fix haddock submodule pointer
[ghc-hetmet.git] / compiler / typecheck / TcInstDcls.lhs
index 14dcfcd..d4d8d2f 100644 (file)
@@ -6,54 +6,56 @@
 TcInstDecls: Typechecking instance declarations
 
 \begin{code}
 TcInstDecls: Typechecking instance declarations
 
 \begin{code}
-{-# OPTIONS -w #-}
--- The above warning supression flag is a temporary kludge.
--- While working on this module you are encouraged to remove it and fix
--- any warnings in the module. See
---     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#Warnings
--- for details
-
 module TcInstDcls ( tcInstDecls1, tcInstDecls2 ) where
 
 import HsSyn
 import TcBinds
 import TcTyClsDecls
 import TcClassDcl
 module TcInstDcls ( tcInstDecls1, tcInstDecls2 ) where
 
 import HsSyn
 import TcBinds
 import TcTyClsDecls
 import TcClassDcl
+import TcPat( addInlinePrags )
 import TcRnMonad
 import TcMType
 import TcType
 import TcRnMonad
 import TcMType
 import TcType
+import BuildTyCl
 import Inst
 import InstEnv
 import FamInst
 import FamInstEnv
 import TcDeriv
 import TcEnv
 import Inst
 import InstEnv
 import FamInst
 import FamInstEnv
 import TcDeriv
 import TcEnv
+import RnSource ( addTcgDUs )
 import TcHsType
 import TcUnify
 import TcHsType
 import TcUnify
-import TcSimplify
+import MkCore  ( nO_METHOD_BINDING_ERROR_ID )
 import Type
 import Coercion
 import TyCon
 import Type
 import Coercion
 import TyCon
-import TypeRep
 import DataCon
 import Class
 import Var
 import DataCon
 import Class
 import Var
+import Pair
+import VarSet
+import CoreUtils  ( mkPiTypes )
+import CoreUnfold ( mkDFunUnfolding )
+import CoreSyn    ( Expr(Var), DFunArg(..), CoreExpr )
+import Id
 import MkId
 import Name
 import NameSet
 import DynFlags
 import SrcLoc
 import MkId
 import Name
 import NameSet
 import DynFlags
 import SrcLoc
-import ListSetOps
 import Util
 import Outputable
 import Bag
 import BasicTypes
 import HscTypes
 import FastString
 import Util
 import Outputable
 import Bag
 import BasicTypes
 import HscTypes
 import FastString
-
+import Maybes  ( orElse )
 import Data.Maybe
 import Control.Monad
 import Data.List
 import Data.Maybe
 import Control.Monad
 import Data.List
+
+#include "HsVersions.h"
 \end{code}
 
 Typechecking instance declarations is done in two passes. The first
 \end{code}
 
 Typechecking instance declarations is done in two passes. The first
@@ -66,67 +68,276 @@ pass, when the class-instance envs and GVE contain all the info from
 all the instance and value decls.  Indeed that's the reason we need
 two passes over the instance decls.
 
 all the instance and value decls.  Indeed that's the reason we need
 two passes over the instance decls.
 
-Here is the overall algorithm.
-Assume that we have an instance declaration
-
-    instance c => k (t tvs) where b
-
-\begin{enumerate}
-\item
-$LIE_c$ is the LIE for the context of class $c$
-\item
-$betas_bar$ is the free variables in the class method type, excluding the
-   class variable
-\item
-$LIE_cop$ is the LIE constraining a particular class method
-\item
-$tau_cop$ is the tau type of a class method
-\item
-$LIE_i$ is the LIE for the context of instance $i$
-\item
-$X$ is the instance constructor tycon
-\item
-$gammas_bar$ is the set of type variables of the instance
-\item
-$LIE_iop$ is the LIE for a particular class method instance
-\item
-$tau_iop$ is the tau type for this instance of a class method
-\item
-$alpha$ is the class variable
-\item
-$LIE_cop' = LIE_cop [X gammas_bar / alpha, fresh betas_bar]$
-\item
-$tau_cop' = tau_cop [X gammas_bar / alpha, fresh betas_bar]$
-\end{enumerate}
-
-ToDo: Update the list above with names actually in the code.
-
-\begin{enumerate}
-\item
-First, make the LIEs for the class and instance contexts, which means
-instantiate $thetaC [X inst_tyvars / alpha ]$, yielding LIElistC' and LIEC',
-and make LIElistI and LIEI.
-\item
-Then process each method in turn.
-\item
-order the instance methods according to the ordering of the class methods
-\item
-express LIEC' in terms of LIEI, yielding $dbinds_super$ or an error
-\item
-Create final dictionary function from bindings generated already
-\begin{pseudocode}
-df = lambda inst_tyvars
-       lambda LIEI
-         let Bop1
-             Bop2
-             ...
-             Bopn
-         and dbinds_super
-              in <op1,op2,...,opn,sd1,...,sdm>
-\end{pseudocode}
-Here, Bop1 \ldots Bopn bind the methods op1 \ldots opn,
-and $dbinds_super$ bind the superclass dictionaries sd1 \ldots sdm.
-\end{enumerate}
+
+Note [How instance declarations are translated]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Here is how we translation instance declarations into Core
+
+Running example:
+       class C a where
+          op1, op2 :: Ix b => a -> b -> b
+          op2 = <dm-rhs>
+
+       instance C a => C [a]
+          {-# INLINE [2] op1 #-}
+          op1 = <rhs>
+===>
+       -- Method selectors
+       op1,op2 :: forall a. C a => forall b. Ix b => a -> b -> b
+       op1 = ...
+       op2 = ...
+
+       -- Default methods get the 'self' dictionary as argument
+       -- so they can call other methods at the same type
+       -- Default methods get the same type as their method selector
+       $dmop2 :: forall a. C a => forall b. Ix b => a -> b -> b
+       $dmop2 = /\a. \(d:C a). /\b. \(d2: Ix b). <dm-rhs>
+              -- NB: type variables 'a' and 'b' are *both* in scope in <dm-rhs>
+              -- Note [Tricky type variable scoping]
+
+       -- A top-level definition for each instance method
+       -- Here op1_i, op2_i are the "instance method Ids"
+       -- The INLINE pragma comes from the user pragma
+       {-# INLINE [2] op1_i #-}  -- From the instance decl bindings
+       op1_i, op2_i :: forall a. C a => forall b. Ix b => [a] -> b -> b
+       op1_i = /\a. \(d:C a). 
+              let this :: C [a]
+                  this = df_i a d
+                    -- Note [Subtle interaction of recursion and overlap]
+
+                  local_op1 :: forall b. Ix b => [a] -> b -> b
+                  local_op1 = <rhs>
+                    -- Source code; run the type checker on this
+                    -- NB: Type variable 'a' (but not 'b') is in scope in <rhs>
+                    -- Note [Tricky type variable scoping]
+
+              in local_op1 a d
+
+       op2_i = /\a \d:C a. $dmop2 [a] (df_i a d) 
+
+       -- The dictionary function itself
+       {-# NOINLINE CONLIKE df_i #-}   -- Never inline dictionary functions
+       df_i :: forall a. C a -> C [a]
+       df_i = /\a. \d:C a. MkC (op1_i a d) (op2_i a d)
+               -- But see Note [Default methods in instances]
+               -- We can't apply the type checker to the default-method call
+
+        -- Use a RULE to short-circuit applications of the class ops
+       {-# RULE "op1@C[a]" forall a, d:C a. 
+                            op1 [a] (df_i d) = op1_i a d #-}
+
+Note [Instances and loop breakers]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+* Note that df_i may be mutually recursive with both op1_i and op2_i.
+  It's crucial that df_i is not chosen as the loop breaker, even 
+  though op1_i has a (user-specified) INLINE pragma.
+
+* Instead the idea is to inline df_i into op1_i, which may then select
+  methods from the MkC record, and thereby break the recursion with
+  df_i, leaving a *self*-recurisve op1_i.  (If op1_i doesn't call op at
+  the same type, it won't mention df_i, so there won't be recursion in
+  the first place.)  
+
+* If op1_i is marked INLINE by the user there's a danger that we won't
+  inline df_i in it, and that in turn means that (since it'll be a
+  loop-breaker because df_i isn't), op1_i will ironically never be 
+  inlined.  But this is OK: the recursion breaking happens by way of
+  a RULE (the magic ClassOp rule above), and RULES work inside InlineRule
+  unfoldings. See Note [RULEs enabled in SimplGently] in SimplUtils
+
+Note [ClassOp/DFun selection]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+One thing we see a lot is stuff like
+    op2 (df d1 d2)
+where 'op2' is a ClassOp and 'df' is DFun.  Now, we could inline *both*
+'op2' and 'df' to get
+     case (MkD ($cop1 d1 d2) ($cop2 d1 d2) ... of
+       MkD _ op2 _ _ _ -> op2
+And that will reduce to ($cop2 d1 d2) which is what we wanted.
+
+But it's tricky to make this work in practice, because it requires us to 
+inline both 'op2' and 'df'.  But neither is keen to inline without having
+seen the other's result; and it's very easy to get code bloat (from the 
+big intermediate) if you inline a bit too much.
+
+Instead we use a cunning trick.
+ * We arrange that 'df' and 'op2' NEVER inline.  
+
+ * We arrange that 'df' is ALWAYS defined in the sylised form
+      df d1 d2 = MkD ($cop1 d1 d2) ($cop2 d1 d2) ...
+
+ * We give 'df' a magical unfolding (DFunUnfolding [$cop1, $cop2, ..])
+   that lists its methods.
+
+ * We make CoreUnfold.exprIsConApp_maybe spot a DFunUnfolding and return
+   a suitable constructor application -- inlining df "on the fly" as it 
+   were.
+
+ * We give the ClassOp 'op2' a BuiltinRule that extracts the right piece
+   iff its argument satisfies exprIsConApp_maybe.  This is done in
+   MkId mkDictSelId
+
+ * We make 'df' CONLIKE, so that shared uses stil match; eg
+      let d = df d1 d2
+      in ...(op2 d)...(op1 d)...
+
+Note [Single-method classes]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+If the class has just one method (or, more accurately, just one element
+of {superclasses + methods}), then we use a different strategy.
+
+   class C a where op :: a -> a
+   instance C a => C [a] where op = <blah>
+
+We translate the class decl into a newtype, which just gives a
+top-level axiom. The "constructor" MkC expands to a cast, as does the
+class-op selector.
+
+   axiom Co:C a :: C a ~ (a->a)
+
+   op :: forall a. C a -> (a -> a)
+   op a d = d |> (Co:C a)
+
+   MkC :: forall a. (a->a) -> C a
+   MkC = /\a.\op. op |> (sym Co:C a)
+
+The clever RULE stuff doesn't work now, because ($df a d) isn't
+a constructor application, so exprIsConApp_maybe won't return 
+Just <blah>.
+
+Instead, we simply rely on the fact that casts are cheap:
+
+   $df :: forall a. C a => C [a]
+   {-# INLINE df #-}  -- NB: INLINE this
+   $df = /\a. \d. MkC [a] ($cop_list a d)
+       = $cop_list |> forall a. C a -> (sym (Co:C [a]))
+
+   $cop_list :: forall a. C a => [a] -> [a]
+   $cop_list = <blah>
+
+So if we see
+   (op ($df a d))
+we'll inline 'op' and '$df', since both are simply casts, and
+good things happen.
+
+Why do we use this different strategy?  Because otherwise we
+end up with non-inlined dictionaries that look like
+    $df = $cop |> blah
+which adds an extra indirection to every use, which seems stupid.  See
+Trac #4138 for an example (although the regression reported there
+wasn't due to the indirction).
+
+There is an awkward wrinkle though: we want to be very 
+careful when we have
+    instance C a => C [a] where
+      {-# INLINE op #-}
+      op = ...
+then we'll get an INLINE pragma on $cop_list but it's important that
+$cop_list only inlines when it's applied to *two* arguments (the
+dictionary and the list argument).  So we nust not eta-expand $df
+above.  We ensure that this doesn't happen by putting an INLINE 
+pragma on the dfun itself; after all, it ends up being just a cast.
+
+There is one more dark corner to the INLINE story, even more deeply 
+buried.  Consider this (Trac #3772):
+
+    class DeepSeq a => C a where
+      gen :: Int -> a
+
+    instance C a => C [a] where
+      gen n = ...
+
+    class DeepSeq a where
+      deepSeq :: a -> b -> b
+
+    instance DeepSeq a => DeepSeq [a] where
+      {-# INLINE deepSeq #-}
+      deepSeq xs b = foldr deepSeq b xs
+
+That gives rise to these defns:
+
+    $cdeepSeq :: DeepSeq a -> [a] -> b -> b
+    -- User INLINE( 3 args )!
+    $cdeepSeq a (d:DS a) b (x:[a]) (y:b) = ...
+
+    $fDeepSeq[] :: DeepSeq a -> DeepSeq [a]
+    -- DFun (with auto INLINE pragma)
+    $fDeepSeq[] a d = $cdeepSeq a d |> blah
+
+    $cp1 a d :: C a => DeepSep [a]
+    -- We don't want to eta-expand this, lest
+    -- $cdeepSeq gets inlined in it!
+    $cp1 a d = $fDeepSep[] a (scsel a d)
+
+    $fC[] :: C a => C [a]
+    -- Ordinary DFun
+    $fC[] a d = MkC ($cp1 a d) ($cgen a d)
+
+Here $cp1 is the code that generates the superclass for C [a].  The
+issue is this: we must not eta-expand $cp1 either, or else $fDeepSeq[]
+and then $cdeepSeq will inline there, which is definitely wrong.  Like
+on the dfun, we solve this by adding an INLINE pragma to $cp1.
+
+Note [Subtle interaction of recursion and overlap]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Consider this
+  class C a where { op1,op2 :: a -> a }
+  instance C a => C [a] where
+    op1 x = op2 x ++ op2 x
+    op2 x = ...
+  instance C [Int] where
+    ...
+
+When type-checking the C [a] instance, we need a C [a] dictionary (for
+the call of op2).  If we look up in the instance environment, we find
+an overlap.  And in *general* the right thing is to complain (see Note
+[Overlapping instances] in InstEnv).  But in *this* case it's wrong to
+complain, because we just want to delegate to the op2 of this same
+instance.  
+
+Why is this justified?  Because we generate a (C [a]) constraint in 
+a context in which 'a' cannot be instantiated to anything that matches
+other overlapping instances, or else we would not be excecuting this
+version of op1 in the first place.
+
+It might even be a bit disguised:
+
+  nullFail :: C [a] => [a] -> [a]
+  nullFail x = op2 x ++ op2 x
+
+  instance C a => C [a] where
+    op1 x = nullFail x
+
+Precisely this is used in package 'regex-base', module Context.hs.
+See the overlapping instances for RegexContext, and the fact that they
+call 'nullFail' just like the example above.  The DoCon package also
+does the same thing; it shows up in module Fraction.hs
+
+Conclusion: when typechecking the methods in a C [a] instance, we want to
+treat the 'a' as an *existential* type variable, in the sense described
+by Note [Binding when looking up instances].  That is why isOverlappableTyVar
+responds True to an InstSkol, which is the kind of skolem we use in
+tcInstDecl2.
+
+
+Note [Tricky type variable scoping]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+In our example
+       class C a where
+          op1, op2 :: Ix b => a -> b -> b
+          op2 = <dm-rhs>
+
+       instance C a => C [a]
+          {-# INLINE [2] op1 #-}
+          op1 = <rhs>
+
+note that 'a' and 'b' are *both* in scope in <dm-rhs>, but only 'a' is
+in scope in <rhs>.  In particular, we must make sure that 'b' is in
+scope when typechecking <dm-rhs>.  This is achieved by subFunTys,
+which brings appropriate tyvars into scope. This happens for both
+<dm-rhs> and for <rhs>, but that doesn't matter: the *renamer* will have
+complained if 'b' is mentioned in <rhs>.
+
 
 
 %************************************************************************
 
 
 %************************************************************************
@@ -143,7 +354,7 @@ tcInstDecls1    -- Deal with both source-code and imported instance decls
    -> [LInstDecl Name]          -- Source code instance decls
    -> [LDerivDecl Name]         -- Source code stand-alone deriving decls
    -> TcM (TcGblEnv,            -- The full inst env
    -> [LInstDecl Name]          -- Source code instance decls
    -> [LDerivDecl Name]         -- Source code stand-alone deriving decls
    -> TcM (TcGblEnv,            -- The full inst env
-           [InstInfo],          -- Source-code instance decls to process;
+           [InstInfo Name],     -- Source-code instance decls to process;
                                 -- contains all dfuns for this module
            HsValBinds Name)     -- Supporting bindings for derived instances
 
                                 -- contains all dfuns for this module
            HsValBinds Name)     -- Supporting bindings for derived instances
 
@@ -154,123 +365,98 @@ tcInstDecls1 tycl_decls inst_decls deriv_decls
                 -- round)
 
                 -- (1) Do class and family instance declarations
                 -- round)
 
                 -- (1) Do class and family instance declarations
-       ; let { idxty_decls = filter (isFamInstDecl . unLoc) tycl_decls }
-       ; local_info_tycons <- mapM tcLocalInstDecl1  inst_decls
-       ; idx_tycons        <- mapM tcIdxTyInstDeclTL idxty_decls
-
-       ; let { (local_infos,
-                at_tycons)     = unzip local_info_tycons
-             ; local_info      = concat local_infos
-             ; at_idx_tycon    = concat at_tycons ++ catMaybes idx_tycons
-             ; clas_decls      = filter (isClassDecl.unLoc) tycl_decls
-             ; implicit_things = concatMap implicitTyThings at_idx_tycon
-             }
+       ; idx_tycons        <- mapAndRecoverM (tcFamInstDecl TopLevel) $
+                                     filter (isFamInstDecl . unLoc) tycl_decls 
+       ; local_info_tycons <- mapAndRecoverM tcLocalInstDecl1  inst_decls
+
+       ; let { (local_info,
+                at_tycons_s)   = unzip local_info_tycons
+             ; at_idx_tycons   = concat at_tycons_s ++ idx_tycons
+             ; implicit_things = concatMap implicitTyConThings at_idx_tycons
+            ; aux_binds       = mkRecSelBinds at_idx_tycons  }
 
                 -- (2) Add the tycons of indexed types and their implicit
                 --     tythings to the global environment
 
                 -- (2) Add the tycons of indexed types and their implicit
                 --     tythings to the global environment
-       ; tcExtendGlobalEnv (at_idx_tycon ++ implicit_things) $ do {
+       ; tcExtendGlobalEnv (map ATyCon at_idx_tycons ++ implicit_things) $ do {
 
 
-                -- (3) Instances from generic class declarations
-       ; generic_inst_info <- getGenericInstances clas_decls
 
                 -- Next, construct the instance environment so far, consisting
                 -- of
 
                 -- Next, construct the instance environment so far, consisting
                 -- of
-                --   a) local instance decls
-                --   b) generic instances
-                --   c) local family instance decls
-       ; addInsts local_info         $ do {
-       ; addInsts generic_inst_info  $ do {
-       ; addFamInsts at_idx_tycon    $ do {
-
-                -- (4) Compute instances from "deriving" clauses;
+                --   (a) local instance decls
+                --   (b) local family instance decls
+       ; addInsts local_info         $
+         addFamInsts at_idx_tycons   $ do {
+
+                -- (3) Compute instances from "deriving" clauses;
                 -- This stuff computes a context for the derived instance
                 -- decl, so it needs to know about all the instances possible
                 -- NB: class instance declarations can contain derivings as
                 --     part of associated data type declarations
                 -- This stuff computes a context for the derived instance
                 -- decl, so it needs to know about all the instances possible
                 -- NB: class instance declarations can contain derivings as
                 --     part of associated data type declarations
-       ; (deriv_inst_info, deriv_binds) <- tcDeriving tycl_decls inst_decls
-                                                      deriv_decls
-       ; addInsts deriv_inst_info   $ do {
-
-       ; gbl_env <- getGblEnv
-       ; return (gbl_env,
-                  generic_inst_info ++ deriv_inst_info ++ local_info,
-                  deriv_binds)
-    }}}}}}
-  where
-    -- Make sure that toplevel type instance are not for associated types.
-    -- !!!TODO: Need to perform this check for the TyThing of type functions,
-    --          too.
-    tcIdxTyInstDeclTL ldecl@(L loc decl) =
-      do { tything <- tcFamInstDecl ldecl
-         ; setSrcSpan loc $
-             when (isAssocFamily tything) $
-               addErr $ assocInClassErr (tcdName decl)
-         ; return tything
-         }
-    isAssocFamily (Just (ATyCon tycon)) =
-      case tyConFamInst_maybe tycon of
-        Nothing       -> panic "isAssocFamily: no family?!?"
-        Just (fam, _) -> isTyConAssoc fam
-    isAssocFamily (Just _             ) = panic "isAssocFamily: no tycon?!?"
-    isAssocFamily Nothing               = False
-
-assocInClassErr name =
-  ptext (sLit "Associated type") <+> quotes (ppr name) <+>
-  ptext (sLit "must be inside a class instance")
-
-addInsts :: [InstInfo] -> TcM a -> TcM a
+        failIfErrsM    -- If the addInsts stuff gave any errors, don't
+                       -- try the deriving stuff, because that may give
+                       -- more errors still
+       ; (deriv_inst_info, deriv_binds, deriv_dus, deriv_tys, deriv_ty_insts) 
+              <- tcDeriving tycl_decls inst_decls deriv_decls
+
+       -- Extend the global environment also with the generated datatypes for
+       -- the generic representation
+       ; let all_tycons = map ATyCon (deriv_tys ++ deriv_ty_insts)
+       ; gbl_env <- tcExtendGlobalEnv all_tycons $
+                    tcExtendGlobalEnv (concatMap implicitTyThings all_tycons) $
+                    addFamInsts deriv_ty_insts $
+                    addInsts deriv_inst_info getGblEnv
+       ; return ( addTcgDUs gbl_env deriv_dus,
+                  deriv_inst_info ++ local_info,
+                  aux_binds `plusHsValBinds` deriv_binds)
+    }}}
+
+addInsts :: [InstInfo Name] -> TcM a -> TcM a
 addInsts infos thing_inside
   = tcExtendLocalInstEnv (map iSpec infos) thing_inside
 
 addInsts infos thing_inside
   = tcExtendLocalInstEnv (map iSpec infos) thing_inside
 
-addFamInsts :: [TyThing] -> TcM a -> TcM a
+addFamInsts :: [TyCon] -> TcM a -> TcM a
 addFamInsts tycons thing_inside
 addFamInsts tycons thing_inside
-  = tcExtendLocalFamInstEnv (map mkLocalFamInstTyThing tycons) thing_inside
-  where
-    mkLocalFamInstTyThing (ATyCon tycon) = mkLocalFamInst tycon
-    mkLocalFamInstTyThing tything        = pprPanic "TcInstDcls.addFamInsts"
-                                                    (ppr tything)
+  = tcExtendLocalFamInstEnv (map mkLocalFamInst tycons) thing_inside
 \end{code}
 
 \begin{code}
 tcLocalInstDecl1 :: LInstDecl Name
 \end{code}
 
 \begin{code}
 tcLocalInstDecl1 :: LInstDecl Name
-                 -> TcM ([InstInfo], [TyThing]) -- [] if there was an error
+                 -> TcM (InstInfo Name, [TyCon])
         -- A source-file instance declaration
         -- Type-check all the stuff before the "where"
         --
         -- We check for respectable instance type, and context
         -- A source-file instance declaration
         -- Type-check all the stuff before the "where"
         --
         -- We check for respectable instance type, and context
-tcLocalInstDecl1 decl@(L loc (InstDecl poly_ty binds uprags ats))
-  = -- Prime error recovery, set source location
-    recoverM (return ([], []))          $
-    setSrcSpan loc                      $
+tcLocalInstDecl1 (L loc (InstDecl poly_ty binds uprags ats))
+  = setSrcSpan loc                     $
     addErrCtxt (instDeclCtxt1 poly_ty)  $
 
     do  { is_boot <- tcIsHsBoot
         ; checkTc (not is_boot || (isEmptyLHsBinds binds && null uprags))
                   badBootDeclErr
 
     addErrCtxt (instDeclCtxt1 poly_ty)  $
 
     do  { is_boot <- tcIsHsBoot
         ; checkTc (not is_boot || (isEmptyLHsBinds binds && null uprags))
                   badBootDeclErr
 
-        ; (tyvars, theta, tau) <- tcHsInstHead poly_ty
+        ; (tyvars, theta, clas, inst_tys) <- tcHsInstHead poly_ty
+        ; checkValidInstance poly_ty tyvars theta clas inst_tys
 
         -- Next, process any associated types.
 
         -- Next, process any associated types.
-        ; idx_tycons <- mapM tcFamInstDecl ats
-
-        -- Now, check the validity of the instance.
-        ; (clas, inst_tys) <- checkValidInstHead tau
-        ; checkValidInstance tyvars theta clas inst_tys
-        ; checkValidAndMissingATs clas (tyvars, inst_tys)
-                                  (zip ats idx_tycons)
+        ; idx_tycons <- recoverM (return []) $
+                    do { idx_tycons <- checkNoErrs $ 
+                                        mapAndRecoverM (tcFamInstDecl NotTopLevel) ats
+                       ; checkValidAndMissingATs clas (tyvars, inst_tys)
+                                                 (zip ats idx_tycons)
+                       ; return idx_tycons }
 
         -- Finally, construct the Core representation of the instance.
         -- (This no longer includes the associated types.)
 
         -- Finally, construct the Core representation of the instance.
         -- (This no longer includes the associated types.)
-        ; dfun_name <- newDFunName clas inst_tys loc
+        ; dfun_name <- newDFunName clas inst_tys (getLoc poly_ty)
+               -- Dfun location is that of instance *header*
         ; overlap_flag <- getOverlapFlag
         ; let (eq_theta,dict_theta) = partition isEqPred theta
               theta'         = eq_theta ++ dict_theta
               dfun           = mkDictFunId dfun_name tyvars theta' clas inst_tys
               ispec          = mkLocalInstance dfun overlap_flag
 
         ; overlap_flag <- getOverlapFlag
         ; let (eq_theta,dict_theta) = partition isEqPred theta
               theta'         = eq_theta ++ dict_theta
               dfun           = mkDictFunId dfun_name tyvars theta' clas inst_tys
               ispec          = mkLocalInstance dfun overlap_flag
 
-        ; return ([InstInfo { iSpec  = ispec,
-                              iBinds = VanillaInst binds uprags }],
-                  catMaybes idx_tycons)
+        ; return (InstInfo { iSpec  = ispec, iBinds = VanillaInst binds uprags False },
+                  idx_tycons)
         }
   where
     -- We pass in the source form and the type checked form of the ATs.  We
         }
   where
     -- We pass in the source form and the type checked form of the ATs.  We
@@ -279,7 +465,7 @@ tcLocalInstDecl1 decl@(L loc (InstDecl poly_ty binds uprags ats))
     checkValidAndMissingATs :: Class
                             -> ([TyVar], [TcType])     -- instance types
                             -> [(LTyClDecl Name,       -- source form of AT
     checkValidAndMissingATs :: Class
                             -> ([TyVar], [TcType])     -- instance types
                             -> [(LTyClDecl Name,       -- source form of AT
-                                 Maybe TyThing)]       -- Core form of AT
+                                 TyCon)]              -- Core form of AT
                             -> TcM ()
     checkValidAndMissingATs clas inst_tys ats
       = do { -- Issue a warning for each class AT that is not defined in this
                             -> TcM ()
     checkValidAndMissingATs clas inst_tys ats
       = do { -- Issue a warning for each class AT that is not defined in this
@@ -297,14 +483,11 @@ tcLocalInstDecl1 decl@(L loc (InstDecl poly_ty binds uprags ats))
            ; mapM_ (checkIndexes clas inst_tys) ats
            }
 
            ; mapM_ (checkIndexes clas inst_tys) ats
            }
 
-    checkIndexes _    _        (hsAT, Nothing)             =
-      return () -- skip, we already had an error here
-    checkIndexes clas inst_tys (hsAT, Just (ATyCon tycon)) =
+    checkIndexes clas inst_tys (hsAT, tycon)
 -- !!!TODO: check that this does the Right Thing for indexed synonyms, too!
 -- !!!TODO: check that this does the Right Thing for indexed synonyms, too!
-      checkIndexes' clas inst_tys hsAT
-                    (tyConTyVars tycon,
-                     snd . fromJust . tyConFamInst_maybe $ tycon)
-    checkIndexes _ _ _ = panic "checkIndexes"
+      = checkIndexes' clas inst_tys hsAT
+                      (tyConTyVars tycon,
+                       snd . fromJust . tyConFamInst_maybe $ tycon)
 
     checkIndexes' clas (instTvs, instTys) hsAT (atTvs, atTys)
       = let atName = tcdName . unLoc $ hsAT
 
     checkIndexes' clas (instTvs, instTys) hsAT (atTvs, atTys)
       = let atName = tcdName . unLoc $ hsAT
@@ -313,11 +496,7 @@ tcLocalInstDecl1 decl@(L loc (InstDecl poly_ty binds uprags ats))
         addErrCtxt (atInstCtxt atName) $
         case find ((atName ==) . tyConName) (classATs clas) of
           Nothing     -> addErrTc $ badATErr clas atName  -- not in this class
         addErrCtxt (atInstCtxt atName) $
         case find ((atName ==) . tyConName) (classATs clas) of
           Nothing     -> addErrTc $ badATErr clas atName  -- not in this class
-          Just atDecl ->
-            case assocTyConArgPoss_maybe atDecl of
-              Nothing   -> panic "checkIndexes': AT has no args poss?!?"
-              Just poss ->
-
+          Just atycon ->
                 -- The following is tricky!  We need to deal with three
                 -- complications: (1) The AT possibly only uses a subset of
                 -- the class parameters as indexes and those it uses may be in
                 -- The following is tricky!  We need to deal with three
                 -- complications: (1) The AT possibly only uses a subset of
                 -- the class parameters as indexes and those it uses may be in
@@ -325,6 +504,13 @@ tcLocalInstDecl1 decl@(L loc (InstDecl poly_ty binds uprags ats))
                 -- which must be type variables; and (3) variables in AT and
                 -- instance head will be different `Name's even if their
                 -- source lexemes are identical.
                 -- which must be type variables; and (3) variables in AT and
                 -- instance head will be different `Name's even if their
                 -- source lexemes are identical.
+               --
+               -- e.g.    class C a b c where 
+               --           data D b a :: * -> *           -- NB (1) b a, omits c
+               --         instance C [x] Bool Char where 
+               --           data D Bool [x] v = MkD x [v]  -- NB (2) v
+               --                -- NB (3) the x in 'instance C...' have differnt
+               --                --        Names to x's in 'data D...'
                 --
                 -- Re (1), `poss' contains a permutation vector to extract the
                 -- class parameters in the right order.
                 --
                 -- Re (1), `poss' contains a permutation vector to extract the
                 -- class parameters in the right order.
@@ -338,7 +524,19 @@ tcLocalInstDecl1 decl@(L loc (InstDecl poly_ty binds uprags ats))
                 -- instance types with the instance type variable sharing its
                 -- source lexeme.
                 --
                 -- instance types with the instance type variable sharing its
                 -- source lexeme.
                 --
-                let relevantInstTys = map (instTys !!) poss
+                let poss :: [Int]
+                    -- For *associated* type families, gives the position
+                    -- of that 'TyVar' in the class argument list (0-indexed)
+                   -- e.g.  class C a b c where { type F c a :: *->* }
+                   --       Then we get Just [2,0]
+                   poss = catMaybes [ tv `elemIndex` classTyVars clas 
+                                     | tv <- tyConTyVars atycon]
+                       -- We will get Nothings for the "extra" type 
+                       -- variables in an associated data type
+                       -- e.g. class C a where { data D a :: *->* }
+                       -- here D gets arity 2 and has two tyvars
+
+                    relevantInstTys = map (instTys !!) poss
                     instArgs        = map Just relevantInstTys ++
                                       repeat Nothing  -- extra arguments
                     renaming        = substSameTyVar atTvs instTvs
                     instArgs        = map Just relevantInstTys ++
                                       repeat Nothing  -- extra arguments
                     renaming        = substSameTyVar atTvs instTvs
@@ -349,8 +547,8 @@ tcLocalInstDecl1 decl@(L loc (InstDecl poly_ty binds uprags ats))
       | isTyVarTy ty         = return ()
       | otherwise            = addErrTc $ mustBeVarArgErr ty
     checkIndex ty (Just instTy)
       | isTyVarTy ty         = return ()
       | otherwise            = addErrTc $ mustBeVarArgErr ty
     checkIndex ty (Just instTy)
-      | ty `tcEqType` instTy = return ()
-      | otherwise            = addErrTc $ wrongATArgErr ty instTy
+      | ty `eqType` instTy = return ()
+      | otherwise          = addErrTc $ wrongATArgErr ty instTy
 
     listToNameSet = addListToNameSet emptyNameSet
 
 
     listToNameSet = addListToNameSet emptyNameSet
 
@@ -363,19 +561,194 @@ tcLocalInstDecl1 decl@(L loc (InstDecl poly_ty binds uprags ats))
           tv1 `sameLexeme` tv2 =
             nameOccName (tyVarName tv1) == nameOccName (tyVarName tv2)
       in
           tv1 `sameLexeme` tv2 =
             nameOccName (tyVarName tv1) == nameOccName (tyVarName tv2)
       in
-      extendTvSubst (substSameTyVar tvs replacingTvs) tv replacement
+      TcType.extendTvSubst (substSameTyVar tvs replacingTvs) tv replacement
+\end{code}
+
+
+%************************************************************************
+%*                                                                     *
+               Type checking family instances
+%*                                                                     *
+%************************************************************************
+
+Family instances are somewhat of a hybrid.  They are processed together with
+class instance heads, but can contain data constructors and hence they share a
+lot of kinding and type checking code with ordinary algebraic data types (and
+GADTs).
+
+\begin{code}
+tcFamInstDecl :: TopLevelFlag -> LTyClDecl Name -> TcM TyCon
+tcFamInstDecl top_lvl (L loc decl)
+  =    -- Prime error recovery, set source location
+    setSrcSpan loc                             $
+    tcAddDeclCtxt decl                         $
+    do { -- type family instances require -XTypeFamilies
+        -- and can't (currently) be in an hs-boot file
+       ; type_families <- xoptM Opt_TypeFamilies
+       ; is_boot  <- tcIsHsBoot          -- Are we compiling an hs-boot file?
+       ; checkTc type_families $ badFamInstDecl (tcdLName decl)
+       ; checkTc (not is_boot) $ badBootFamInstDeclErr
+
+        -- Perform kind and type checking
+       ; tc <- tcFamInstDecl1 decl
+       ; checkValidTyCon tc    -- Remember to check validity;
+                               -- no recursion to worry about here
+
+       -- Check that toplevel type instances are not for associated types.
+       ; when (isTopLevel top_lvl && isAssocFamily tc)
+              (addErr $ assocInClassErr (tcdName decl))
+
+       ; return tc }
+
+isAssocFamily :: TyCon -> Bool -- Is an assocaited type
+isAssocFamily tycon
+  = case tyConFamInst_maybe tycon of
+          Nothing       -> panic "isAssocFamily: no family?!?"
+          Just (fam, _) -> isTyConAssoc fam
+
+assocInClassErr :: Name -> SDoc
+assocInClassErr name
+ = ptext (sLit "Associated type") <+> quotes (ppr name) <+>
+   ptext (sLit "must be inside a class instance")
+
+
+
+tcFamInstDecl1 :: TyClDecl Name -> TcM TyCon
+
+  -- "type instance"
+tcFamInstDecl1 (decl@TySynonym {tcdLName = L loc tc_name})
+  = kcIdxTyPats decl $ \k_tvs k_typats resKind family ->
+    do { -- check that the family declaration is for a synonym
+         checkTc (isFamilyTyCon family) (notFamily family)
+       ; checkTc (isSynTyCon family) (wrongKindOfFamily family)
+
+       ; -- (1) kind check the right-hand side of the type equation
+       ; k_rhs <- kcCheckLHsType (tcdSynRhs decl) (EK resKind EkUnk)
+                         -- ToDo: the ExpKind could be better
+
+         -- we need the exact same number of type parameters as the family
+         -- declaration 
+       ; let famArity = tyConArity family
+       ; checkTc (length k_typats == famArity) $ 
+           wrongNumberOfParmsErr famArity
+
+         -- (2) type check type equation
+       ; tcTyVarBndrs k_tvs $ \t_tvs -> do {  -- turn kinded into proper tyvars
+       ; t_typats <- mapM tcHsKindedType k_typats
+       ; t_rhs    <- tcHsKindedType k_rhs
+
+         -- (3) check the well-formedness of the instance
+       ; checkValidTypeInst t_typats t_rhs
+
+         -- (4) construct representation tycon
+       ; rep_tc_name <- newFamInstTyConName tc_name t_typats loc
+       ; buildSynTyCon rep_tc_name t_tvs (SynonymTyCon t_rhs) 
+                       (typeKind t_rhs) 
+                       NoParentTyCon (Just (family, t_typats))
+       }}
+
+  -- "newtype instance" and "data instance"
+tcFamInstDecl1 (decl@TyData {tcdND = new_or_data, tcdLName = L loc tc_name,
+                            tcdCons = cons})
+  = kcIdxTyPats decl $ \k_tvs k_typats resKind fam_tycon ->
+    do { -- check that the family declaration is for the right kind
+         checkTc (isFamilyTyCon fam_tycon) (notFamily fam_tycon)
+       ; checkTc (isAlgTyCon fam_tycon) (wrongKindOfFamily fam_tycon)
+
+       ; -- (1) kind check the data declaration as usual
+       ; k_decl <- kcDataDecl decl k_tvs
+       ; let k_ctxt = tcdCtxt k_decl
+            k_cons = tcdCons k_decl
+
+         -- result kind must be '*' (otherwise, we have too few patterns)
+       ; checkTc (isLiftedTypeKind resKind) $ tooFewParmsErr (tyConArity fam_tycon)
+
+         -- (2) type check indexed data type declaration
+       ; tcTyVarBndrs k_tvs $ \t_tvs -> do {  -- turn kinded into proper tyvars
+
+         -- kind check the type indexes and the context
+       ; t_typats     <- mapM tcHsKindedType k_typats
+       ; stupid_theta <- tcHsKindedContext k_ctxt
+
+         -- (3) Check that
+         --     (a) left-hand side contains no type family applications
+         --         (vanilla synonyms are fine, though, and we checked for
+         --         foralls earlier)
+       ; mapM_ checkTyFamFreeness t_typats
+
+       ; dataDeclChecks tc_name new_or_data stupid_theta k_cons
+
+         -- (4) construct representation tycon
+       ; rep_tc_name <- newFamInstTyConName tc_name t_typats loc
+       ; let ex_ok = True      -- Existentials ok for type families!
+       ; fixM (\ rep_tycon -> do 
+            { let orig_res_ty = mkTyConApp fam_tycon t_typats
+            ; data_cons <- tcConDecls ex_ok rep_tycon
+                                      (t_tvs, orig_res_ty) k_cons
+            ; tc_rhs <-
+                case new_or_data of
+                  DataType -> return (mkDataTyConRhs data_cons)
+                  NewType  -> ASSERT( not (null data_cons) )
+                              mkNewTyConRhs rep_tc_name rep_tycon (head data_cons)
+            ; buildAlgTyCon rep_tc_name t_tvs stupid_theta tc_rhs Recursive
+                            h98_syntax NoParentTyCon (Just (fam_tycon, t_typats))
+                 -- We always assume that indexed types are recursive.  Why?
+                 -- (1) Due to their open nature, we can never be sure that a
+                 -- further instance might not introduce a new recursive
+                 -- dependency.  (2) They are always valid loop breakers as
+                 -- they involve a coercion.
+            })
+       }}
+       where
+        h98_syntax = case cons of      -- All constructors have same shape
+                       L _ (ConDecl { con_res = ResTyGADT _ }) : _ -> False
+                       _ -> True
+
+tcFamInstDecl1 d = pprPanic "tcFamInstDecl1" (ppr d)
+
+-- Kind checking of indexed types
+-- -
+
+-- Kind check type patterns and kind annotate the embedded type variables.
+--
+-- * Here we check that a type instance matches its kind signature, but we do
+--   not check whether there is a pattern for each type index; the latter
+--   check is only required for type synonym instances.
+
+kcIdxTyPats :: TyClDecl Name
+           -> ([LHsTyVarBndr Name] -> [LHsType Name] -> Kind -> TyCon -> TcM a)
+              -- ^^kinded tvs         ^^kinded ty pats  ^^res kind
+           -> TcM a
+kcIdxTyPats decl thing_inside
+  = kcHsTyVars (tcdTyVars decl) $ \tvs -> 
+    do { let tc_name = tcdLName decl
+       ; fam_tycon <- tcLookupLocatedTyCon tc_name
+       ; let { (kinds, resKind) = splitKindFunTys (tyConKind fam_tycon)
+            ; hs_typats        = fromJust $ tcdTyPats decl }
+
+         -- we may not have more parameters than the kind indicates
+       ; checkTc (length kinds >= length hs_typats) $
+          tooManyParmsErr (tcdLName decl)
+
+         -- type functions can have a higher-kinded result
+       ; let resultKind = mkArrowKinds (drop (length hs_typats) kinds) resKind
+       ; typats <- zipWithM kcCheckLHsType hs_typats 
+                                   [ EK kind (EkArg (ppr tc_name) n) 
+                            | (kind,n) <- kinds `zip` [1..]]
+       ; thing_inside tvs typats resultKind fam_tycon
+       }
 \end{code}
 
 
 %************************************************************************
 %*                                                                      *
 \end{code}
 
 
 %************************************************************************
 %*                                                                      *
-\subsection{Type-checking instance declarations, pass 2}
+      Type-checking instance declarations, pass 2
 %*                                                                      *
 %************************************************************************
 
 \begin{code}
 %*                                                                      *
 %************************************************************************
 
 \begin{code}
-tcInstDecls2 :: [LTyClDecl Name] -> [InstInfo]
-             -> TcM (LHsBinds Id, TcLclEnv)
+tcInstDecls2 :: [LTyClDecl Name] -> [InstInfo Name]
+             -> TcM (LHsBinds Id)
 -- (a) From each class declaration,
 --      generate any default-method bindings
 -- (b) From each instance decl
 -- (a) From each class declaration,
 --      generate any default-method bindings
 -- (b) From each instance decl
@@ -383,467 +756,652 @@ tcInstDecls2 :: [LTyClDecl Name] -> [InstInfo]
 
 tcInstDecls2 tycl_decls inst_decls
   = do  { -- (a) Default methods from class decls
 
 tcInstDecls2 tycl_decls inst_decls
   = do  { -- (a) Default methods from class decls
-          (dm_binds_s, dm_ids_s) <- mapAndUnzipM tcClassDecl2 $
-                                    filter (isClassDecl.unLoc) tycl_decls
-        ; tcExtendIdEnv (concat dm_ids_s) $ do
-
+          let class_decls = filter (isClassDecl . unLoc) tycl_decls
+        ; dm_binds_s <- mapM tcClassDecl2 class_decls
+        ; let dm_binds = unionManyBags dm_binds_s
+                                    
           -- (b) instance declarations
           -- (b) instance declarations
-        ; inst_binds_s <- mapM tcInstDecl2 inst_decls
+       ; let dm_ids = collectHsBindsBinders dm_binds
+             -- Add the default method Ids (again)
+             -- See Note [Default methods and instances]
+        ; inst_binds_s <- tcExtendIdEnv dm_ids $
+                          mapM tcInstDecl2 inst_decls
 
           -- Done
 
           -- Done
-        ; let binds = unionManyBags dm_binds_s `unionBags`
-                      unionManyBags inst_binds_s
-        ; tcl_env <- getLclEnv -- Default method Ids in here
-        ; return (binds, tcl_env) }
+        ; return (dm_binds `unionBags` unionManyBags inst_binds_s) }
 \end{code}
 
 \end{code}
 
-======= New documentation starts here (Sept 92) ==============
+See Note [Default methods and instances]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+The default method Ids are already in the type environment (see Note
+[Default method Ids and Template Haskell] in TcTyClsDcls), BUT they
+don't have their InlinePragmas yet.  Usually that would not matter,
+because the simplifier propagates information from binding site to
+use.  But, unusually, when compiling instance decls we *copy* the
+INLINE pragma from the default method to the method for that
+particular operation (see Note [INLINE and default methods] below).
 
 
-The main purpose of @tcInstDecl2@ is to return a @HsBinds@ which defines
-the dictionary function for this instance declaration. For example
+So right here in tcInstDecl2 we must re-extend the type envt with
+the default method Ids replete with their INLINE pragmas.  Urk.
 
 
-        instance Foo a => Foo [a] where
-                op1 x = ...
-                op2 y = ...
+\begin{code}
 
 
-might generate something like
+tcInstDecl2 :: InstInfo Name -> TcM (LHsBinds Id)
+            -- Returns a binding for the dfun
+tcInstDecl2 (InstInfo { iSpec = ispec, iBinds = ibinds })
+  = recoverM (return emptyLHsBinds)             $
+    setSrcSpan loc                              $
+    addErrCtxt (instDeclCtxt2 (idType dfun_id)) $ 
+    do {  -- Instantiate the instance decl with skolem constants
+       ; (inst_tyvars, dfun_theta, inst_head) <- tcSkolDFunType (idType dfun_id)
+                     -- We instantiate the dfun_id with superSkolems.
+                     -- See Note [Subtle interaction of recursion and overlap]
+                     -- and Note [Binding when looking up instances]
+       ; let (clas, inst_tys) = tcSplitDFunHead inst_head
+             (class_tyvars, sc_theta, _, op_items) = classBigSig clas
+             sc_theta' = substTheta (zipOpenTvSubst class_tyvars inst_tys) sc_theta
+             n_ty_args = length inst_tyvars
+             n_silent  = dfunNSilent dfun_id
+             (silent_theta, orig_theta) = splitAt n_silent dfun_theta
+
+       ; silent_ev_vars <- mapM newSilentGiven silent_theta
+       ; orig_ev_vars   <- newEvVars orig_theta
+       ; let dfun_ev_vars = silent_ev_vars ++ orig_ev_vars
+
+       ; (sc_dicts, sc_args)
+             <- mapAndUnzipM (tcSuperClass n_ty_args dfun_ev_vars) sc_theta'
+
+       -- Check that any superclasses gotten from a silent arguemnt
+       -- can be deduced from the originally-specified dfun arguments
+       ; ct_loc <- getCtLoc ScOrigin
+       ; _ <- checkConstraints skol_info inst_tyvars orig_ev_vars $
+              emitFlats $ listToBag $
+              [ mkEvVarX sc ct_loc | sc <- sc_dicts, isSilentEvVar sc ]
+
+       -- Deal with 'SPECIALISE instance' pragmas
+       -- See Note [SPECIALISE instance pragmas]
+       ; spec_info@(spec_inst_prags,_) <- tcSpecInstPrags dfun_id ibinds
 
 
-        dfun.Foo.List dFoo_a = let op1 x = ...
-                                   op2 y = ...
-                               in
-                                   Dict [op1, op2]
+        -- Typecheck the methods
+       ; (meth_ids, meth_binds) 
+           <- tcExtendTyVarEnv inst_tyvars $
+                -- The inst_tyvars scope over the 'where' part
+                -- Those tyvars are inside the dfun_id's type, which is a bit
+                -- bizarre, but OK so long as you realise it!
+              tcInstanceMethods dfun_id clas inst_tyvars dfun_ev_vars
+                                inst_tys spec_info
+                                op_items ibinds
+
+       -- Create the result bindings
+       ; self_dict <- newEvVar (ClassP clas inst_tys)
+       ; let class_tc      = classTyCon clas
+             [dict_constr] = tyConDataCons class_tc
+             dict_bind     = mkVarBind self_dict dict_rhs
+             dict_rhs      = foldl mk_app inst_constr $
+                             map HsVar sc_dicts ++ map (wrapId arg_wrapper) meth_ids
+             inst_constr   = L loc $ wrapId (mkWpTyApps inst_tys)
+                                            (dataConWrapId dict_constr)
+                     -- We don't produce a binding for the dict_constr; instead we
+                     -- rely on the simplifier to unfold this saturated application
+                     -- We do this rather than generate an HsCon directly, because
+                     -- it means that the special cases (e.g. dictionary with only one
+                     -- member) are dealt with by the common MkId.mkDataConWrapId 
+                    -- code rather than needing to be repeated here.
+
+             mk_app :: LHsExpr Id -> HsExpr Id -> LHsExpr Id
+             mk_app fun arg = L loc (HsApp fun (L loc arg))
+
+             arg_wrapper = mkWpEvVarApps dfun_ev_vars <.> mkWpTyApps (mkTyVarTys inst_tyvars)
+
+               -- Do not inline the dfun; instead give it a magic DFunFunfolding
+               -- See Note [ClassOp/DFun selection]
+               -- See also note [Single-method classes]
+             dfun_id_w_fun
+                | isNewTyCon class_tc
+                = dfun_id `setInlinePragma` alwaysInlinePragma { inl_sat = Just 0 }
+                | otherwise
+                = dfun_id `setIdUnfolding`  mkDFunUnfolding dfun_ty (sc_args ++ meth_args)
+                          `setInlinePragma` dfunInlinePragma
+             meth_args = map (DFunPolyArg . Var) meth_ids
+
+             main_bind = AbsBinds { abs_tvs = inst_tyvars
+                                  , abs_ev_vars = dfun_ev_vars
+                                  , abs_exports = [(inst_tyvars, dfun_id_w_fun, self_dict,
+                                                    SpecPrags spec_inst_prags)]
+                                  , abs_ev_binds = emptyTcEvBinds
+                                  , abs_binds = unitBag dict_bind }
+
+       ; return (unitBag (L loc main_bind) `unionBags`
+                 listToBag meth_binds)
+       }
+ where
+   skol_info = InstSkol         
+   dfun_ty   = idType dfun_id
+   dfun_id   = instanceDFunId ispec
+   loc       = getSrcSpan dfun_id
+
+------------------------------
+tcSuperClass :: Int -> [EvVar] -> PredType -> TcM (EvVar, DFunArg CoreExpr)
+-- All superclasses should be either
+--   (a) be one of the arguments to the dfun, of
+--   (b) be a constant, soluble at top level
+tcSuperClass n_ty_args ev_vars pred
+  | Just (ev, i) <- find n_ty_args ev_vars
+  = return (ev, DFunLamArg i)
+  | otherwise
+  = ASSERT2( isEmptyVarSet (tyVarsOfPred pred), ppr pred)       -- Constant!
+    do { sc_dict  <- emitWanted ScOrigin pred
+       ; return (sc_dict, DFunConstArg (Var sc_dict)) }
+  where
+    find _ [] = Nothing
+    find i (ev:evs) | pred `eqPred` evVarPred ev = Just (ev, i)
+                    | otherwise                  = find (i+1) evs
+
+------------------------------
+tcSpecInstPrags :: DFunId -> InstBindings Name
+                -> TcM ([Located TcSpecPrag], PragFun)
+tcSpecInstPrags _ (NewTypeDerived {})
+  = return ([], \_ -> [])
+tcSpecInstPrags dfun_id (VanillaInst binds uprags _)
+  = do { spec_inst_prags <- mapM (wrapLocM (tcSpecInst dfun_id)) $
+                            filter isSpecInstLSig uprags
+            -- The filter removes the pragmas for methods
+       ; return (spec_inst_prags, mkPragFun uprags binds) }
+\end{code}
 
 
-HOWEVER, if the instance decl has no context, then it returns a
-bigger @HsBinds@ with declarations for each method.  For example
+Note [Silent Superclass Arguments]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Consider the following (extreme) situation:
+        class C a => D a where ...
+        instance D [a] => D [a] where ...
+Although this looks wrong (assume D [a] to prove D [a]), it is only a
+more extreme case of what happens with recursive dictionaries.
+
+To implement the dfun we must generate code for the superclass C [a],
+which we can get by superclass selection from the supplied argument!
+So we’d generate:
+       dfun :: forall a. D [a] -> D [a]
+       dfun = \d::D [a] -> MkD (scsel d) ..
+
+However this means that if we later encounter a situation where
+we have a [Wanted] dw::D [a] we could solve it thus:
+     dw := dfun dw
+Although recursive, this binding would pass the TcSMonadisGoodRecEv
+check because it appears as guarded.  But in reality, it will make a
+bottom superclass. The trouble is that isGoodRecEv can't "see" the
+superclass-selection inside dfun.
+
+Our solution to this problem is to change the way â€˜dfuns’ are created
+for instances, so that we pass as first arguments to the dfun some
+``silent superclass arguments’’, which are the immediate superclasses
+of the dictionary we are trying to construct. In our example:
+       dfun :: forall a. (C [a], D [a] -> D [a]
+       dfun = \(dc::C [a]) (dd::D [a]) -> DOrd dc ...
+
+This gives us:
+
+     -----------------------------------------------------------
+     DFun Superclass Invariant
+     ~~~~~~~~~~~~~~~~~~~~~~~~
+     In the body of a DFun, every superclass argument to the
+     returned dictionary is
+       either   * one of the arguments of the DFun,
+       or       * constant, bound at top level
+     -----------------------------------------------------------
+
+This means that no superclass is hidden inside a dfun application, so
+the counting argument in isGoodRecEv (more dfun calls than superclass
+selections) works correctly.
+
+The extra arguments required to satisfy the DFun Superclass Invariant
+always come first, and are called the "silent" arguments.  DFun types
+are built (only) by MkId.mkDictFunId, so that is where we decide
+what silent arguments are to be added.
+
+This net effect is that it is safe to treat a dfun application as
+wrapping a dictionary constructor around its arguments (in particular,
+a dfun never picks superclasses from the arguments under the dictionary
+constructor).
+
+In our example, if we had  [Wanted] dw :: D [a] we would get via the instance:
+    dw := dfun d1 d2
+    [Wanted] (d1 :: C [a])
+    [Wanted] (d2 :: D [a])
+    [Derived] (d :: D [a])
+    [Derived] (scd :: C [a])   scd  := scsel d
+    [Derived] (scd2 :: C [a])  scd2 := scsel d2
+
+And now, though we *can* solve: 
+     d2 := dw
+we will get an isGoodRecEv failure when we try to solve:
+    d1 := scsel d 
+ or
+    d1 := scsel d2 
+
+Test case SCLoop tests this fix. 
+         
+Note [SPECIALISE instance pragmas]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Consider
+
+   instance (Ix a, Ix b) => Ix (a,b) where
+     {-# SPECIALISE instance Ix (Int,Int) #-}
+     range (x,y) = ...
+
+We do *not* want to make a specialised version of the dictionary
+function.  Rather, we want specialised versions of each method.
+Thus we should generate something like this:
+
+  $dfIx :: (Ix a, Ix x) => Ix (a,b)
+  {- DFUN [$crange, ...] -}
+  $dfIx da db = Ix ($crange da db) (...other methods...)
+
+  $dfIxPair :: (Ix a, Ix x) => Ix (a,b)
+  {- DFUN [$crangePair, ...] -}
+  $dfIxPair = Ix ($crangePair da db) (...other methods...)
+
+  $crange :: (Ix a, Ix b) -> ((a,b),(a,b)) -> [(a,b)]
+  {-# SPECIALISE $crange :: ((Int,Int),(Int,Int)) -> [(Int,Int)] #-}
+  $crange da db = <blah>
+
+  {-# RULE  range ($dfIx da db) = $crange da db #-}
+
+Note that  
+
+  * The RULE is unaffected by the specialisation.  We don't want to
+    specialise $dfIx, because then it would need a specialised RULE
+    which is a pain.  The single RULE works fine at all specialisations.
+    See Note [How instance declarations are translated] above
+
+  * Instead, we want to specialise the *method*, $crange
+
+In practice, rather than faking up a SPECIALISE pragama for each
+method (which is painful, since we'd have to figure out its
+specialised type), we call tcSpecPrag *as if* were going to specialise
+$dfIx -- you can see that in the call to tcSpecInst.  That generates a
+SpecPrag which, as it turns out, can be used unchanged for each method.
+The "it turns out" bit is delicate, but it works fine!
 
 
-        instance Foo [a] where
-                op1 x = ...
-                op2 y = ...
+\begin{code}
+tcSpecInst :: Id -> Sig Name -> TcM TcSpecPrag
+tcSpecInst dfun_id prag@(SpecInstSig hs_ty) 
+  = addErrCtxt (spec_ctxt prag) $
+    do  { let name = idName dfun_id
+        ; (tyvars, theta, clas, tys) <- tcHsInstHead hs_ty
+        ; let (_, spec_dfun_ty) = mkDictFunTy tyvars theta clas tys
+
+        ; co_fn <- tcSubType (SpecPragOrigin name) SpecInstCtxt
+                             (idType dfun_id) spec_dfun_ty
+        ; return (SpecPrag dfun_id co_fn defaultInlinePragma) }
+  where
+    spec_ctxt prag = hang (ptext (sLit "In the SPECIALISE pragma")) 2 (ppr prag)
 
 
-might produce
+tcSpecInst _  _ = panic "tcSpecInst"
+\end{code}
 
 
-        dfun.Foo.List a = Dict [Foo.op1.List a, Foo.op2.List a]
-        const.Foo.op1.List a x = ...
-        const.Foo.op2.List a y = ...
+%************************************************************************
+%*                                                                      *
+      Type-checking an instance method
+%*                                                                      *
+%************************************************************************
 
 
-This group may be mutually recursive, because (for example) there may
-be no method supplied for op2 in which case we'll get
+tcInstanceMethod
+- Make the method bindings, as a [(NonRec, HsBinds)], one per method
+- Remembering to use fresh Name (the instance method Name) as the binder
+- Bring the instance method Ids into scope, for the benefit of tcInstSig
+- Use sig_fn mapping instance method Name -> instance tyvars
+- Ditto prag_fn
+- Use tcValBinds to do the checking
 
 
-        const.Foo.op2.List a = default.Foo.op2 (dfun.Foo.List a)
+\begin{code}
+tcInstanceMethods :: DFunId -> Class -> [TcTyVar]
+                  -> [EvVar]
+                 -> [TcType]
+                  -> ([Located TcSpecPrag], PragFun)
+                 -> [(Id, DefMeth)]
+                  -> InstBindings Name 
+                 -> TcM ([Id], [LHsBind Id])
+       -- The returned inst_meth_ids all have types starting
+       --      forall tvs. theta => ...
+tcInstanceMethods dfun_id clas tyvars dfun_ev_vars inst_tys 
+                  (spec_inst_prags, prag_fn)
+                  op_items (VanillaInst binds _ standalone_deriv)
+  = mapAndUnzipM tc_item op_items
+  where
+    ----------------------
+    tc_item :: (Id, DefMeth) -> TcM (Id, LHsBind Id)
+    tc_item (sel_id, dm_info)
+      = case findMethodBind (idName sel_id) binds of
+           Just user_bind -> tc_body sel_id standalone_deriv user_bind
+           Nothing        -> tc_default sel_id dm_info
+
+    ----------------------
+    tc_body :: Id -> Bool -> LHsBind Name -> TcM (TcId, LHsBind Id)
+    tc_body sel_id generated_code rn_bind 
+      = add_meth_ctxt sel_id generated_code rn_bind $
+        do { (meth_id, local_meth_id) <- mkMethIds clas tyvars dfun_ev_vars 
+                                                   inst_tys sel_id
+           ; let prags = prag_fn (idName sel_id)
+           ; meth_id1 <- addInlinePrags meth_id prags
+           ; spec_prags <- tcSpecPrags meth_id1 prags
+           ; bind <- tcInstanceMethodBody InstSkol
+                          tyvars dfun_ev_vars
+                          meth_id1 local_meth_id meth_sig_fn 
+                          (mk_meth_spec_prags meth_id1 spec_prags)
+                          rn_bind 
+           ; return (meth_id1, bind) }
+
+    ----------------------
+    tc_default :: Id -> DefMeth -> TcM (TcId, LHsBind Id)
+
+    tc_default sel_id (GenDefMeth dm_name)
+      = do { meth_bind <- mkGenericDefMethBind clas inst_tys sel_id dm_name
+           ; tc_body sel_id False {- Not generated code? -} meth_bind }
+{-
+    tc_default sel_id GenDefMeth    -- Derivable type classes stuff
+      = do { meth_bind <- mkGenericDefMethBind clas inst_tys sel_id
+           ; tc_body sel_id False {- Not generated code? -} meth_bind }
+-}
+    tc_default sel_id NoDefMeth            -- No default method at all
+      = do { warnMissingMethod sel_id
+          ; (meth_id, _) <- mkMethIds clas tyvars dfun_ev_vars 
+                                         inst_tys sel_id
+           ; return (meth_id, mkVarBind meth_id $ 
+                              mkLHsWrap lam_wrapper error_rhs) }
+      where
+       error_rhs    = L loc $ HsApp error_fun error_msg
+       error_fun    = L loc $ wrapId (WpTyApp meth_tau) nO_METHOD_BINDING_ERROR_ID
+       error_msg    = L loc (HsLit (HsStringPrim (mkFastString error_string)))
+       meth_tau     = funResultTy (applyTys (idType sel_id) inst_tys)
+       error_string = showSDoc (hcat [ppr loc, text "|", ppr sel_id ])
+        lam_wrapper  = mkWpTyLams tyvars <.> mkWpLams dfun_ev_vars
+
+    tc_default sel_id (DefMeth dm_name)        -- A polymorphic default method
+      = do {   -- Build the typechecked version directly, 
+                -- without calling typecheck_method; 
+                -- see Note [Default methods in instances]
+                 -- Generate   /\as.\ds. let self = df as ds
+                 --                      in $dm inst_tys self
+                -- The 'let' is necessary only because HsSyn doesn't allow
+                -- you to apply a function to a dictionary *expression*.
+
+           ; self_dict <- newEvVar (ClassP clas inst_tys)
+           ; let self_ev_bind = EvBind self_dict $
+                                EvDFunApp dfun_id (mkTyVarTys tyvars) dfun_ev_vars
+
+           ; (meth_id, local_meth_id) <- mkMethIds clas tyvars dfun_ev_vars 
+                                                   inst_tys sel_id
+           ; dm_id <- tcLookupId dm_name
+           ; let dm_inline_prag = idInlinePragma dm_id
+                 rhs = HsWrap (mkWpEvVarApps [self_dict] <.> mkWpTyApps inst_tys) $
+                        HsVar dm_id 
+
+                meth_bind = L loc $ VarBind { var_id = local_meth_id
+                                             , var_rhs = L loc rhs 
+                                             , var_inline = False }
+                 meth_id1 = meth_id `setInlinePragma` dm_inline_prag
+                           -- Copy the inline pragma (if any) from the default
+                           -- method to this version. Note [INLINE and default methods]
+                           
+                 bind = AbsBinds { abs_tvs = tyvars, abs_ev_vars =  dfun_ev_vars
+                                 , abs_exports = [( tyvars, meth_id1, local_meth_id
+                                                  , mk_meth_spec_prags meth_id1 [])]
+                                 , abs_ev_binds = EvBinds (unitBag self_ev_bind)
+                                 , abs_binds    = unitBag meth_bind }
+            -- Default methods in an instance declaration can't have their own 
+            -- INLINE or SPECIALISE pragmas. It'd be possible to allow them, but
+            -- currently they are rejected with 
+            --           "INLINE pragma lacks an accompanying binding"
+
+           ; return (meth_id1, L loc bind) } 
+
+    ----------------------
+    mk_meth_spec_prags :: Id -> [LTcSpecPrag] -> TcSpecPrags
+       -- Adapt the SPECIALISE pragmas to work for this method Id
+        -- There are two sources: 
+        --   * spec_inst_prags: {-# SPECIALISE instance :: <blah> #-}
+        --     These ones have the dfun inside, but [perhaps surprisingly] 
+        --     the correct wrapper
+        --   * spec_prags_for_me: {-# SPECIALISE op :: <blah> #-}
+    mk_meth_spec_prags meth_id spec_prags_for_me
+      = SpecPrags (spec_prags_for_me ++ 
+                   [ L loc (SpecPrag meth_id wrap inl)
+                  | L loc (SpecPrag _ wrap inl) <- spec_inst_prags])
+   
+    loc = getSrcSpan dfun_id
+    meth_sig_fn _ = Just ([],loc)      -- The 'Just' says "yes, there's a type sig"
+       -- But there are no scoped type variables from local_method_id
+       -- Only the ones from the instance decl itself, which are already
+       -- in scope.  Example:
+       --      class C a where { op :: forall b. Eq b => ... }
+       --      instance C [c] where { op = <rhs> }
+       -- In <rhs>, 'c' is scope but 'b' is not!
+
+        -- For instance decls that come from standalone deriving clauses
+       -- we want to print out the full source code if there's an error
+       -- because otherwise the user won't see the code at all
+    add_meth_ctxt sel_id generated_code rn_bind thing 
+      | generated_code = addLandmarkErrCtxt (derivBindCtxt sel_id clas inst_tys rn_bind) thing
+      | otherwise      = thing
+
+
+tcInstanceMethods dfun_id clas tyvars dfun_ev_vars inst_tys 
+                  _ op_items (NewTypeDerived coi _)
+
+-- Running example:
+--   class Show b => Foo a b where
+--     op :: a -> b -> b
+--   newtype N a = MkN (Tree [a]) 
+--   deriving instance (Show p, Foo Int p) => Foo Int (N p)
+--              -- NB: standalone deriving clause means
+--              --     that the contex is user-specified
+-- Hence op :: forall a b. Foo a b => a -> b -> b
+--
+-- We're going to make an instance like
+--   instance (Show p, Foo Int p) => Foo Int (N p)
+--      op = $copT
+--
+--   $copT :: forall p. (Show p, Foo Int p) => Int -> N p -> N p
+--   $copT p (d1:Show p) (d2:Foo Int p) 
+--     = op Int (Tree [p]) rep_d |> op_co
+--     where 
+--       rep_d :: Foo Int (Tree [p]) = ...d1...d2...
+--       op_co :: (Int -> Tree [p] -> Tree [p]) ~ (Int -> T p -> T p)
+-- We get op_co by substituting [Int/a] and [co/b] in type for op
+-- where co : [p] ~ T p
+--
+-- Notice that the dictionary bindings "..d1..d2.." must be generated
+-- by the constraint solver, since the <context> may be
+-- user-specified.
+
+  = do { rep_d_stuff <- checkConstraints InstSkol tyvars dfun_ev_vars $
+                        emitWanted ScOrigin rep_pred
+                         
+       ; mapAndUnzipM (tc_item rep_d_stuff) op_items }
+  where
+     loc = getSrcSpan dfun_id
+
+     inst_tvs = fst (tcSplitForAllTys (idType dfun_id))
+     Just (init_inst_tys, _) = snocView inst_tys
+     rep_ty   = pFst (coercionKind co)  -- [p]
+     rep_pred = mkClassPred clas (init_inst_tys ++ [rep_ty])
+
+     -- co : [p] ~ T p
+     co = substCoWithTys inst_tvs (mkTyVarTys tyvars) $
+          mkSymCo coi
+
+     ----------------
+     tc_item :: (TcEvBinds, EvVar) -> (Id, DefMeth) -> TcM (TcId, LHsBind TcId)
+     tc_item (rep_ev_binds, rep_d) (sel_id, _)
+       = do { (meth_id, local_meth_id) <- mkMethIds clas tyvars dfun_ev_vars 
+                                                    inst_tys sel_id
+
+            ; let meth_rhs  = wrapId (mk_op_wrapper sel_id rep_d) sel_id
+                  meth_bind = VarBind { var_id = local_meth_id
+                                      , var_rhs = L loc meth_rhs
+                                     , var_inline = False }
+
+                 bind = AbsBinds { abs_tvs = tyvars, abs_ev_vars = dfun_ev_vars
+                                   , abs_exports = [(tyvars, meth_id, 
+                                                     local_meth_id, noSpecPrags)]
+                                  , abs_ev_binds = rep_ev_binds
+                                   , abs_binds = unitBag $ L loc meth_bind }
+
+            ; return (meth_id, L loc bind) }
+
+     ----------------
+     mk_op_wrapper :: Id -> EvVar -> HsWrapper
+     mk_op_wrapper sel_id rep_d 
+       = WpCast (liftCoSubstWith sel_tvs (map mkReflCo init_inst_tys ++ [co])
+                               local_meth_ty)
+         <.> WpEvApp (EvId rep_d)
+         <.> mkWpTyApps (init_inst_tys ++ [rep_ty]) 
+       where
+         (sel_tvs, sel_rho) = tcSplitForAllTys (idType sel_id)
+         (_, local_meth_ty) = tcSplitPredFunTy_maybe sel_rho
+                              `orElse` pprPanic "tcInstanceMethods" (ppr sel_id)
+
+----------------------
+mkMethIds :: Class -> [TcTyVar] -> [EvVar] -> [TcType] -> Id -> TcM (TcId, TcId)
+mkMethIds clas tyvars dfun_ev_vars inst_tys sel_id
+  = do  { uniq <- newUnique
+       ; let meth_name = mkDerivedInternalName mkClassOpAuxOcc uniq sel_name
+       ; local_meth_name <- newLocalName sel_name
+                 -- Base the local_meth_name on the selector name, becuase
+                 -- type errors from tcInstanceMethodBody come from here
+
+       ; let meth_id       = mkLocalId meth_name meth_ty
+             local_meth_id = mkLocalId local_meth_name local_meth_ty
+        ; return (meth_id, local_meth_id) }
+  where
+    local_meth_ty = instantiateMethod clas sel_id inst_tys
+    meth_ty = mkForAllTys tyvars $ mkPiTypes dfun_ev_vars local_meth_ty
+    sel_name = idName sel_id
+
+----------------------
+wrapId :: HsWrapper -> id -> HsExpr id
+wrapId wrapper id = mkHsWrap wrapper (HsVar id)
+
+derivBindCtxt :: Id -> Class -> [Type ] -> LHsBind Name -> SDoc
+derivBindCtxt sel_id clas tys _bind
+   = vcat [ ptext (sLit "When typechecking the code for ") <+> quotes (ppr sel_id)
+          , nest 2 (ptext (sLit "in a standalone derived instance for")
+                   <+> quotes (pprClassPred clas tys) <> colon)
+          , nest 2 $ ptext (sLit "To see the code I am typechecking, use -ddump-deriv") ]
+
+-- Too voluminous
+--       , nest 2 $ pprSetDepth AllTheWay $ ppr bind ]
+
+warnMissingMethod :: Id -> TcM ()
+warnMissingMethod sel_id
+  = do { warn <- doptM Opt_WarnMissingMethods          
+       ; warnTc (warn  -- Warn only if -fwarn-missing-methods
+                 && not (startsWithUnderscore (getOccName sel_id)))
+                                       -- Don't warn about _foo methods
+               (ptext (sLit "No explicit method nor default method for")
+                 <+> quotes (ppr sel_id)) }
+\end{code}
 
 
-that is, the default method applied to the dictionary at this type.
-What we actually produce in either case is:
+Note [Export helper functions]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+We arrange to export the "helper functions" of an instance declaration,
+so that they are not subject to preInlineUnconditionally, even if their
+RHS is trivial.  Reason: they are mentioned in the DFunUnfolding of
+the dict fun as Ids, not as CoreExprs, so we can't substitute a 
+non-variable for them.
 
 
-        AbsBinds [a] [dfun_theta_dicts]
-                 [(dfun.Foo.List, d)] ++ (maybe) [(const.Foo.op1.List, op1), ...]
-                 { d = (sd1,sd2, ..., op1, op2, ...)
-                   op1 = ...
-                   op2 = ...
-                 }
+We could change this by making DFunUnfoldings have CoreExprs, but it
+seems a bit simpler this way.
 
 
-The "maybe" says that we only ask AbsBinds to make global constant methods
-if the dfun_theta is empty.
+Note [Default methods in instances]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Consider this
 
 
-For an instance declaration, say,
+   class Baz v x where
+      foo :: x -> x
+      foo y = <blah>
 
 
-        instance (C1 a, C2 b) => C (T a b) where
-                ...
+   instance Baz Int Int
 
 
-where the {\em immediate} superclasses of C are D1, D2, we build a dictionary
-function whose type is
+From the class decl we get
 
 
-        (C1 a, C2 b, D1 (T a b), D2 (T a b)) => C (T a b)
+   $dmfoo :: forall v x. Baz v x => x -> x
+   $dmfoo y = <blah>
 
 
-Notice that we pass it the superclass dictionaries at the instance type; this
-is the ``Mark Jones optimisation''.  The stuff before the "=>" here
-is the @dfun_theta@ below.
+Notice that the type is ambiguous.  That's fine, though. The instance
+decl generates
 
 
+   $dBazIntInt = MkBaz fooIntInt
+   fooIntInt = $dmfoo Int Int $dBazIntInt
 
 
-\begin{code}
-tcInstDecl2 :: InstInfo -> TcM (LHsBinds Id)
--- Returns a binding for the dfun
+BUT this does mean we must generate the dictionary translation of
+fooIntInt directly, rather than generating source-code and
+type-checking it.  That was the bug in Trac #1061. In any case it's
+less work to generate the translated version!
 
 
-------------------------
--- Derived newtype instances; surprisingly tricky!
---
---      class Show a => Foo a b where ...
---      newtype N a = MkN (Tree [a]) deriving( Foo Int )
---
--- The newtype gives an FC axiom looking like
---      axiom CoN a ::  N a :=: Tree [a]
---   (see Note [Newtype coercions] in TyCon for this unusual form of axiom)
---
--- So all need is to generate a binding looking like:
---      dfunFooT :: forall a. (Foo Int (Tree [a], Show (N a)) => Foo Int (N a)
---      dfunFooT = /\a. \(ds:Show (N a)) (df:Foo (Tree [a])).
---                case df `cast` (Foo Int (sym (CoN a))) of
---                   Foo _ op1 .. opn -> Foo ds op1 .. opn
---
--- If there are no superclasses, matters are simpler, because we don't need the case
--- see Note [Newtype deriving superclasses] in TcDeriv.lhs
-
-tcInstDecl2 (InstInfo { iSpec = ispec, iBinds = NewTypeDerived })
-  = do  { let dfun_id      = instanceDFunId ispec
-              rigid_info   = InstSkol
-              origin       = SigOrigin rigid_info
-              inst_ty      = idType dfun_id
-        ; (tvs, theta, inst_head_ty) <- tcSkolSigType rigid_info inst_ty
-                -- inst_head_ty is a PredType
-
-        ; let (cls, cls_inst_tys) = tcSplitDFunHead inst_head_ty
-              (class_tyvars, sc_theta, _, op_items) = classBigSig cls
-              cls_tycon = classTyCon cls
-              sc_theta' = substTheta (zipOpenTvSubst class_tyvars cls_inst_tys) sc_theta
-
-              Just (initial_cls_inst_tys, last_ty) = snocView cls_inst_tys
-              (nt_tycon, tc_args) = tcSplitTyConApp last_ty     -- Can't fail
-              rep_ty              = newTyConInstRhs nt_tycon tc_args
-
-              rep_pred     = mkClassPred cls (initial_cls_inst_tys ++ [rep_ty])
-                                -- In our example, rep_pred is (Foo Int (Tree [a]))
-              the_coercion = make_coercion cls_tycon initial_cls_inst_tys nt_tycon tc_args
-                                -- Coercion of kind (Foo Int (Tree [a]) ~ Foo Int (N a)
-
-        ; inst_loc   <- getInstLoc origin
-        ; sc_loc     <- getInstLoc InstScOrigin
-        ; dfun_dicts <- newDictBndrs inst_loc theta
-        ; sc_dicts   <- newDictBndrs sc_loc sc_theta'
-        ; this_dict  <- newDictBndr inst_loc (mkClassPred cls cls_inst_tys)
-        ; rep_dict   <- newDictBndr inst_loc rep_pred
-
-        -- Figure out bindings for the superclass context from dfun_dicts
-        -- Don't include this_dict in the 'givens', else
-        -- wanted_sc_insts get bound by just selecting from this_dict!!
-        ; sc_binds <- addErrCtxt superClassCtxt $
-                      tcSimplifySuperClasses inst_loc dfun_dicts (rep_dict:sc_dicts)
-
-        ; let coerced_rep_dict = mkHsWrap the_coercion (HsVar (instToId rep_dict))
-
-        ; body <- make_body cls_tycon cls_inst_tys sc_dicts coerced_rep_dict
-        ; let dict_bind = noLoc $ VarBind (instToId this_dict) (noLoc body)
-
-        ; return (unitBag $ noLoc $
-                  AbsBinds  tvs (map instToVar dfun_dicts)
-                            [(tvs, dfun_id, instToId this_dict, [])]
-                            (dict_bind `consBag` sc_binds)) }
-  where
-      -----------------------
-      --        make_coercion
-      -- The inst_head looks like (C s1 .. sm (T a1 .. ak))
-      -- But we want the coercion (C s1 .. sm (sym (CoT a1 .. ak)))
-      --        with kind (C s1 .. sm (T a1 .. ak)  :=:  C s1 .. sm <rep_ty>)
-      --        where rep_ty is the (eta-reduced) type rep of T
-      -- So we just replace T with CoT, and insert a 'sym'
-      -- NB: we know that k will be >= arity of CoT, because the latter fully eta-reduced
-
-    make_coercion cls_tycon initial_cls_inst_tys nt_tycon tc_args
-        | Just co_con <- newTyConCo_maybe nt_tycon
-        , let co = mkSymCoercion (mkTyConApp co_con tc_args)
-        = WpCast (mkTyConApp cls_tycon (initial_cls_inst_tys ++ [co]))
-        | otherwise     -- The newtype is transparent; no need for a cast
-        = idHsWrapper
-
-      -----------------------
-      --     (make_body C tys scs coreced_rep_dict)
-      --                returns
-      --     (case coerced_rep_dict of { C _ ops -> C scs ops })
-      -- But if there are no superclasses, it returns just coerced_rep_dict
-      -- See Note [Newtype deriving superclasses] in TcDeriv.lhs
-
-    make_body cls_tycon cls_inst_tys sc_dicts coerced_rep_dict
-        | null sc_dicts         -- Case (a)
-        = return coerced_rep_dict
-        | otherwise             -- Case (b)
-        = do { op_ids            <- newSysLocalIds (fsLit "op") op_tys
-             ; dummy_sc_dict_ids <- newSysLocalIds (fsLit "sc") (map idType sc_dict_ids)
-             ; let the_pat = ConPatOut { pat_con = noLoc cls_data_con, pat_tvs = [],
-                                         pat_dicts = dummy_sc_dict_ids,
-                                         pat_binds = emptyLHsBinds,
-                                         pat_args = PrefixCon (map nlVarPat op_ids),
-                                         pat_ty = pat_ty}
-                   the_match = mkSimpleMatch [noLoc the_pat] the_rhs
-                   the_rhs = mkHsConApp cls_data_con cls_inst_tys $
-                             map HsVar (sc_dict_ids ++ op_ids)
-
-                -- Warning: this HsCase scrutinises a value with a PredTy, which is
-                --          never otherwise seen in Haskell source code. It'd be
-                --          nicer to generate Core directly!
-             ; return (HsCase (noLoc coerced_rep_dict) $
-                       MatchGroup [the_match] (mkFunTy pat_ty pat_ty)) }
-        where
-          sc_dict_ids  = map instToId sc_dicts
-          pat_ty       = mkTyConApp cls_tycon cls_inst_tys
-          cls_data_con = head (tyConDataCons cls_tycon)
-          cls_arg_tys  = dataConInstArgTys cls_data_con cls_inst_tys
-          op_tys       = dropList sc_dict_ids cls_arg_tys
-
-------------------------
--- Ordinary instances
-
-tcInstDecl2 (InstInfo { iSpec = ispec, iBinds = VanillaInst monobinds uprags })
-  = let
-        dfun_id    = instanceDFunId ispec
-        rigid_info = InstSkol
-        inst_ty    = idType dfun_id
-        loc        = srcLocSpan (getSrcLoc dfun_id)
-    in
-         -- Prime error recovery
-    recoverM (return emptyLHsBinds)             $
-    setSrcSpan loc                              $
-    addErrCtxt (instDeclCtxt2 (idType dfun_id)) $ do
+Note [INLINE and default methods]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Default methods need special case.  They are supposed to behave rather like
+macros.  For exmample
 
 
-        -- Instantiate the instance decl with skolem constants
-    (inst_tyvars', dfun_theta', inst_head') <- tcSkolSigType rigid_info inst_ty
-                -- These inst_tyvars' scope over the 'where' part
-                -- Those tyvars are inside the dfun_id's type, which is a bit
-                -- bizarre, but OK so long as you realise it!
-    let
-        (clas, inst_tys') = tcSplitDFunHead inst_head'
-        (class_tyvars, sc_theta, _, op_items) = classBigSig clas
-
-        -- Instantiate the super-class context with inst_tys
-        sc_theta' = substTheta (zipOpenTvSubst class_tyvars inst_tys') sc_theta
-        (eq_sc_theta',dict_sc_theta')     = partition isEqPred sc_theta'
-        origin    = SigOrigin rigid_info
-        (eq_dfun_theta',dict_dfun_theta') = partition isEqPred dfun_theta'
-
-         -- Create dictionary Ids from the specified instance contexts.
-    sc_loc        <- getInstLoc InstScOrigin
-    sc_dicts      <- newDictBndrs sc_loc dict_sc_theta'
-    inst_loc      <- getInstLoc origin
-    sc_covars     <- mkMetaCoVars eq_sc_theta'
-    wanted_sc_eqs <- mkEqInsts eq_sc_theta' (map mkWantedCo sc_covars)
-    dfun_covars   <- mkCoVars eq_dfun_theta'
-    dfun_eqs      <- mkEqInsts eq_dfun_theta' (map mkGivenCo $ mkTyVarTys dfun_covars)
-    dfun_dicts    <- newDictBndrs inst_loc dict_dfun_theta'
-    this_dict     <- newDictBndr inst_loc (mkClassPred clas inst_tys')
-                -- Default-method Ids may be mentioned in synthesised RHSs,
-                -- but they'll already be in the environment.
+  class Foo a where
+    op1, op2 :: Bool -> a -> a
 
 
-        -- Typecheck the methods
-    let -- These insts are in scope; quite a few, eh?
-        dfun_insts      = dfun_eqs ++ dfun_dicts
-        wanted_sc_insts = wanted_sc_eqs   ++ sc_dicts
-        given_sc_eqs    = map (updateEqInstCoercion (mkGivenCo . TyVarTy . fromWantedCo "tcInstDecl2") ) wanted_sc_eqs
-        given_sc_insts  = given_sc_eqs   ++ sc_dicts
-        avail_insts     = [this_dict] ++ dfun_insts ++ given_sc_insts
-
-    (meth_ids, meth_binds) <- tcMethods origin clas inst_tyvars'
-                                 dfun_theta' inst_tys' avail_insts
-                                 op_items monobinds uprags
-
-    -- Figure out bindings for the superclass context
-    -- Don't include this_dict in the 'givens', else
-    -- wanted_sc_insts get bound by just selecting  from this_dict!!
-    sc_binds <- addErrCtxt superClassCtxt
-                   (tcSimplifySuperClasses inst_loc dfun_insts wanted_sc_insts)
-
-    -- It's possible that the superclass stuff might unified one
-    -- of the inst_tyavars' with something in the envt
-    checkSigTyVars inst_tyvars'
-
-    -- Deal with 'SPECIALISE instance' pragmas
-    prags <- tcPrags dfun_id (filter isSpecInstLSig uprags)
-
-    -- Create the result bindings
-    let
-        dict_constr   = classDataCon clas
-        scs_and_meths = map instToId sc_dicts ++ meth_ids
-        this_dict_id  = instToId this_dict
-        inline_prag | null dfun_insts  = []
-                    | otherwise        = [L loc (InlinePrag (Inline AlwaysActive True))]
-                -- Always inline the dfun; this is an experimental decision
-                -- because it makes a big performance difference sometimes.
-                -- Often it means we can do the method selection, and then
-                -- inline the method as well.  Marcin's idea; see comments below.
-                --
-                -- BUT: don't inline it if it's a constant dictionary;
-                -- we'll get all the benefit without inlining, and we get
-                -- a **lot** of code duplication if we inline it
-                --
-                --      See Note [Inline dfuns] below
-
-        dict_rhs = mkHsConApp dict_constr (inst_tys' ++ mkTyVarTys sc_covars)
-                                          (map HsVar scs_and_meths)
-                -- We don't produce a binding for the dict_constr; instead we
-                -- rely on the simplifier to unfold this saturated application
-                -- We do this rather than generate an HsCon directly, because
-                -- it means that the special cases (e.g. dictionary with only one
-                -- member) are dealt with by the common MkId.mkDataConWrapId code rather
-                -- than needing to be repeated here.
-
-        dict_bind  = noLoc (VarBind this_dict_id dict_rhs)
-        all_binds  = dict_bind `consBag` (sc_binds `unionBags` meth_binds)
-
-        main_bind = noLoc $ AbsBinds
-                            (inst_tyvars' ++ dfun_covars)
-                            (map instToId dfun_dicts)
-                            [(inst_tyvars' ++ dfun_covars, dfun_id, this_dict_id, inline_prag ++ prags)]
-                            all_binds
-
-    showLIE (text "instance")
-    return (unitBag main_bind)
-
-mkCoVars :: [PredType] -> TcM [TyVar]
-mkCoVars = newCoVars . map unEqPred
-  where
-    unEqPred (EqPred ty1 ty2) = (ty1, ty2)
-    unEqPred _                = panic "TcInstDcls.mkCoVars"
+    {-# INLINE op1 #-}
+    op1 b x = op2 (not b) x
 
 
-mkMetaCoVars :: [PredType] -> TcM [TyVar]
-mkMetaCoVars = mapM eqPredToCoVar
-  where
-    eqPredToCoVar (EqPred ty1 ty2) = newMetaCoVar ty1 ty2
-    eqPredToCoVar _                = panic "TcInstDcls.mkMetaCoVars"
-
-tcMethods origin clas inst_tyvars' dfun_theta' inst_tys'
-          avail_insts op_items monobinds uprags = do
-    -- Check that all the method bindings come from this class
-    let
-        sel_names = [idName sel_id | (sel_id, _) <- op_items]
-        bad_bndrs = collectHsBindBinders monobinds `minusList` sel_names
-
-    mapM (addErrTc . badMethodErr clas) bad_bndrs
-
-    -- Make the method bindings
-    let
-        mk_method_bind = mkMethodBind origin clas inst_tys' monobinds
-
-    (meth_insts, meth_infos) <- mapAndUnzipM mk_method_bind op_items
-
-        -- And type check them
-        -- It's really worth making meth_insts available to the tcMethodBind
-        -- Consider     instance Monad (ST s) where
-        --                {-# INLINE (>>) #-}
-        --                (>>) = ...(>>=)...
-        -- If we don't include meth_insts, we end up with bindings like this:
-        --      rec { dict = MkD then bind ...
-        --            then = inline_me (... (GHC.Base.>>= dict) ...)
-        --            bind = ... }
-        -- The trouble is that (a) 'then' and 'dict' are mutually recursive,
-        -- and (b) the inline_me prevents us inlining the >>= selector, which
-        -- would unravel the loop.  Result: (>>) ends up as a loop breaker, and
-        -- is not inlined across modules. Rather ironic since this does not
-        -- happen without the INLINE pragma!
-        --
-        -- Solution: make meth_insts available, so that 'then' refers directly
-        --           to the local 'bind' rather than going via the dictionary.
-        --
-        -- BUT WATCH OUT!  If the method type mentions the class variable, then
-        -- this optimisation is not right.  Consider
-        --      class C a where
-        --        op :: Eq a => a
-        --
-        --      instance C Int where
-        --        op = op
-        -- The occurrence of 'op' on the rhs gives rise to a constraint
-        --      op at Int
-        -- The trouble is that the 'meth_inst' for op, which is 'available', also
-        -- looks like 'op at Int'.  But they are not the same.
-    let
-        prag_fn        = mkPragFun uprags
-        all_insts      = avail_insts ++ catMaybes meth_insts
-        sig_fn n       = Just []        -- No scoped type variables, but every method has
-                                        -- a type signature, in effect, so that we check
-                                        -- the method has the right type
-        tc_method_bind = tcMethodBind inst_tyvars' dfun_theta' all_insts sig_fn prag_fn
-        meth_ids       = [meth_id | (_,meth_id,_) <- meth_infos]
-
-    meth_binds_s <- mapM tc_method_bind meth_infos
-
-    return (meth_ids, unionManyBags meth_binds_s)
-\end{code}
+  instance Foo Int where
+    -- op1 via default method
+    op2 b x = <blah>
+   
+The instance declaration should behave
+
+   just as if 'op1' had been defined with the
+   code, and INLINE pragma, from its original
+   definition. 
+
+That is, just as if you'd written
+
+  instance Foo Int where
+    op2 b x = <blah>
+
+    {-# INLINE op1 #-}
+    op1 b x = op2 (not b) x
+
+So for the above example we generate:
+
+
+  {-# INLINE $dmop1 #-}
+  -- $dmop1 has an InlineCompulsory unfolding
+  $dmop1 d b x = op2 d (not b) x
 
 
+  $fFooInt = MkD $cop1 $cop2
 
 
-                ------------------------------
-        [Inline dfuns] Inlining dfuns unconditionally
-                ------------------------------
-
-The code above unconditionally inlines dict funs.  Here's why.
-Consider this program:
-
-    test :: Int -> Int -> Bool
-    test x y = (x,y) == (y,x) || test y x
-    -- Recursive to avoid making it inline.
-
-This needs the (Eq (Int,Int)) instance.  If we inline that dfun
-the code we end up with is good:
-
-    Test.$wtest =
-        \r -> case ==# [ww ww1] of wild {
-                PrelBase.False -> Test.$wtest ww1 ww;
-                PrelBase.True ->
-                  case ==# [ww1 ww] of wild1 {
-                    PrelBase.False -> Test.$wtest ww1 ww;
-                    PrelBase.True -> PrelBase.True [];
-                  };
-            };
-    Test.test = \r [w w1]
-            case w of w2 {
-              PrelBase.I# ww ->
-                  case w1 of w3 { PrelBase.I# ww1 -> Test.$wtest ww ww1; };
-            };
-
-If we don't inline the dfun, the code is not nearly as good:
-
-    (==) = case PrelTup.$fEq(,) PrelBase.$fEqInt PrelBase.$fEqInt of tpl {
-              PrelBase.:DEq tpl1 tpl2 -> tpl2;
-            };
-
-    Test.$wtest =
-        \r [ww ww1]
-            let { y = PrelBase.I#! [ww1]; } in
-            let { x = PrelBase.I#! [ww]; } in
-            let { sat_slx = PrelTup.(,)! [y x]; } in
-            let { sat_sly = PrelTup.(,)! [x y];
-            } in
-              case == sat_sly sat_slx of wild {
-                PrelBase.False -> Test.$wtest ww1 ww;
-                PrelBase.True -> PrelBase.True [];
-              };
-
-    Test.test =
-        \r [w w1]
-            case w of w2 {
-              PrelBase.I# ww ->
-                  case w1 of w3 { PrelBase.I# ww1 -> Test.$wtest ww ww1; };
-            };
-
-Why doesn't GHC inline $fEq?  Because it looks big:
-
-    PrelTup.zdfEqZ1T{-rcX-}
-        = \ @ a{-reT-} :: * @ b{-reS-} :: *
-            zddEq{-rf6-} _Ks :: {PrelBase.Eq{-23-} a{-reT-}}
-            zddEq1{-rf7-} _Ks :: {PrelBase.Eq{-23-} b{-reS-}} ->
-            let {
-              zeze{-rf0-} _Kl :: (b{-reS-} -> b{-reS-} -> PrelBase.Bool{-3c-})
-              zeze{-rf0-} = PrelBase.zeze{-01L-}@ b{-reS-} zddEq1{-rf7-} } in
-            let {
-              zeze1{-rf3-} _Kl :: (a{-reT-} -> a{-reT-} -> PrelBase.Bool{-3c-})
-              zeze1{-rf3-} = PrelBase.zeze{-01L-} @ a{-reT-} zddEq{-rf6-} } in
-            let {
-              zeze2{-reN-} :: ((a{-reT-}, b{-reS-}) -> (a{-reT-}, b{-reS-})-> PrelBase.Bool{-3c-})
-              zeze2{-reN-} = \ ds{-rf5-} _Ks :: (a{-reT-}, b{-reS-})
-                               ds1{-rf4-} _Ks :: (a{-reT-}, b{-reS-}) ->
-                             case ds{-rf5-}
-                             of wild{-reW-} _Kd { (a1{-rf2-} _Ks, a2{-reZ-} _Ks) ->
-                             case ds1{-rf4-}
-                             of wild1{-reX-} _Kd { (b1{-rf1-} _Ks, b2{-reY-} _Ks) ->
-                             PrelBase.zaza{-r4e-}
-                               (zeze1{-rf3-} a1{-rf2-} b1{-rf1-})
-                               (zeze{-rf0-} a2{-reZ-} b2{-reY-})
-                             }
-                             } } in
-            let {
-              a1{-reR-} :: ((a{-reT-}, b{-reS-})-> (a{-reT-}, b{-reS-})-> PrelBase.Bool{-3c-})
-              a1{-reR-} = \ a2{-reV-} _Ks :: (a{-reT-}, b{-reS-})
-                            b1{-reU-} _Ks :: (a{-reT-}, b{-reS-}) ->
-                          PrelBase.not{-r6I-} (zeze2{-reN-} a2{-reV-} b1{-reU-})
-            } in
-              PrelBase.zdwZCDEq{-r8J-} @ (a{-reT-}, b{-reS-}) a1{-reR-} zeze2{-reN-})
-
-and it's not as bad as it seems, because it's further dramatically
-simplified: only zeze2 is extracted and its body is simplified.
+  {-# INLINE $cop1 #-}
+  $cop1 = $dmop1 $fFooInt
+
+  $cop2 = <blah>
+
+Note carefullly:
+
+* We *copy* any INLINE pragma from the default method $dmop1 to the
+  instance $cop1.  Otherwise we'll just inline the former in the
+  latter and stop, which isn't what the user expected
+
+* Regardless of its pragma, we give the default method an 
+  unfolding with an InlineCompulsory source. That means
+  that it'll be inlined at every use site, notably in
+  each instance declaration, such as $cop1.  This inlining
+  must happen even though 
+    a) $dmop1 is not saturated in $cop1
+    b) $cop1 itself has an INLINE pragma
+
+  It's vital that $dmop1 *is* inlined in this way, to allow the mutual
+  recursion between $fooInt and $cop1 to be broken
+
+* To communicate the need for an InlineCompulsory to the desugarer
+  (which makes the Unfoldings), we use the IsDefaultMethod constructor
+  in TcSpecPrags.
 
 
 %************************************************************************
 
 
 %************************************************************************
@@ -853,32 +1411,69 @@ simplified: only zeze2 is extracted and its body is simplified.
 %************************************************************************
 
 \begin{code}
 %************************************************************************
 
 \begin{code}
+instDeclCtxt1 :: LHsType Name -> SDoc
 instDeclCtxt1 hs_inst_ty
   = inst_decl_ctxt (case unLoc hs_inst_ty of
                         HsForAllTy _ _ _ (L _ (HsPredTy pred)) -> ppr pred
                         HsPredTy pred                    -> ppr pred
 instDeclCtxt1 hs_inst_ty
   = inst_decl_ctxt (case unLoc hs_inst_ty of
                         HsForAllTy _ _ _ (L _ (HsPredTy pred)) -> ppr pred
                         HsPredTy pred                    -> ppr pred
-                        other                            -> ppr hs_inst_ty)     -- Don't expect this
+                        _                                -> ppr hs_inst_ty)     -- Don't expect this
+instDeclCtxt2 :: Type -> SDoc
 instDeclCtxt2 dfun_ty
   = inst_decl_ctxt (ppr (mkClassPred cls tys))
   where
     (_,_,cls,tys) = tcSplitDFunTy dfun_ty
 
 instDeclCtxt2 dfun_ty
   = inst_decl_ctxt (ppr (mkClassPred cls tys))
   where
     (_,_,cls,tys) = tcSplitDFunTy dfun_ty
 
+inst_decl_ctxt :: SDoc -> SDoc
 inst_decl_ctxt doc = ptext (sLit "In the instance declaration for") <+> quotes doc
 
 inst_decl_ctxt doc = ptext (sLit "In the instance declaration for") <+> quotes doc
 
-superClassCtxt = ptext (sLit "When checking the super-classes of an instance declaration")
-
+atInstCtxt :: Name -> SDoc
 atInstCtxt name = ptext (sLit "In the associated type instance for") <+>
                   quotes (ppr name)
 
 atInstCtxt name = ptext (sLit "In the associated type instance for") <+>
                   quotes (ppr name)
 
+mustBeVarArgErr :: Type -> SDoc
 mustBeVarArgErr ty =
   sep [ ptext (sLit "Arguments that do not correspond to a class parameter") <+>
         ptext (sLit "must be variables")
       , ptext (sLit "Instead of a variable, found") <+> ppr ty
       ]
 
 mustBeVarArgErr ty =
   sep [ ptext (sLit "Arguments that do not correspond to a class parameter") <+>
         ptext (sLit "must be variables")
       , ptext (sLit "Instead of a variable, found") <+> ppr ty
       ]
 
+wrongATArgErr :: Type -> Type -> SDoc
 wrongATArgErr ty instTy =
   sep [ ptext (sLit "Type indexes must match class instance head")
 wrongATArgErr ty instTy =
   sep [ ptext (sLit "Type indexes must match class instance head")
-      , ptext (sLit "Found") <+> ppr ty <+> ptext (sLit "but expected") <+>
-         ppr instTy
+      , ptext (sLit "Found") <+> quotes (ppr ty)
+        <+> ptext (sLit "but expected") <+> quotes (ppr instTy)
       ]
       ]
+
+tooManyParmsErr :: Located Name -> SDoc
+tooManyParmsErr tc_name
+  = ptext (sLit "Family instance has too many parameters:") <+> 
+    quotes (ppr tc_name)
+
+tooFewParmsErr :: Arity -> SDoc
+tooFewParmsErr arity
+  = ptext (sLit "Family instance has too few parameters; expected") <+> 
+    ppr arity
+
+wrongNumberOfParmsErr :: Arity -> SDoc
+wrongNumberOfParmsErr exp_arity
+  = ptext (sLit "Number of parameters must match family declaration; expected")
+    <+> ppr exp_arity
+
+badBootFamInstDeclErr :: SDoc
+badBootFamInstDeclErr
+  = ptext (sLit "Illegal family instance in hs-boot file")
+
+notFamily :: TyCon -> SDoc
+notFamily tycon
+  = vcat [ ptext (sLit "Illegal family instance for") <+> quotes (ppr tycon)
+         , nest 2 $ parens (ppr tycon <+> ptext (sLit "is not an indexed type family"))]
+  
+wrongKindOfFamily :: TyCon -> SDoc
+wrongKindOfFamily family
+  = ptext (sLit "Wrong category of family instance; declaration was for a")
+    <+> kindOfFamily
+  where
+    kindOfFamily | isSynTyCon family = ptext (sLit "type synonym")
+                | isAlgTyCon family = ptext (sLit "data type")
+                | otherwise = pprPanic "wrongKindOfFamily" (ppr family)
 \end{code}
 \end{code}