts InstScOrigin sc_theta'                    `thenM` \ sc_dicts ->
-    newDicts origin dfun_theta'                                `thenM` \ dfun_arg_dicts ->
-    newDicts origin [mkClassPred clas inst_tys']       `thenM` \ [this_dict] ->
-               -- Default-method Ids may be mentioned in synthesised RHSs,
-               -- but they'll already be in the environment.
-
-       -- Typecheck the methods
-    let                -- These insts are in scope; quite a few, eh?
-       avail_insts = [this_dict] ++ dfun_arg_dicts ++ sc_dicts
-    in
-    tcMethods origin clas inst_tyvars' 
-             dfun_theta' inst_tys' avail_insts 
-             op_items monobinds uprags         `thenM` \ (meth_ids, meth_binds) ->
-
-       -- Figure out bindings for the superclass context
-       -- Don't include this_dict in the 'givens', else
-       -- sc_dicts get bound by just selecting  from this_dict!!
-    addErrCtxt superClassCtxt
-       (tcSimplifySuperClasses inst_tyvars'
-                        dfun_arg_dicts
-                        sc_dicts)      `thenM` \ sc_binds ->
-
-       -- It's possible that the superclass stuff might unified one
-       -- of the inst_tyavars' with something in the envt
-    checkSigTyVars inst_tyvars'        `thenM_`
-
-       -- Deal with 'SPECIALISE instance' pragmas 
-    tcPrags dfun_id (filter isSpecInstLSig prags)      `thenM` \ prags -> 
-    
-       -- Create the result bindings
-    let
-        dict_constr   = classDataCon clas
-       scs_and_meths = map instToId sc_dicts ++ meth_ids
-       this_dict_id  = instToId this_dict
-       inline_prag | null dfun_arg_dicts = []
-                   | otherwise = [InlinePrag (Inline AlwaysActive True)]
-               -- Always inline the dfun; this is an experimental decision
-               -- because it makes a big performance difference sometimes.
-               -- Often it means we can do the method selection, and then
-               -- inline the method as well.  Marcin's idea; see comments below.
-               --
-               -- BUT: don't inline it if it's a constant dictionary;
-               -- we'll get all the benefit without inlining, and we get
-               -- a **lot** of code duplication if we inline it
-               --
-               --      See Note [Inline dfuns] below
-
-       dict_rhs
-         = mkHsConApp dict_constr inst_tys' (map HsVar scs_and_meths)
-               -- We don't produce a binding for the dict_constr; instead we
-               -- rely on the simplifier to unfold this saturated application
-               -- We do this rather than generate an HsCon directly, because
-               -- it means that the special cases (e.g. dictionary with only one
-               -- member) are dealt with by the common MkId.mkDataConWrapId code rather
-               -- than needing to be repeated here.
-
-       dict_bind  = noLoc (VarBind this_dict_id dict_rhs)
-       all_binds  = dict_bind `consBag` (sc_binds `unionBags` meth_binds)
-
-       main_bind = noLoc $ AbsBinds
-                           inst_tyvars'
-                           (map instToId dfun_arg_dicts)
-                           [(inst_tyvars', dfun_id, this_dict_id, 
-                                           inline_prag ++ prags)] 
-                           all_binds
-    in
-    showLIE (text "instance")          `thenM_`
-    returnM (unitBag main_bind)
-
-
-tcMethods origin clas inst_tyvars' dfun_theta' inst_tys' 
-         avail_insts op_items monobinds uprags
-  =    -- Check that all the method bindings come from this class
-    let
-       sel_names = [idName sel_id | (sel_id, _) <- op_items]
-       bad_bndrs = collectHsBindBinders monobinds `minusList` sel_names
-    in
-    mappM (addErrTc . badMethodErr clas) bad_bndrs     `thenM_`
-
-       -- Make the method bindings
-    let
-       mk_method_bind = mkMethodBind origin clas inst_tys' monobinds
-    in
-    mapAndUnzipM mk_method_bind op_items       `thenM` \ (meth_insts, meth_infos) ->
-
-       -- And type check them
-       -- It's really worth making meth_insts available to the tcMethodBind
-       -- Consider     instance Monad (ST s) where
-       --                {-# INLINE (>>) #-}
-       --                (>>) = ...(>>=)...
-       -- If we don't include meth_insts, we end up with bindings like this:
-       --      rec { dict = MkD then bind ...
-       --            then = inline_me (... (GHC.Base.>>= dict) ...)
-       --            bind = ... }
-       -- The trouble is that (a) 'then' and 'dict' are mutually recursive, 
-       -- and (b) the inline_me prevents us inlining the >>= selector, which
-       -- would unravel the loop.  Result: (>>) ends up as a loop breaker, and
-       -- is not inlined across modules. Rather ironic since this does not
-       -- happen without the INLINE pragma!  
-       --
-       -- Solution: make meth_insts available, so that 'then' refers directly
-       --           to the local 'bind' rather than going via the dictionary.
-       --
-       -- BUT WATCH OUT!  If the method type mentions the class variable, then
-       -- this optimisation is not right.  Consider
-       --      class C a where
-       --        op :: Eq a => a
-       --
-       --      instance C Int where
-       --        op = op
-       -- The occurrence of 'op' on the rhs gives rise to a constraint
-       --      op at Int
-       -- The trouble is that the 'meth_inst' for op, which is 'available', also
-       -- looks like 'op at Int'.  But they are not the same.
-    let
-       prag_fn        = mkPragFun uprags
-       all_insts      = avail_insts ++ catMaybes meth_insts
-       sig_fn n       = Just []        -- No scoped type variables, but every method has
-                                       -- a type signature, in effect, so that we check
-                                       -- the method has the right type
-       tc_method_bind = tcMethodBind inst_tyvars' dfun_theta' all_insts sig_fn prag_fn
-       meth_ids       = [meth_id | (_,meth_id,_) <- meth_infos]
-    in
-
-    mapM tc_method_bind meth_infos             `thenM` \ meth_binds_s ->
-   
-    returnM (meth_ids, unionManyBags meth_binds_s)
-v v v v v v v
-*************
+   instance (Ix a, Ix b) => Ix (a,b) where
+     {-# SPECIALISE instance Ix (Int,Int) #-}
+     range (x,y) = ...
+
+We do *not* want to make a specialised version of the dictionary
+function.  Rather, we want specialised versions of each method.
+Thus we should generate something like this:
+
+  $dfIx :: (Ix a, Ix x) => Ix (a,b)
+  {- DFUN [$crange, ...] -}
+  $dfIx da db = Ix ($crange da db) (...other methods...)
+
+  $dfIxPair :: (Ix a, Ix x) => Ix (a,b)
+  {- DFUN [$crangePair, ...] -}
+  $dfIxPair = Ix ($crangePair da db) (...other methods...)
+
+  $crange :: (Ix a, Ix b) -> ((a,b),(a,b)) -> [(a,b)]
+  {-# SPECIALISE $crange :: ((Int,Int),(Int,Int)) -> [(Int,Int)] #-}
+  $crange da db = <blah>
 
 
+  {-# RULE  range ($dfIx da db) = $crange da db #-}
 
 
--- Derived newtype instances
-tcMethods origin clas inst_tyvars' dfun_theta' inst_tys' 
-         avail_insts op_items (NewTypeDerived maybe_co rep_tys)
-  = getInstLoc origin                          `thenM` \ inst_loc ->
-    mapAndUnzip3M (do_one inst_loc) op_items   `thenM` \ (meth_ids, meth_binds, rhs_insts) ->
-    
-    tcSimplifyCheck
-        (ptext SLIT("newtype derived instance"))
-        inst_tyvars' avail_insts rhs_insts     `thenM` \ lie_binds ->
+Note that  
 
 
-       -- I don't think we have to do the checkSigTyVars thing
+  * The RULE is unaffected by the specialisation.  We don't want to
+    specialise $dfIx, because then it would need a specialised RULE
+    which is a pain.  The single RULE works fine at all specialisations.
+    See Note [How instance declarations are translated] above
 
 
-    returnM (meth_ids, lie_binds `unionBags` listToBag meth_binds)
+  * Instead, we want to specialise the *method*, $crange
+
+In practice, rather than faking up a SPECIALISE pragama for each
+method (which is painful, since we'd have to figure out its
+specialised type), we call tcSpecPrag *as if* were going to specialise
+$dfIx -- you can see that in the call to tcSpecInst.  That generates a
+SpecPrag which, as it turns out, can be used unchanged for each method.
+The "it turns out" bit is delicate, but it works fine!
+
+\begin{code}
+tcSpecInst :: Id -> Sig Name -> TcM TcSpecPrag
+tcSpecInst dfun_id prag@(SpecInstSig hs_ty) 
+  = addErrCtxt (spec_ctxt prag) $
+    do  { let name = idName dfun_id
+        ; (tyvars, theta, tau) <- tcHsInstHead hs_ty   
+        ; let spec_ty = mkSigmaTy tyvars theta tau
+        ; co_fn <- tcSubType (SpecPragOrigin name) (SigSkol SpecInstCtxt) 
+                             (idType dfun_id) spec_ty
+        ; return (SpecPrag co_fn defaultInlinePragma) }
+  where
+    spec_ctxt prag = hang (ptext (sLit "In the SPECIALISE pragma")) 2 (ppr prag)
 
 
+tcSpecInst _  _ = panic "tcSpecInst"
+\end{code}
+
+%************************************************************************
+%*                                                                      *
+      Type-checking an instance method
+%*                                                                      *
+%************************************************************************
+
+tcInstanceMethod
+- Make the method bindings, as a [(NonRec, HsBinds)], one per method
+- Remembering to use fresh Name (the instance method Name) as the binder
+- Bring the instance method Ids into scope, for the benefit of tcInstSig
+- Use sig_fn mapping instance method Name -> instance tyvars
+- Ditto prag_fn
+- Use tcValBinds to do the checking
+
+\begin{code}
+tcInstanceMethods :: DFunId -> Class -> [TcTyVar]
+                  -> [EvVar]
+                 -> [TcType]
+                 -> EvBind               -- "This" and its binding
+                 -> ([Located TcSpecPrag], PragFun)
+                 -> [(Id, DefMeth)]
+                  -> InstBindings Name 
+                 -> TcM ([Id], [LHsBind Id])
+       -- The returned inst_meth_ids all have types starting
+       --      forall tvs. theta => ...
+tcInstanceMethods dfun_id clas tyvars dfun_ev_vars inst_tys 
+                 self_dict_ev (spec_inst_prags, prag_fn)
+                  op_items (VanillaInst binds _ standalone_deriv)
+  = mapAndUnzipM tc_item op_items
+  where
+    ----------------------
+    tc_item :: (Id, DefMeth) -> TcM (Id, LHsBind Id)
+    tc_item (sel_id, dm_info)
+      = case findMethodBind (idName sel_id) binds of
+           Just user_bind -> tc_body sel_id standalone_deriv user_bind
+           Nothing        -> tc_default sel_id dm_info
+
+    ----------------------
+    tc_body :: Id -> Bool -> LHsBind Name -> TcM (TcId, LHsBind Id)
+    tc_body sel_id generated_code rn_bind 
+      = add_meth_ctxt generated_code rn_bind $
+        do { (meth_id, local_meth_id) <- mkMethIds clas tyvars dfun_ev_vars 
+                                                   inst_tys sel_id
+           ; (meth_id1, spec_prags) <- tcPrags NonRecursive False True 
+                                               meth_id (prag_fn (idName sel_id))
+
+           ; bind <- tcInstanceMethodBody InstSkol
+                          tyvars dfun_ev_vars
+                           mb_dict_ev
+                          meth_id1 local_meth_id
+                           meth_sig_fn 
+                          (SpecPrags (spec_inst_prags ++ spec_prags))
+                          rn_bind 
+           ; return (meth_id1, bind) }
+
+    ----------------------
+    tc_default :: Id -> DefMeth -> TcM (TcId, LHsBind Id)
+    tc_default sel_id GenDefMeth    -- Derivable type classes stuff
+      = do { meth_bind <- mkGenericDefMethBind clas inst_tys sel_id
+           ; tc_body sel_id False {- Not generated code? -} meth_bind }
+         
+    tc_default sel_id NoDefMeth            -- No default method at all
+      = do { warnMissingMethod sel_id
+          ; (meth_id, _) <- mkMethIds clas tyvars dfun_ev_vars 
+                                         inst_tys sel_id
+           ; return (meth_id, mkVarBind meth_id $ 
+                              mkLHsWrap lam_wrapper error_rhs) }
+      where
+       error_rhs    = L loc $ HsApp error_fun error_msg
+       error_fun    = L loc $ wrapId (WpTyApp meth_tau) nO_METHOD_BINDING_ERROR_ID
+       error_msg    = L loc (HsLit (HsStringPrim (mkFastString error_string)))
+       meth_tau     = funResultTy (applyTys (idType sel_id) inst_tys)
+       error_string = showSDoc (hcat [ppr loc, text "|", ppr sel_id ])
+        lam_wrapper  = mkWpTyLams tyvars <.> mkWpLams dfun_ev_vars
+
+    tc_default sel_id (DefMeth dm_name)        -- A polymorphic default method
+      = do {   -- Build the typechecked version directly, 
+                -- without calling typecheck_method; 
+                -- see Note [Default methods in instances]
+                -- Generate   /\as.\ds. let this = df as ds 
+               --                      in $dm inst_tys this
+                -- The 'let' is necessary only because HsSyn doesn't allow
+                -- you to apply a function to a dictionary *expression*.
+
+           ; (meth_id, local_meth_id) <- mkMethIds clas tyvars dfun_ev_vars 
+                                                   inst_tys sel_id
+           ; dm_id <- tcLookupId dm_name
+           ; let dm_inline_prag = idInlinePragma dm_id
+                 EvBind self_dict _ = self_dict_ev
+                 rhs = HsWrap (mkWpEvVarApps [self_dict] <.> mkWpTyApps inst_tys) $
+                        HsVar dm_id 
+
+                meth_bind = L loc $ VarBind { var_id = local_meth_id
+                                             , var_rhs = L loc rhs 
+                                              , var_inline = False }
+                 meth_id1 = meth_id `setInlinePragma` dm_inline_prag
+                           -- Copy the inline pragma (if any) from the default
+                           -- method to this version. Note [INLINE and default methods]
+                           
+                 bind = AbsBinds { abs_tvs = tyvars, abs_ev_vars =  dfun_ev_vars
+                                 , abs_exports = [( tyvars, meth_id1, local_meth_id
+                                                  , SpecPrags spec_inst_prags)]
+                                 , abs_ev_binds = EvBinds (unitBag self_dict_ev)
+                                 , abs_binds    = unitBag meth_bind }
+            -- Default methods in an instance declaration can't have their own 
+            -- INLINE or SPECIALISE pragmas. It'd be possible to allow them, but
+            -- currently they are rejected with 
+            --           "INLINE pragma lacks an accompanying binding"
+
+           ; return (meth_id1, L loc bind) } 
+
+    ----------------------
+    loc = getSrcSpan dfun_id
+    meth_sig_fn _ = Just ([],loc)      -- The 'Just' says "yes, there's a type sig"
+       -- But there are no scoped type variables from local_method_id
+       -- Only the ones from the instance decl itself, which are already
+       -- in scope.  Example:
+       --      class C a where { op :: forall b. Eq b => ... }
+       --      instance C [c] where { op = <rhs> }
+       -- In <rhs>, 'c' is scope but 'b' is not!
+
+    mb_dict_ev = if null tyvars then Nothing else Just self_dict_ev
+               -- Only need the self_dict stuff if there are type 
+               -- variables involved; otherwise overlap is not possible
+               -- See Note [Subtle interaction of recursion and overlap]
+               -- in TcInstDcls
+
+       -- For instance decls that come from standalone deriving clauses
+       -- we want to print out the full source code if there's an error
+       -- because otherwise the user won't see the code at all
+    add_meth_ctxt generated_code rn_bind thing 
+      | generated_code = addLandmarkErrCtxt (derivBindCtxt clas inst_tys rn_bind) thing
+      | otherwise      = thing
+
+
+tcInstanceMethods dfun_id clas tyvars dfun_ev_vars inst_tys 
+                 _ _ op_items (NewTypeDerived coi _)
+
+-- Running example:
+--   class Show b => Foo a b where
+--     op :: a -> b -> b
+--   newtype N a = MkN (Tree [a]) 
+--   deriving instance (Show p, Foo Int p) => Foo Int (N p)
+--              -- NB: standalone deriving clause means
+--              --     that the contex is user-specified
+-- Hence op :: forall a b. Foo a b => a -> b -> b
+--
+-- We're going to make an instance like
+--   instance (Show p, Foo Int p) => Foo Int (N p)
+--      op = $copT
+--
+--   $copT :: forall p. (Show p, Foo Int p) => Int -> N p -> N p
+--   $copT p (d1:Show p) (d2:Foo Int p) 
+--     = op Int (Tree [p]) rep_d |> op_co
+--     where 
+--       rep_d :: Foo Int (Tree [p]) = ...d1...d2...
+--       op_co :: (Int -> Tree [p] -> Tree [p]) ~ (Int -> T p -> T p)
+-- We get op_co by substituting [Int/a] and [co/b] in type for op
+-- where co : [p] ~ T p
+--
+-- Notice that the dictionary bindings "..d1..d2.." must be generated
+-- by the constraint solver, since the <context> may be
+-- user-specified.
+
+  = do { rep_d_stuff <- checkConstraints InstSkol emptyVarSet tyvars dfun_ev_vars $
+                        emitWanted ScOrigin rep_pred
+                         
+       ; mapAndUnzipM (tc_item rep_d_stuff) op_items }
   where
   where
-    do_one inst_loc (sel_id, _)
-       = -- The binding is like "op @ NewTy = op @ RepTy"
-               -- Make the *binder*, like in mkMethodBind
-         tcInstClassOp inst_loc sel_id inst_tys'       `thenM` \ meth_inst ->
-
-               -- Make the *occurrence on the rhs*
-         tcInstClassOp inst_loc sel_id rep_tys'        `thenM` \ rhs_inst ->
-         let
-            meth_id = instToId meth_inst
-         in
-         return (meth_id, noLoc (VarBind meth_id (nlHsVar (instToId rhs_inst))), rhs_inst)
-
-       -- Instantiate rep_tys with the relevant type variables
-       -- This looks a bit odd, because inst_tyvars' are the skolemised version
-       -- of the type variables in the instance declaration; but rep_tys doesn't
-       -- have the skolemised version, so we substitute them in here
-    rep_tys' = substTys subst rep_tys
-    subst    = zipOpenTvSubst inst_tyvars' (mkTyVarTys inst_tyvars')
-^ ^ ^ ^ ^ ^ ^
+     loc = getSrcSpan dfun_id
+
+     inst_tvs = fst (tcSplitForAllTys (idType dfun_id))
+     Just (init_inst_tys, _) = snocView inst_tys
+     rep_ty   = fst (coercionKind co)  -- [p]
+     rep_pred = mkClassPred clas (init_inst_tys ++ [rep_ty])
+
+     -- co : [p] ~ T p
+     co = substTyWith inst_tvs (mkTyVarTys tyvars) $
+          case coi of { IdCo ty -> ty ;
+                        ACo co  -> mkSymCoercion co }
+
+     ----------------
+     tc_item :: (TcEvBinds, EvVar) -> (Id, DefMeth) -> TcM (TcId, LHsBind TcId)
+     tc_item (rep_ev_binds, rep_d) (sel_id, _)
+       = do { (meth_id, local_meth_id) <- mkMethIds clas tyvars dfun_ev_vars 
+                                                    inst_tys sel_id
+
+            ; let meth_rhs  = wrapId (mk_op_wrapper sel_id rep_d) sel_id
+                  meth_bind = VarBind { var_id = local_meth_id
+                                      , var_rhs = L loc meth_rhs
+                                     , var_inline = False }
+
+                 bind = AbsBinds { abs_tvs = tyvars, abs_ev_vars = dfun_ev_vars
+                                   , abs_exports = [(tyvars, meth_id, 
+                                                     local_meth_id, noSpecPrags)]
+                                  , abs_ev_binds = rep_ev_binds
+                                   , abs_binds = unitBag $ L loc meth_bind }
+
+            ; return (meth_id, L loc bind) }
+
+     ----------------
+     mk_op_wrapper :: Id -> EvVar -> HsWrapper
+     mk_op_wrapper sel_id rep_d 
+       = WpCast (substTyWith sel_tvs (init_inst_tys ++ [co]) local_meth_ty)
+         <.> WpEvApp (EvId rep_d)
+         <.> mkWpTyApps (init_inst_tys ++ [rep_ty]) 
+       where
+         (sel_tvs, sel_rho) = tcSplitForAllTys (idType sel_id)
+         (_, local_meth_ty) = tcSplitPredFunTy_maybe sel_rho
+                              `orElse` pprPanic "tcInstanceMethods" (ppr sel_id)
+
+----------------------
+mkMethIds :: Class -> [TcTyVar] -> [EvVar] -> [TcType] -> Id -> TcM (TcId, TcId)
+mkMethIds clas tyvars dfun_ev_vars inst_tys sel_id
+  = do  { uniq <- newUnique
+       ; let meth_name = mkDerivedInternalName mkClassOpAuxOcc uniq sel_name
+       ; local_meth_name <- newLocalName sel_name
+                 -- Base the local_meth_name on the selector name, becuase
+                 -- type errors from tcInstanceMethodBody come from here
+
+       ; let meth_id       = mkLocalId meth_name meth_ty
+             local_meth_id = mkLocalId local_meth_name local_meth_ty
+        ; return (meth_id, local_meth_id) }
+  where
+    local_meth_ty = instantiateMethod clas sel_id inst_tys
+    meth_ty = mkForAllTys tyvars $ mkPiTypes dfun_ev_vars local_meth_ty
+    sel_name = idName sel_id
+
+----------------------
+wrapId :: HsWrapper -> id -> HsExpr id
+wrapId wrapper id = mkHsWrap wrapper (HsVar id)
+
+derivBindCtxt :: Class -> [Type ] -> LHsBind Name -> SDoc
+derivBindCtxt clas tys bind
+   = vcat [ ptext (sLit "When typechecking a standalone-derived method for")
+           <+> quotes (pprClassPred clas tys) <> colon
+         , nest 2 $ pprSetDepth AllTheWay $ ppr bind ]
+
+warnMissingMethod :: Id -> TcM ()
+warnMissingMethod sel_id
+  = do { warn <- doptM Opt_WarnMissingMethods          
+       ; warnTc (warn  -- Warn only if -fwarn-missing-methods
+                 && not (startsWithUnderscore (getOccName sel_id)))
+                                       -- Don't warn about _foo methods
+               (ptext (sLit "No explicit method nor default method for")
+                 <+> quotes (ppr sel_id)) }
 \end{code}
 
 \end{code}
 
+Note [Export helper functions]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+We arrange to export the "helper functions" of an instance declaration,
+so that they are not subject to preInlineUnconditionally, even if their
+RHS is trivial.  Reason: they are mentioned in the DFunUnfolding of
+the dict fun as Ids, not as CoreExprs, so we can't substitute a 
+non-variable for them.
+
+We could change this by making DFunUnfoldings have CoreExprs, but it
+seems a bit simpler this way.
+
+Note [Default methods in instances]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Consider this
+
+   class Baz v x where
+      foo :: x -> x
+      foo y = <blah>
+
+   instance Baz Int Int
+
+From the class decl we get
+
+   $dmfoo :: forall v x. Baz v x => x -> x
+   $dmfoo y = <blah>
+
+Notice that the type is ambiguous.  That's fine, though. The instance
+decl generates
+
+   $dBazIntInt = MkBaz fooIntInt
+   fooIntInt = $dmfoo Int Int $dBazIntInt
+
+BUT this does mean we must generate the dictionary translation of
+fooIntInt directly, rather than generating source-code and
+type-checking it.  That was the bug in Trac #1061. In any case it's
+less work to generate the translated version!
+
+Note [INLINE and default methods]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Default methods need special case.  They are supposed to behave rather like
+macros.  For exmample
+
+  class Foo a where
+    op1, op2 :: Bool -> a -> a
+
+    {-# INLINE op1 #-}
+    op1 b x = op2 (not b) x
+
+  instance Foo Int where
+    -- op1 via default method
+    op2 b x = <blah>
+   
+The instance declaration should behave
+
+   just as if 'op1' had been defined with the
+   code, and INLINE pragma, from its original
+   definition. 
+
+That is, just as if you'd written
+
+  instance Foo Int where
+    op2 b x = <blah>
+
+    {-# INLINE op1 #-}
+    op1 b x = op2 (not b) x
+
+So for the above example we generate:
+
+
+  {-# INLINE $dmop1 #-}
+  -- $dmop1 has an InlineCompulsory unfolding
+  $dmop1 d b x = op2 d (not b) x
+
+  $fFooInt = MkD $cop1 $cop2
 
 
-               ------------------------------
-       [Inline dfuns] Inlining dfuns unconditionally
-               ------------------------------
-
-The code above unconditionally inlines dict funs.  Here's why.
-Consider this program:
-
-    test :: Int -> Int -> Bool
-    test x y = (x,y) == (y,x) || test y x
-    -- Recursive to avoid making it inline.
-
-This needs the (Eq (Int,Int)) instance.  If we inline that dfun
-the code we end up with is good:
-
-    Test.$wtest =
-       \r -> case ==# [ww ww1] of wild {
-               PrelBase.False -> Test.$wtest ww1 ww;
-               PrelBase.True ->
-                 case ==# [ww1 ww] of wild1 {
-                   PrelBase.False -> Test.$wtest ww1 ww;
-                   PrelBase.True -> PrelBase.True [];
-                 };
-           };
-    Test.test = \r [w w1]
-           case w of w2 {
-             PrelBase.I# ww ->
-                 case w1 of w3 { PrelBase.I# ww1 -> Test.$wtest ww ww1; };
-           };
-
-If we don't inline the dfun, the code is not nearly as good:
-
-    (==) = case PrelTup.$fEq(,) PrelBase.$fEqInt PrelBase.$fEqInt of tpl {
-             PrelBase.:DEq tpl1 tpl2 -> tpl2;
-           };
-    
-    Test.$wtest =
-       \r [ww ww1]
-           let { y = PrelBase.I#! [ww1]; } in
-           let { x = PrelBase.I#! [ww]; } in
-           let { sat_slx = PrelTup.(,)! [y x]; } in
-           let { sat_sly = PrelTup.(,)! [x y];
-           } in
-             case == sat_sly sat_slx of wild {
-               PrelBase.False -> Test.$wtest ww1 ww;
-               PrelBase.True -> PrelBase.True [];
-             };
-    
-    Test.test =
-       \r [w w1]
-           case w of w2 {
-             PrelBase.I# ww ->
-                 case w1 of w3 { PrelBase.I# ww1 -> Test.$wtest ww ww1; };
-           };
-
-Why doesn't GHC inline $fEq?  Because it looks big:
-
-    PrelTup.zdfEqZ1T{-rcX-}
-       = \ @ a{-reT-} :: * @ b{-reS-} :: *
-            zddEq{-rf6-} _Ks :: {PrelBase.Eq{-23-} a{-reT-}}
-            zddEq1{-rf7-} _Ks :: {PrelBase.Eq{-23-} b{-reS-}} ->
-            let {
-              zeze{-rf0-} _Kl :: (b{-reS-} -> b{-reS-} -> PrelBase.Bool{-3c-})
-              zeze{-rf0-} = PrelBase.zeze{-01L-}@ b{-reS-} zddEq1{-rf7-} } in
-            let {
-              zeze1{-rf3-} _Kl :: (a{-reT-} -> a{-reT-} -> PrelBase.Bool{-3c-})
-              zeze1{-rf3-} = PrelBase.zeze{-01L-} @ a{-reT-} zddEq{-rf6-} } in
-            let {
-              zeze2{-reN-} :: ((a{-reT-}, b{-reS-}) -> (a{-reT-}, b{-reS-})-> PrelBase.Bool{-3c-})
-              zeze2{-reN-} = \ ds{-rf5-} _Ks :: (a{-reT-}, b{-reS-})
-                              ds1{-rf4-} _Ks :: (a{-reT-}, b{-reS-}) ->
-                            case ds{-rf5-}
-                            of wild{-reW-} _Kd { (a1{-rf2-} _Ks, a2{-reZ-} _Ks) ->
-                            case ds1{-rf4-}
-                            of wild1{-reX-} _Kd { (b1{-rf1-} _Ks, b2{-reY-} _Ks) ->
-                            PrelBase.zaza{-r4e-}
-                              (zeze1{-rf3-} a1{-rf2-} b1{-rf1-})
-                              (zeze{-rf0-} a2{-reZ-} b2{-reY-})
-                            }
-                            } } in     
-            let {
-              a1{-reR-} :: ((a{-reT-}, b{-reS-})-> (a{-reT-}, b{-reS-})-> PrelBase.Bool{-3c-})
-              a1{-reR-} = \ a2{-reV-} _Ks :: (a{-reT-}, b{-reS-})
-                           b1{-reU-} _Ks :: (a{-reT-}, b{-reS-}) ->
-                         PrelBase.not{-r6I-} (zeze2{-reN-} a2{-reV-} b1{-reU-})
-            } in
-              PrelBase.zdwZCDEq{-r8J-} @ (a{-reT-}, b{-reS-}) a1{-reR-} zeze2{-reN-})
-
-and it's not as bad as it seems, because it's further dramatically
-simplified: only zeze2 is extracted and its body is simplified.
+  {-# INLINE $cop1 #-}
+  $cop1 = $dmop1 $fFooInt
+
+  $cop2 = <blah>
+
+Note carefullly:
+
+* We *copy* any INLINE pragma from the default method $dmop1 to the
+  instance $cop1.  Otherwise we'll just inline the former in the
+  latter and stop, which isn't what the user expected
+
+* Regardless of its pragma, we give the default method an 
+  unfolding with an InlineCompulsory source. That means
+  that it'll be inlined at every use site, notably in
+  each instance declaration, such as $cop1.  This inlining
+  must happen even though 
+    a) $dmop1 is not saturated in $cop1
+    b) $cop1 itself has an INLINE pragma
+
+  It's vital that $dmop1 *is* inlined in this way, to allow the mutual
+  recursion between $fooInt and $cop1 to be broken
+
+* To communicate the need for an InlineCompulsory to the desugarer
+  (which makes the Unfoldings), we use the IsDefaultMethod constructor
+  in TcSpecPrags.
 
 
 %************************************************************************
 
 
 %************************************************************************
-%*                                                                     *
+%*                                                                      *
 \subsection{Error messages}
 \subsection{Error messages}
-%*                                                                     *
+%*                                                                      *
 %************************************************************************
 
 \begin{code}
 %************************************************************************
 
 \begin{code}
-instDeclCtxt1 hs_inst_ty 
+instDeclCtxt1 :: LHsType Name -> SDoc
+instDeclCtxt1 hs_inst_ty
   = inst_decl_ctxt (case unLoc hs_inst_ty of
   = inst_decl_ctxt (case unLoc hs_inst_ty of
-                       HsForAllTy _ _ _ (L _ (HsPredTy pred)) -> ppr pred
-                       HsPredTy pred                    -> ppr pred
-                       other                            -> ppr hs_inst_ty)     -- Don't expect this
+                        HsForAllTy _ _ _ (L _ (HsPredTy pred)) -> ppr pred
+                        HsPredTy pred                    -> ppr pred
+                        _                                -> ppr hs_inst_ty)     -- Don't expect this
+instDeclCtxt2 :: Type -> SDoc
 instDeclCtxt2 dfun_ty
   = inst_decl_ctxt (ppr (mkClassPred cls tys))
   where
 instDeclCtxt2 dfun_ty
   = inst_decl_ctxt (ppr (mkClassPred cls tys))
   where
-    (_,_,cls,tys) = tcSplitDFunTy dfun_ty
-
-inst_decl_ctxt doc = ptext SLIT("In the instance declaration for") <+> quotes doc
-
-superClassCtxt = ptext SLIT("When checking the super-classes of an instance declaration")
+    (_,cls,tys) = tcSplitDFunTy dfun_ty
+
+inst_decl_ctxt :: SDoc -> SDoc
+inst_decl_ctxt doc = ptext (sLit "In the instance declaration for") <+> quotes doc
+
+atInstCtxt :: Name -> SDoc
+atInstCtxt name = ptext (sLit "In the associated type instance for") <+>
+                  quotes (ppr name)
+
+mustBeVarArgErr :: Type -> SDoc
+mustBeVarArgErr ty =
+  sep [ ptext (sLit "Arguments that do not correspond to a class parameter") <+>
+        ptext (sLit "must be variables")
+      , ptext (sLit "Instead of a variable, found") <+> ppr ty
+      ]
+
+wrongATArgErr :: Type -> Type -> SDoc
+wrongATArgErr ty instTy =
+  sep [ ptext (sLit "Type indexes must match class instance head")
+      , ptext (sLit "Found") <+> quotes (ppr ty)
+        <+> ptext (sLit "but expected") <+> quotes (ppr instTy)
+      ]
 \end{code}
 \end{code}