A (final) re-engineering of the new typechecker
[ghc-hetmet.git] / compiler / typecheck / TcInteract.lhs
index 2a53503..44e8479 100644 (file)
@@ -1,8 +1,7 @@
 \begin{code}
 module TcInteract ( 
      solveInteract, AtomicInert, 
-     InertSet, emptyInert, updInertSet, extractUnsolved, solveOne,
-     listToWorkList
+     InertSet, emptyInert, updInertSet, extractUnsolved, solveOne, foldISEqCts
   ) where  
 
 #include "HsVersions.h"
@@ -12,17 +11,16 @@ import BasicTypes
 import TcCanonical
 import VarSet
 import Type
-import TypeRep 
 
 import Id 
 import Var
 
 import TcType
-import HsBinds 
+import HsBinds
 
-import InstEnv 
-import Class 
-import TyCon 
+import InstEnv
+import Class
+import TyCon
 import Name
 
 import FunDeps
@@ -32,12 +30,11 @@ import Control.Monad ( when )
 import Coercion
 import Outputable
 
-import TcRnTypes 
+import TcRnTypes
 import TcErrors
-import TcSMonad 
+import TcSMonad
 import Bag
-import qualified Data.Map as Map 
-import Maybes 
+import qualified Data.Map as Map
 
 import Control.Monad( zipWithM, unless )
 import FastString ( sLit ) 
@@ -46,7 +43,6 @@ import DynFlags
 
 Note [InertSet invariants]
 ~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
 An InertSet is a bag of canonical constraints, with the following invariants:
 
   1 No two constraints react with each other. 
@@ -60,15 +56,20 @@ An InertSet is a bag of canonical constraints, with the following invariants:
     given LHS's occur in any of the given RHS's or reactant parts]
 
   3 Wanted equalities also form an idempotent substitution
+
   4 The entire set of equalities is acyclic.
 
   5 Wanted dictionaries are inert with the top-level axiom set 
 
   6 Equalities of the form tv1 ~ tv2 always have a touchable variable
     on the left (if possible).
-  7 No wanted constraints tv1 ~ tv2 with tv1 touchable. Such constraints 
+
+  7 No wanted constraints tv1 ~ tv2 with tv1 touchable. Such constraints
     will be marked as solved right before being pushed into the inert set. 
     See note [Touchables and givens].
+
+  8 No Given constraint mentions a touchable unification variable,
+    except if the
  
 Note that 6 and 7 are /not/ enforced by canonicalization but rather by 
 insertion in the inert list, ie by TcInteract. 
@@ -81,110 +82,136 @@ now we do not distinguish between given and solved constraints.
 Note that we must switch wanted inert items to given when going under an
 implication constraint (when in top-level inference mode).
 
-Note [InertSet FlattenSkolemEqClass] 
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-The inert_fsks field of the inert set contains an "inverse map" of all the 
-flatten skolem equalities in the inert set. For instance, if inert_cts looks
-like this: 
-    fsk1 ~ fsk2 
-    fsk3 ~ fsk2 
-    fsk4 ~ fsk5 
-
-Then, the inert_fsks fields holds the following map: 
-    fsk2 |-> { fsk1, fsk3 } 
-    fsk5 |-> { fsk4 } 
-Along with the necessary coercions to convert fsk1 and fsk3 back to fsk2 
-and fsk4 back to fsk5. Hence, the invariants of the inert_fsks field are: 
-  
-   (a) All TcTyVars in the domain and range of inert_fsks are flatten skolems
-   (b) All TcTyVars in the domain of inert_fsk occur naked as rhs in some 
-       equalities of inert_cts 
-   (c) For every mapping  fsk1 |-> { (fsk2,co), ... } it must be: 
-         co : fsk2 ~ fsk1 
-
-The role of the inert_fsks is to make it easy to maintain the equivalence
-class of each flatten skolem, which is much needed to correctly do spontaneous
-solving. See Note [Loopy Spontaneous Solving] 
 \begin{code}
 
+data CCanMap a = CCanMap { cts_givder  :: Map.Map a CanonicalCts
+                                          -- Invariant: all Given or Derived
+                         , cts_wanted  :: Map.Map a CanonicalCts } 
+                                          -- Invariant: all Wanted
+cCanMapToBag :: Ord a => CCanMap a -> CanonicalCts 
+cCanMapToBag cmap = Map.fold unionBags rest_cts  (cts_givder cmap)
+  where rest_cts = Map.fold unionBags emptyCCan (cts_wanted cmap) 
+
+emptyCCanMap :: CCanMap a 
+emptyCCanMap = CCanMap { cts_givder = Map.empty, cts_wanted = Map.empty } 
+
+updCCanMap:: Ord a => (a,CanonicalCt) -> CCanMap a -> CCanMap a 
+updCCanMap (a,ct) cmap 
+  = case cc_flavor ct of 
+      Wanted {} 
+          -> cmap { cts_wanted = Map.insertWith unionBags a this_ct (cts_wanted cmap) } 
+      _ 
+          -> cmap { cts_givder = Map.insertWith unionBags a this_ct (cts_givder cmap) }
+  where this_ct = singleCCan ct 
+
+getRelevantCts :: Ord a => a -> CCanMap a -> (CanonicalCts, CCanMap a) 
+-- Gets the relevant constraints and returns the rest of the CCanMap
+getRelevantCts a cmap 
+    = let relevant = unionBags (Map.findWithDefault emptyCCan a (cts_wanted cmap)) 
+                               (Map.findWithDefault emptyCCan a (cts_givder cmap)) 
+          residual_map = cmap { cts_wanted = Map.delete a (cts_wanted cmap) 
+                              , cts_givder = Map.delete a (cts_givder cmap) } 
+      in (relevant, residual_map) 
+
+extractUnsolvedCMap :: Ord a => CCanMap a -> (CanonicalCts, CCanMap a) 
+-- Gets the wanted constraints and returns a residual CCanMap
+extractUnsolvedCMap cmap = 
+  let unsolved = Map.fold unionBags emptyCCan (cts_wanted cmap) 
+  in (unsolved, cmap { cts_wanted = Map.empty})
+
 -- See Note [InertSet invariants]
 data InertSet 
-  = IS { inert_cts  :: Bag.Bag CanonicalCt 
-       , inert_fsks :: Map.Map TcTyVar [(TcTyVar,Coercion)] }
-       -- See Note [InertSet FlattenSkolemEqClass] 
+  = IS { inert_eqs          :: CanonicalCts               -- Equalities only (CTyEqCan)
+
+       , inert_dicts        :: CCanMap Class              -- Dictionaries only 
+       , inert_ips          :: CCanMap (IPName Name)      -- Implicit parameters 
+       , inert_funeqs       :: CCanMap TyCon              -- Type family equalities only 
+               -- This representation allows us to quickly get to the relevant 
+               -- inert constraints when interacting a work item with the inert set.
+
+
+       , inert_fds  :: FDImprovements        -- List of pairwise improvements that have kicked in already
+                                             -- and reside either in the worklist or in the inerts 
+       }
+
+type FDImprovement  = (PredType,PredType) 
+type FDImprovements = [(PredType,PredType)] 
 
 instance Outputable InertSet where
-  ppr is = vcat [ vcat (map ppr (Bag.bagToList $ inert_cts is))
-                , vcat (map (\(v,rest) -> ppr v <+> text "|->" <+> hsep (map (ppr.fst) rest)) 
-                       (Map.toList $ inert_fsks is)
-                       )
+  ppr is = vcat [ vcat (map ppr (Bag.bagToList $ inert_eqs is))
+                , vcat (map ppr (Bag.bagToList $ cCanMapToBag (inert_dicts is))) 
+                , vcat (map ppr (Bag.bagToList $ cCanMapToBag (inert_ips is))) 
+                , vcat (map ppr (Bag.bagToList $ cCanMapToBag (inert_funeqs is)))
                 ]
                        
 emptyInert :: InertSet
-emptyInert = IS { inert_cts = Bag.emptyBag, inert_fsks = Map.empty } 
+emptyInert = IS { inert_eqs    = Bag.emptyBag
+                , inert_dicts  = emptyCCanMap
+                , inert_ips    = emptyCCanMap
+                , inert_funeqs = emptyCCanMap 
+                , inert_fds = [] }
 
 updInertSet :: InertSet -> AtomicInert -> InertSet 
--- Introduces an element in the inert set for the first time 
-updInertSet (IS { inert_cts = cts, inert_fsks = fsks })  
-            item@(CTyEqCan { cc_id    = cv
-                           , cc_tyvar = tv1 
-                           , cc_rhs   = xi })
-  | Just tv2 <- tcGetTyVar_maybe xi,
-    FlatSkol {} <- tcTyVarDetails tv1, 
-    FlatSkol {} <- tcTyVarDetails tv2 
-  = let cts'  = cts `Bag.snocBag` item 
-        fsks' = Map.insertWith (++) tv2 [(tv1, mkCoVarCoercion cv)] fsks
-        -- See Note [InertSet FlattenSkolemEqClass] 
-    in IS { inert_cts = cts', inert_fsks = fsks' }
-updInertSet (IS { inert_cts = cts
-                , inert_fsks = fsks }) item 
-  = let cts' = cts `Bag.snocBag` item
-    in IS { inert_cts = cts', inert_fsks = fsks } 
-
-foldlInertSetM :: (Monad m) => (a -> AtomicInert -> m a) -> a -> InertSet -> m a 
-foldlInertSetM k z (IS { inert_cts = cts }) 
-  = Bag.foldlBagM k z cts
+updInertSet is item 
+  | isCTyEqCan item                     -- Other equality 
+  = let eqs' = inert_eqs is `Bag.snocBag` item 
+    in is { inert_eqs = eqs' } 
+  | Just cls <- isCDictCan_Maybe item   -- Dictionary 
+  = is { inert_dicts = updCCanMap (cls,item) (inert_dicts is) } 
+  | Just x  <- isCIPCan_Maybe item      -- IP 
+  = is { inert_ips   = updCCanMap (x,item) (inert_ips is) }  
+  | Just tc <- isCFunEqCan_Maybe item   -- Function equality 
+  = is { inert_funeqs = updCCanMap (tc,item) (inert_funeqs is) }
+  | otherwise 
+  = pprPanic "Unknown form of constraint!" (ppr item)
+
+updInertSetFDImprs :: InertSet -> Maybe FDImprovement -> InertSet 
+updInertSetFDImprs is (Just fdi) = is { inert_fds = fdi : inert_fds is } 
+updInertSetFDImprs is Nothing    = is 
+
+foldISEqCtsM :: Monad m => (a -> AtomicInert -> m a) -> a -> InertSet -> m a 
+-- Fold over the equalities of the inerts
+foldISEqCtsM k z IS { inert_eqs = eqs } 
+  = Bag.foldlBagM k z eqs 
+
+foldISEqCts :: (a -> AtomicInert -> a) -> a -> InertSet -> a
+foldISEqCts k z IS { inert_eqs = eqs }
+  = Bag.foldlBag k z eqs
 
 extractUnsolved :: InertSet -> (InertSet, CanonicalCts)
-extractUnsolved is@(IS {inert_cts = cts}) 
-  = (is { inert_cts = cts'}, unsolved)
-  where (unsolved, cts') = Bag.partitionBag isWantedCt cts
-
-
-getFskEqClass :: InertSet -> TcTyVar -> [(TcTyVar,Coercion)] 
--- Precondition: tv is a FlatSkol. See Note [InertSet FlattenSkolemEqClass] 
-getFskEqClass (IS { inert_cts = cts, inert_fsks = fsks }) tv 
-  = case lkpTyEqCanByLhs of
-      Nothing  -> fromMaybe [] (Map.lookup tv fsks)  
-      Just ceq -> 
-        case tcGetTyVar_maybe (cc_rhs ceq) of 
-          Just tv_rhs | FlatSkol {} <- tcTyVarDetails tv_rhs
-            -> let ceq_co = mkSymCoercion $ mkCoVarCoercion (cc_id ceq)
-                   mk_co (v,c) = (v, mkTransCoercion c ceq_co)
-               in (tv_rhs, ceq_co): map mk_co (fromMaybe [] $ Map.lookup tv fsks) 
-          _ -> []
-  where lkpTyEqCanByLhs = Bag.foldlBag lkp Nothing cts 
-        lkp :: Maybe CanonicalCt -> CanonicalCt -> Maybe CanonicalCt 
-        lkp Nothing ct@(CTyEqCan {cc_tyvar = tv'}) | tv' == tv = Just ct 
-        lkp other _ct = other 
-
-
-isWantedCt :: CanonicalCt -> Bool 
-isWantedCt ct = isWanted (cc_flavor ct)
-
-{- TODO: Later ...
-data Inert = IS { class_inerts :: FiniteMap Class Atomics
-                 ip_inerts    :: FiniteMap Class Atomics
-                 tyfun_inerts :: FiniteMap TyCon Atomics
-                 tyvar_inerts :: FiniteMap TyVar Atomics
-                }
-
-Later should we also separate out givens and wanteds?
--}
+extractUnsolved is@(IS {inert_eqs = eqs}) 
+  = let is_solved  = is { inert_eqs    = solved_eqs
+                        , inert_dicts  = solved_dicts
+                        , inert_ips    = solved_ips
+                        , inert_funeqs = solved_funeqs } 
+    in (is_solved, unsolved)
+
+  where (unsolved_eqs, solved_eqs)       = Bag.partitionBag isWantedCt eqs 
+        (unsolved_ips, solved_ips)       = extractUnsolvedCMap (inert_ips is) 
+        (unsolved_dicts, solved_dicts)   = extractUnsolvedCMap (inert_dicts is) 
+        (unsolved_funeqs, solved_funeqs) = extractUnsolvedCMap (inert_funeqs is) 
+
+        unsolved = unsolved_eqs `unionBags` 
+                   unsolved_ips `unionBags` unsolved_dicts `unionBags` unsolved_funeqs
+
+haveBeenImproved :: FDImprovements -> PredType -> PredType -> Bool 
+haveBeenImproved [] _ _ = False 
+haveBeenImproved ((pty1,pty2):fdimprs) pty1' pty2' 
+ | tcEqPred pty1 pty1' && tcEqPred pty2 pty2' 
+ = True
+ | tcEqPred pty1 pty2' && tcEqPred pty2 pty1'
+ = True
+ | otherwise
+ = haveBeenImproved fdimprs pty1' pty2'
+
+getFDImprovements :: InertSet -> FDImprovements
+-- Return a list of the improvements that have kicked in so far 
+getFDImprovements = inert_fds
 
 \end{code}
 
+{-- DV: This note will go away! 
+
 Note [Touchables and givens]
 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 Touchable variables will never show up in givens which are inputs to
@@ -225,6 +252,10 @@ we may end up with something like
 
 which we should flip around to generate the solved constraint alpha ~s b.
 
+-} 
+
+
+
 %*********************************************************************
 %*                                                                   * 
 *                      Main Interaction Solver                       *
@@ -237,37 +268,35 @@ Note [Basic plan]
 2. Pairwise interaction (binary)
     * Take one from work list 
     * Try all pair-wise interactions with each constraint in inert
+   
+   As an optimisation, we prioritize the equalities both in the 
+   worklist and in the inerts. 
+
 3. Try to solve spontaneously for equalities involving touchables 
 4. Top-level interaction (binary wrt top-level)
    Superclass decomposition belongs in (4), see note [Superclasses]
 
 \begin{code}
-
 type AtomicInert = CanonicalCt     -- constraint pulled from InertSet
 type WorkItem    = CanonicalCt     -- constraint pulled from WorkList
 
-type WorkList    = CanonicalCts    -- A mixture of Given, Wanted, and Solved
-type SWorkList   = WorkList        -- A worklist of solved 
-                   
-
-listToWorkList :: [WorkItem] -> WorkList
-listToWorkList = Bag.listToBag
+-- A mixture of Given, Wanted, and Derived constraints. 
+-- We split between equalities and the rest to process equalities first. 
+type WorkList = CanonicalCts
 
 unionWorkLists :: WorkList -> WorkList -> WorkList 
-unionWorkLists = Bag.unionBags 
-
-foldlWorkListM :: (Monad m) => (a -> WorkItem -> m a) -> a -> WorkList -> m a 
-foldlWorkListM = Bag.foldlBagM 
+unionWorkLists = andCCan
 
 isEmptyWorkList :: WorkList -> Bool 
-isEmptyWorkList = Bag.isEmptyBag
+isEmptyWorkList = isEmptyCCan 
 
 emptyWorkList :: WorkList
-emptyWorkList = Bag.emptyBag
+emptyWorkList = emptyCCan
 
-singletonWorkList :: CanonicalCt -> WorkList 
-singletonWorkList ct = singleCCan ct 
+workListFromCCan :: CanonicalCt -> WorkList 
+workListFromCCan = singleCCan
 
+------------------------
 data StopOrContinue 
   = Stop                       -- Work item is consumed
   | ContinueWith WorkItem      -- Not consumed
@@ -328,8 +357,7 @@ runSolverPipeline pipeline inerts workItem
                      , sr_stop     = ContinueWith work_item })
       = do { itr <- stage work_item inerts 
            ; traceTcS ("Stage result (" ++ name ++ ")") (ppr itr)
-           ; let itr' = itr { sr_new_work = sr_new_work itr 
-                                            `unionWorkLists` accum_work }
+           ; let itr' = itr { sr_new_work = accum_work `unionWorkLists` sr_new_work itr }
            ; run_pipeline stages itr' }
 \end{code}
 
@@ -361,10 +389,10 @@ React with (F Int ~ b) ==> IR Stop True []    -- after substituting we re-canoni
 -- returning an extended inert set.
 --
 -- See Note [Touchables and givens].
-solveInteract :: InertSet -> WorkList -> TcS InertSet
+solveInteract :: InertSet -> CanonicalCts -> TcS InertSet
 solveInteract inert ws 
   = do { dyn_flags <- getDynFlags
-       ; solveInteractWithDepth (ctxtStkDepth dyn_flags,0,[]) inert ws 
+       ; solveInteractWithDepth (ctxtStkDepth dyn_flags,0,[]) inert ws
        }
 solveOne :: InertSet -> WorkItem -> TcS InertSet 
 solveOne inerts workItem 
@@ -384,10 +412,13 @@ solveInteractWithDepth ctxt@(max_depth,n,stack) inert ws
 
   | otherwise 
   = do { traceTcS "solveInteractWithDepth" $ 
-         vcat [ text "Current depth =" <+> ppr n
-              , text "Max depth =" <+> ppr max_depth
-              ]
-       ; foldlWorkListM (solveOneWithDepth ctxt) inert ws }
+              vcat [ text "Current depth =" <+> ppr n
+                   , text "Max depth =" <+> ppr max_depth ]
+
+             -- Solve equalities first
+       ; let (eqs, non_eqs) = Bag.partitionBag isCTyEqCan ws
+       ; is_from_eqs <- Bag.foldlBagM (solveOneWithDepth ctxt) inert eqs
+       ; Bag.foldlBagM (solveOneWithDepth ctxt) is_from_eqs non_eqs }
 
 ------------------
 -- Fully interact the given work item with an inert set, and return a
@@ -411,9 +442,10 @@ solveOneWithDepth (max_depth, n, stack) inert work
     indent = replicate (2*n) ' '
 
 thePipeline :: [(String,SimplifierStage)]
-thePipeline = [ ("interact with inerts", interactWithInertsStage)
-              , ("spontaneous solve",    spontaneousSolveStage)
-              , ("top-level reactions",  topReactionsStage) ]
+thePipeline = [ ("interact with inert eqs", interactWithInertEqsStage)
+              , ("interact with inerts",    interactWithInertsStage)
+              , ("spontaneous solve",       spontaneousSolveStage)
+              , ("top-level reactions",     topReactionsStage) ]
 \end{code}
 
 *********************************************************************************
@@ -422,161 +454,188 @@ thePipeline = [ ("interact with inerts", interactWithInertsStage)
 *                                                                               *
 *********************************************************************************
 
+Note [Efficient Orientation] 
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+There are two cases where we have to be careful about 
+orienting equalities to get better efficiency. 
+
+Case 1: In Rewriting Equalities (function rewriteEqLHS) 
+
+    When rewriting two equalities with the same LHS:
+          (a)  (tv ~ xi1) 
+          (b)  (tv ~ xi2) 
+    We have a choice of producing work (xi1 ~ xi2) (up-to the
+    canonicalization invariants) However, to prevent the inert items
+    from getting kicked out of the inerts first, we prefer to
+    canonicalize (xi1 ~ xi2) if (b) comes from the inert set, or (xi2
+    ~ xi1) if (a) comes from the inert set.
+    
+    This choice is implemented using the WhichComesFromInert flag. 
+
+Case 2: Functional Dependencies 
+    Again, we should prefer, if possible, the inert variables on the RHS
+
+Case 3: IP improvement work
+    We must always rewrite so that the inert type is on the right. 
+
 \begin{code}
 spontaneousSolveStage :: SimplifierStage 
 spontaneousSolveStage workItem inerts 
-  = do { mSolve <- trySpontaneousSolve workItem inerts 
+  = do { mSolve <- trySpontaneousSolve workItem
+
        ; case mSolve of 
-           Nothing -> -- no spontaneous solution for him, keep going
-               return $ SR { sr_new_work   = emptyWorkList 
-                           , sr_inerts     = inerts 
+           SPCantSolve -> -- No spontaneous solution for him, keep going
+               return $ SR { sr_new_work   = emptyWorkList
+                           , sr_inerts     = inerts
                            , sr_stop       = ContinueWith workItem }
 
-           Just workList' -> -- He has been solved; workList' are all givens 
-               return $ SR { sr_new_work = workList'
-                           , sr_inerts   = inerts 
-                           , sr_stop     = Stop } 
+           SPSolved workItem'
+               | not (isGivenCt workItem) 
+                -- Original was wanted or derived but we have now made him 
+                 -- given so we have to interact him with the inerts due to
+                 -- its status change. This in turn may produce more work.
+                -- We do this *right now* (rather than just putting workItem'
+                -- back into the work-list) because we've solved 
+               -> do { (new_inert, new_work) <- runSolverPipeline 
+                             [ ("recursive interact with inert eqs", interactWithInertEqsStage)
+                             , ("recursive interact with inerts", interactWithInertsStage)
+                             ] inerts workItem'
+                     ; return $ SR { sr_new_work = new_work 
+                                   , sr_inerts   = new_inert -- will include workItem' 
+                                   , sr_stop     = Stop }
+                     }
+               | otherwise 
+                   -> -- Original was given; he must then be inert all right, and
+                      -- workList' are all givens from flattening
+                      return $ SR { sr_new_work = emptyWorkList
+                                  , sr_inerts   = inerts `updInertSet` workItem' 
+                                  , sr_stop     = Stop }
+           SPError -> -- Return with no new work
+               return $ SR { sr_new_work = emptyWorkList
+                           , sr_inerts   = inerts
+                           , sr_stop     = Stop }
        }
 
-{-- This is all old code, but does not quite work now. The problem is that due to 
-    Note [Loopy Spontaneous Solving] we may have unflattened a type, to be able to 
-    perform a sneaky unification. This unflattening means that we may have to recanonicalize
-    a given (solved) equality, this is why the result of trySpontaneousSolve is now a list
-    of constraints (instead of an atomic solved constraint). We would have to react all of 
-    them once again with the worklist but that is very tiresome. Instead we throw them back
-    in the worklist. 
-
-               | isWantedCt workItem 
-                           -- Original was wanted we have now made him given so 
-                           -- we have to ineract him with the inerts again because 
-                           -- of the change in his status. This may produce some work. 
-                   -> do { traceTcS "recursive interact with inerts {" $ vcat
-                               [ text "work = " <+> ppr workItem'
-                               , text "inerts = " <+> ppr inerts ]
-                         ; itr_again <- interactWithInertsStage workItem' inerts 
-                         ; case sr_stop itr_again of 
-                            Stop -> pprPanic "BUG: Impossible to happen" $ 
-                                    vcat [ text "Original workitem:" <+> ppr workItem
-                                         , text "Spontaneously solved:" <+> ppr workItem'
-                                         , text "Solved was consumed, when reacting with inerts:"
-                                         , nest 2 (ppr inerts) ]
-                            ContinueWith workItem'' -- Now *this* guy is inert wrt to inerts
-                                ->  do { traceTcS "end recursive interact }" $ ppr workItem''
-                                       ; return $ SR { sr_new_work = sr_new_work itr_again
-                                                     , sr_inerts   = sr_inerts itr_again 
-                                                                     `extendInertSet` workItem'' 
-                                                     , sr_stop     = Stop } }
-                         }
-               | otherwise
-                   -> return $ SR { sr_new_work   = emptyWorkList 
-                                  , sr_inerts     = inerts `extendInertSet` workItem' 
-                                  , sr_stop       = Stop } }
---} 
+data SPSolveResult = SPCantSolve | SPSolved WorkItem | SPError
+-- SPCantSolve means that we can't do the unification because e.g. the variable is untouchable
+-- SPSolved workItem' gives us a new *given* to go on 
+-- SPError means that it's completely impossible to solve this equality, eg due to a kind error
+
 
 -- @trySpontaneousSolve wi@ solves equalities where one side is a
--- touchable unification variable. Returns:
---   * Nothing if we were not able to solve it
---   * Just wi' if we solved it, wi' (now a "given") should be put in the work list.
+-- touchable unification variable.
 --                 See Note [Touchables and givens] 
--- Note, just passing the inerts through for the skolem equivalence classes
-trySpontaneousSolve :: WorkItem -> InertSet -> TcS (Maybe SWorkList)
-trySpontaneousSolve (CTyEqCan { cc_id = cv, cc_flavor = gw, cc_tyvar = tv1, cc_rhs = xi }) inerts 
+trySpontaneousSolve :: WorkItem -> TcS SPSolveResult
+trySpontaneousSolve workItem@(CTyEqCan { cc_id = cv, cc_flavor = gw, cc_tyvar = tv1, cc_rhs = xi })
   | isGiven gw
-  = return Nothing
+  = return SPCantSolve
   | Just tv2 <- tcGetTyVar_maybe xi
   = do { tch1 <- isTouchableMetaTyVar tv1
        ; tch2 <- isTouchableMetaTyVar tv2
        ; case (tch1, tch2) of
-           (True,  True)  -> trySpontaneousEqTwoWay inerts cv gw tv1 tv2
-           (True,  False) -> trySpontaneousEqOneWay inerts cv gw tv1 xi
-           (False, True)  | tyVarKind tv1 `isSubKind` tyVarKind tv2
-                          -> trySpontaneousEqOneWay inerts cv gw tv2 (mkTyVarTy tv1)
-          _ -> return Nothing }
+           (True,  True)  -> trySpontaneousEqTwoWay cv gw tv1 tv2
+           (True,  False) -> trySpontaneousEqOneWay cv gw tv1 xi
+           (False, True)  -> trySpontaneousEqOneWay cv gw tv2 (mkTyVarTy tv1)
+          _ -> return SPCantSolve }
   | otherwise
   = do { tch1 <- isTouchableMetaTyVar tv1
-       ; if tch1 then trySpontaneousEqOneWay inerts cv gw tv1 xi
-                 else return Nothing }
+       ; if tch1 then trySpontaneousEqOneWay cv gw tv1 xi
+                 else do { traceTcS "Untouchable LHS, can't spontaneously solve workitem:" (ppr workItem) 
+                         ; return SPCantSolve }
+       }
 
   -- No need for 
   --      trySpontaneousSolve (CFunEqCan ...) = ...
   -- See Note [No touchables as FunEq RHS] in TcSMonad
-trySpontaneousSolve _ _ = return Nothing 
+trySpontaneousSolve _ = return SPCantSolve
 
 ----------------
-trySpontaneousEqOneWay :: InertSet -> CoVar -> CtFlavor -> TcTyVar -> Xi
-                       -> TcS (Maybe SWorkList)
+trySpontaneousEqOneWay :: CoVar -> CtFlavor -> TcTyVar -> Xi -> TcS SPSolveResult
 -- tv is a MetaTyVar, not untouchable
--- Precondition: kind(xi) is a sub-kind of kind(tv)
-trySpontaneousEqOneWay inerts cv gw tv xi      
-  | not (isSigTyVar tv) || isTyVarTy xi
-  = solveWithIdentity inerts cv gw tv xi
-  | otherwise
-  = return Nothing
+trySpontaneousEqOneWay cv gw tv xi     
+  | not (isSigTyVar tv) || isTyVarTy xi 
+  = do { let kxi = typeKind xi -- NB: 'xi' is fully rewritten according to the inerts 
+                               -- so we have its more specific kind in our hands
+       ; if kxi `isSubKind` tyVarKind tv then
+             solveWithIdentity cv gw tv xi
+         else if tyVarKind tv `isSubKind` kxi then 
+             return SPCantSolve -- kinds are compatible but we can't solveWithIdentity this way
+                                -- This case covers the  a_touchable :: * ~ b_untouchable :: ?? 
+                                -- which has to be deferred or floated out for someone else to solve 
+                                -- it in a scope where 'b' is no longer untouchable.
+         else do { addErrorTcS KindError gw (mkTyVarTy tv) xi -- See Note [Kind errors]
+                 ; return SPError }
+       }
+  | otherwise -- Still can't solve, sig tyvar and non-variable rhs
+  = return SPCantSolve
 
 ----------------
-trySpontaneousEqTwoWay :: InertSet -> CoVar -> CtFlavor -> TcTyVar -> TcTyVar
-                       -> TcS (Maybe SWorkList)
--- Both tyvars are *touchable* MetaTyvars
--- By the CTyEqCan invariant, k2 `isSubKind` k1
-trySpontaneousEqTwoWay inerts cv gw tv1 tv2
-  | k1 `eqKind` k2
-  , nicer_to_update_tv2 = solveWithIdentity inerts cv gw tv2 (mkTyVarTy tv1)
-  | otherwise           = ASSERT( k2 `isSubKind` k1 )
-                          solveWithIdentity inerts cv gw tv1 (mkTyVarTy tv2)
+trySpontaneousEqTwoWay :: CoVar -> CtFlavor -> TcTyVar -> TcTyVar -> TcS SPSolveResult
+-- Both tyvars are *touchable* MetaTyvars so there is only a chance for kind error here
+trySpontaneousEqTwoWay cv gw tv1 tv2
+  | k1 `isSubKind` k2
+  , nicer_to_update_tv2 = solveWithIdentity cv gw tv2 (mkTyVarTy tv1)
+  | k2 `isSubKind` k1 
+  = solveWithIdentity cv gw tv1 (mkTyVarTy tv2)
+  | otherwise -- None is a subkind of the other, but they are both touchable! 
+  = do { addErrorTcS KindError gw (mkTyVarTy tv1) (mkTyVarTy tv2)
+       ; return SPError }
   where
     k1 = tyVarKind tv1
     k2 = tyVarKind tv2
     nicer_to_update_tv2 = isSigTyVar tv1 || isSystemName (Var.varName tv2)
 \end{code}
 
-Note [Loopy spontaneous solving] 
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-Consider the original wanted: 
-   wanted :  Maybe (E alpha) ~ alpha 
-where E is a type family, such that E (T x) = x. After canonicalization, 
-as a result of flattening, we will get: 
-   given  : E alpha ~ fsk 
-   wanted : alpha ~ Maybe fsk
-where (fsk := E alpha, on the side). Now, if we spontaneously *solve* 
-(alpha := Maybe fsk) we are in trouble! Instead, we should refrain from solving 
-it and keep it as wanted.  In inference mode we'll end up quantifying over
-   (alpha ~ Maybe (E alpha))
-Hence, 'solveWithIdentity' performs a small occurs check before
-actually solving. But this occurs check *must look through* flatten skolems.
-
-However, it may be the case that the flatten skolem in hand is equal to some other 
-flatten skolem whith *does not* mention our unification variable. Here's a typical example:
-
-Original wanteds: 
-   g: F alpha ~ F beta 
-   w: alpha ~ F alpha 
-After canonicalization: 
-   g: F beta ~ f1 
-   g: F alpha ~ f1 
-   w: alpha ~ f2 
-   g: F alpha ~ f2 
-After some reactions: 
-   g: f1 ~ f2 
-   g: F beta ~ f1 
-   w: alpha ~ f2 
-   g: F alpha ~ f2 
-At this point, we will try to spontaneously solve (alpha ~ f2) which remains as yet unsolved.
-We will look inside f2, which immediately mentions (F alpha), so it's not good to unify! However
-by looking at the equivalence class of the flatten skolems, we can see that it is fine to 
-unify (alpha ~ f1) which solves our goals! 
-
-A similar problem happens because of other spontaneous solving. Suppose we have the 
-following wanteds, arriving in this exact order:
-  (first)  w: beta ~ alpha 
-  (second) w: alpha ~ fsk 
-  (third)  g: F beta ~ fsk
-Then, we first spontaneously solve the first constraint, making (beta := alpha), and having
-(beta ~ alpha) as given. *Then* we encounter the second wanted (alpha ~ fsk). "fsk" does not 
-obviously mention alpha, so naively we can also spontaneously solve (alpha := fsk). But 
-that is wrong since fsk mentions beta, which has already secretly been unified to alpha! 
-
-To avoid this problem, the same occurs check must unveil rewritings that can happen because 
-of spontaneously having solved other constraints. 
+Note [Kind errors] 
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Consider the wanted problem: 
+      alpha ~ (# Int, Int #) 
+where alpha :: ?? and (# Int, Int #) :: (#). We can't spontaneously solve this constraint, 
+but we should rather reject the program that give rise to it. If 'trySpontaneousEqTwoWay' 
+simply returns @CantSolve@ then that wanted constraint is going to propagate all the way and 
+get quantified over in inference mode. That's bad because we do know at this point that the 
+constraint is insoluble. Instead, we call 'recKindErrorTcS' here, which will fail later on.
+
+The same applies in canonicalization code in case of kind errors in the givens. 
+
+However, when we canonicalize givens we only check for compatibility (@compatKind@). 
+If there were a kind error in the givens, this means some form of inconsistency or dead code.
+
+You may think that when we spontaneously solve wanteds we may have to look through the 
+bindings to determine the right kind of the RHS type. E.g one may be worried that xi is 
+@alpha@ where alpha :: ? and a previous spontaneous solving has set (alpha := f) with (f :: *).
+But we orient our constraints so that spontaneously solved ones can rewrite all other constraint
+so this situation can't happen. 
+
+Note [Spontaneous solving and kind compatibility] 
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Note that our canonical constraints insist that only *given* equalities (tv ~ xi) 
+or (F xis ~ rhs) require the LHS and the RHS to have exactly the same kinds. 
+
+  - We have to require this because: 
+        Given equalities can be freely used to rewrite inside 
+        other types or constraints.
+  - We do not have to do the same for wanteds because:
+        First, wanted equations (tv ~ xi) where tv is a touchable
+        unification variable may have kinds that do not agree (the
+        kind of xi must be a sub kind of the kind of tv).  Second, any
+        potential kind mismatch will result in the constraint not
+        being soluble, which will be reported anyway. This is the
+        reason that @trySpontaneousOneWay@ and @trySpontaneousTwoWay@
+        will perform a kind compatibility check, and only then will
+        they proceed to @solveWithIdentity@.
+
+Caveat: 
+  - Givens from higher-rank, such as: 
+          type family T b :: * -> * -> * 
+          type instance T Bool = (->) 
+
+          f :: forall a. ((T a ~ (->)) => ...) -> a -> ... 
+          flop = f (...) True 
+     Whereas we would be able to apply the type instance, we would not be able to 
+     use the given (T Bool ~ (->)) in the body of 'flop' 
 
 
 Note [Avoid double unifications] 
@@ -589,7 +648,7 @@ We spontaneously solve the first wanted, without changing the order!
 Now the second wanted comes along, but he cannot rewrite the given, so we simply continue.
 At the end we spontaneously solve that guy, *reunifying*  [alpha := Int] 
 
-We avoid this problem by orienting the given so that the unification
+We avoid this problem by orienting the resulting given so that the unification
 variable is on the left.  [Note that alternatively we could attempt to
 enforce this at canonicalization]
 
@@ -599,129 +658,40 @@ unification variables as RHS of type family equations: F xis ~ alpha.
 
 \begin{code}
 ----------------
-solveWithIdentity :: InertSet 
-                  -> CoVar -> CtFlavor -> TcTyVar -> Xi 
-                  -> TcS (Maybe SWorkList)
+
+solveWithIdentity :: CoVar -> CtFlavor -> TcTyVar -> Xi -> TcS SPSolveResult
 -- Solve with the identity coercion 
 -- Precondition: kind(xi) is a sub-kind of kind(tv)
--- Precondition: CtFlavor is not Given
--- See [New Wanted Superclass Work] to see why we do this for *given* as well
-solveWithIdentity inerts cv gw tv xi 
-  = do { tybnds <- getTcSTyBindsBag 
-       ; case occurCheck tybnds inerts tv xi of 
-           Nothing              -> return Nothing 
-           Just (xi_unflat,coi) -> solve_with xi_unflat coi }
-  where
-    solve_with xi_unflat coi  -- coi : xi_unflat ~ xi  
-      = do { traceTcS "Sneaky unification:" $ 
-                       vcat [text "Coercion variable:  " <+> ppr gw, 
+-- Precondition: CtFlavor is Wanted or Derived
+-- See [New Wanted Superclass Work] to see why solveWithIdentity 
+--     must work for Derived as well as Wanted
+-- Returns: workItem where 
+--        workItem = the new Given constraint
+solveWithIdentity cv wd tv xi 
+  = do { traceTcS "Sneaky unification:" $ 
+                       vcat [text "Coercion variable:  " <+> ppr wd, 
                              text "Coercion:           " <+> pprEq (mkTyVarTy tv) xi,
                              text "Left  Kind is     : " <+> ppr (typeKind (mkTyVarTy tv)),
                              text "Right Kind is     : " <+> ppr (typeKind xi)
                   ]
-           ; setWantedTyBind tv xi_unflat        -- Set tv := xi_unflat
-           ; cv_given <- newGivOrDerCoVar (mkTyVarTy tv) xi_unflat xi_unflat
-           ; let flav = mkGivenFlavor gw UnkSkol 
-           ; (cts, co) <- case coi of 
-               ACo co  -> do { can_eqs <- canEq flav cv_given (mkTyVarTy tv) xi_unflat
-                             ; return (can_eqs, co) }
-               IdCo co -> return $ 
-                          (singleCCan (CTyEqCan { cc_id = cv_given 
-                                                , cc_flavor = mkGivenFlavor gw UnkSkol
-                                                , cc_tyvar = tv, cc_rhs = xi }
-                                                -- xi, *not* xi_unflat because 
-                                                -- xi_unflat may require flattening!
-                                      ), co)
-           ; case gw of 
-               Wanted  {} -> setWantedCoBind  cv co
-               Derived {} -> setDerivedCoBind cv co 
-               _          -> pprPanic "Can't spontaneously solve *given*" empty 
-                     -- See Note [Avoid double unifications] 
-           ; return (Just cts) }
-
-occurCheck :: Bag (TcTyVar, TcType) -> InertSet
-           -> TcTyVar -> TcType -> Maybe (TcType,CoercionI) 
--- Traverse @ty@ to make sure that @tv@ does not appear under some flatten skolem. 
--- If it appears under some flatten skolem look in that flatten skolem equivalence class 
--- (see Note [InertSet FlattenSkolemEqClass], [Loopy Spontaneous Solving]) to see if you 
--- can find a different flatten skolem to use, that is, one that does not mention @tv@.
--- 
--- Postcondition: Just (ty', coi) = occurCheck binds inerts tv ty 
---       coi :: ty' ~ ty 
--- NB: The returned type ty' may not be flat!
-
-occurCheck ty_binds_bag inerts tv ty
-  = ok emptyVarSet ty 
-  where 
-    ok bad this_ty@(TyConApp tc tys) 
-      | Just tys_cois <- allMaybes (map (ok bad) tys) 
-      , (tys',cois') <- unzip tys_cois
-      = Just (TyConApp tc tys', mkTyConAppCoI tc cois') 
-      | isSynTyCon tc, Just ty_expanded <- tcView this_ty
-      = ok bad ty_expanded   -- See Note [Type synonyms and the occur check] in TcUnify
-    ok bad (PredTy sty) 
-      | Just (sty',coi) <- ok_pred bad sty 
-      = Just (PredTy sty', coi) 
-    ok bad (FunTy arg res) 
-      | Just (arg', coiarg) <- ok bad arg, Just (res', coires) <- ok bad res
-      = Just (FunTy arg' res', mkFunTyCoI coiarg coires) 
-    ok bad (AppTy fun arg) 
-      | Just (fun', coifun) <- ok bad fun, Just (arg', coiarg) <- ok bad arg 
-      = Just (AppTy fun' arg', mkAppTyCoI coifun coiarg) 
-    ok bad (ForAllTy tv1 ty1) 
-    -- WARNING: What if it is a (t1 ~ t2) => t3? It's not handled properly at the moment. 
-      | Just (ty1', coi) <- ok bad ty1 
-      = Just (ForAllTy tv1 ty1', mkForAllTyCoI tv1 coi) 
-
-    -- Variable cases 
-    ok _bad this_ty@(TyVarTy tv') 
-      | not $ isTcTyVar tv' = Just (this_ty, IdCo this_ty) -- Bound variable
-      | tv == tv'           = Nothing                      -- Occurs check error
-  
-    ok bad (TyVarTy fsk) 
-      | FlatSkol zty <- tcTyVarDetails fsk 
-      = if fsk `elemVarSet` bad then 
-            -- its type has been checked 
-            go_down_eq_class bad $ getFskEqClass inerts fsk 
-        else 
-            -- its type is not yet checked
-            case ok bad zty of 
-              Nothing -> go_down_eq_class (bad `extendVarSet` fsk) $ 
-                         getFskEqClass inerts fsk 
-              Just (zty',ico) -> Just (zty',ico) 
-
-    -- Check if there exists a ty bind already, as a result of sneaky unification. 
-    ok bad this_ty@(TyVarTy tv0) 
-      = case Bag.foldlBag find_bind Nothing ty_binds_bag of 
-          Nothing -> Just (this_ty, IdCo this_ty)
-          Just ty0 -> ok bad ty0 
-      where find_bind Nothing (tvx,tyx) | tv0 == tvx = Just tyx
-            find_bind m _ = m 
-    -- Fall through
-    ok _bad _ty = Nothing 
-
-    ok_pred bad (ClassP cn tys)
-      | Just tys_cois <- allMaybes $ map (ok bad) tys 
-      = let (tys', cois') = unzip tys_cois 
-        in Just (ClassP cn tys', mkClassPPredCoI cn cois')
-    ok_pred bad (IParam nm ty)   
-      | Just (ty',co') <- ok bad ty 
-      = Just (IParam nm ty', mkIParamPredCoI nm co') 
-    ok_pred bad (EqPred ty1 ty2) 
-      | Just (ty1',coi1) <- ok bad ty1, Just (ty2',coi2) <- ok bad ty2
-      = Just (EqPred ty1' ty2', mkEqPredCoI coi1 coi2) 
-    ok_pred _ _ = Nothing 
-
-    go_down_eq_class _bad_tvs [] = Nothing 
-    go_down_eq_class bad_tvs ((fsk1,co1):rest) 
-     | fsk1 `elemVarSet` bad_tvs = go_down_eq_class bad_tvs rest
-     | otherwise 
-     = case ok bad_tvs (TyVarTy fsk1) of 
-          Nothing -> go_down_eq_class (bad_tvs `extendVarSet` fsk1) rest 
-          Just (ty1,co1i') -> Just (ty1, mkTransCoI co1i' (ACo co1)) 
+
+       ; setWantedTyBind tv xi        -- Set tv := xi_unflat
+       ; cv_given <- newGivOrDerCoVar (mkTyVarTy tv) xi xi
+
+       ; case wd of Wanted {}  -> setWantedCoBind cv xi 
+                    Derived {} -> setDerivedCoBind cv xi
+                    _ -> pprPanic "Can't spontaneously solve given!" empty
+
+       ; return $ SPSolved (CTyEqCan { cc_id = cv_given
+                                     , cc_flavor = mkGivenFlavor wd UnkSkol
+                                     , cc_tyvar  = tv, cc_rhs = xi })
+       }
+                  
 \end{code}
 
 
+
+
 *********************************************************************************
 *                                                                               * 
                        The interact-with-inert Stage
@@ -744,80 +714,130 @@ data InteractResult
 
         , ir_new_work     :: WorkList
             -- new work items to add to the WorkList
+
+        , ir_improvement  :: Maybe FDImprovement -- In case improvement kicked in
         }
 
 -- What to do with the inert reactant.
-data InertAction = KeepInert | DropInert
-  deriving Eq
+data InertAction = KeepInert 
+                 | DropInert 
+                 | KeepTransformedInert CanonicalCt -- Keep a slightly transformed inert
 
 mkIRContinue :: Monad m => WorkItem -> InertAction -> WorkList -> m InteractResult
-mkIRContinue wi keep newWork = return $ IR (ContinueWith wi) keep newWork
+mkIRContinue wi keep newWork = return $ IR (ContinueWith wi) keep newWork Nothing 
 
 mkIRStop :: Monad m => InertAction -> WorkList -> m InteractResult
-mkIRStop keep newWork = return $ IR Stop keep newWork
+mkIRStop keep newWork = return $ IR Stop keep newWork Nothing
+
+mkIRStop_RecordImprovement :: Monad m => InertAction -> WorkList -> FDImprovement -> m InteractResult 
+mkIRStop_RecordImprovement keep newWork fdimpr = return $ IR Stop keep newWork (Just fdimpr) 
 
 dischargeWorkItem :: Monad m => m InteractResult
-dischargeWorkItem = mkIRStop KeepInert emptyCCan
+dischargeWorkItem = mkIRStop KeepInert emptyWorkList
 
 noInteraction :: Monad m => WorkItem -> m InteractResult
-noInteraction workItem = mkIRContinue workItem KeepInert emptyCCan
+noInteraction workItem = mkIRContinue workItem KeepInert emptyWorkList
 
 data WhichComesFromInert = LeftComesFromInert | RightComesFromInert 
+     -- See Note [Efficient Orientation] 
+
 
 ---------------------------------------------------
--- Interact a single WorkItem with an InertSet as far as possible, i.e. until we get a Stop 
--- result from an individual interaction (i.e. when the WorkItem is consumed), or until we've 
--- interacted the WorkItem with the entire InertSet.
---
--- Postcondition: the new InertSet in the resulting StageResult is subset 
--- of the input InertSet.
+-- Interact a single WorkItem with the equalities of an inert set as far as possible, i.e. until we 
+-- get a Stop result from an individual reaction (i.e. when the WorkItem is consumed), or until we've 
+-- interact the WorkItem with the entire equalities of the InertSet
+
+interactWithInertEqsStage :: SimplifierStage 
+interactWithInertEqsStage workItem inert
+  = foldISEqCtsM interactNext initITR inert 
+  where initITR = SR { sr_inerts   = IS { inert_eqs    = emptyCCan -- Will fold over equalities
+                                        , inert_dicts  = inert_dicts inert
+                                        , inert_ips    = inert_ips inert 
+                                        , inert_funeqs = inert_funeqs inert
+                                        , inert_fds    = inert_fds inert
+                                        }
+                     , sr_new_work = emptyWorkList
+                     , sr_stop     = ContinueWith workItem }
+
+
+---------------------------------------------------
+-- Interact a single WorkItem with *non-equality* constraints in the inert set. 
+-- Precondition: equality interactions must have already happened, hence we have 
+-- to pick up some information from the incoming inert, before folding over the 
+-- "Other" constraints it contains!
 
 interactWithInertsStage :: SimplifierStage
 interactWithInertsStage workItem inert
-  = foldlInertSetM interactNext initITR inert
+  = let (relevant, inert_residual) = getISRelevant workItem inert 
+        initITR = SR { sr_inerts   = inert_residual
+                     , sr_new_work = emptyWorkList
+                     , sr_stop     = ContinueWith workItem } 
+    in Bag.foldlBagM interactNext initITR relevant 
   where 
-    initITR = SR { sr_inerts   = emptyInert
-                 , sr_new_work = emptyCCan
-                 , sr_stop     = ContinueWith workItem }
-
-
-    interactNext :: StageResult -> AtomicInert -> TcS StageResult 
-    interactNext it inert  
-      | ContinueWith workItem <- sr_stop it
-        = do { ir <- interactWithInert inert workItem 
-             ; let inerts = sr_inerts it 
-             ; return $ SR { sr_inerts   = if ir_inert_action ir == KeepInert
-                                           then inerts `updInertSet` inert
-                                           else inerts
-                           , sr_new_work = sr_new_work it `unionWorkLists` ir_new_work ir
-                           , sr_stop     = ir_stop ir } }
-      | otherwise = return $ itrAddInert inert it
-    
-                             
-    itrAddInert :: AtomicInert -> StageResult -> StageResult
-    itrAddInert inert itr = itr { sr_inerts = (sr_inerts itr) `updInertSet` inert }
+    getISRelevant :: CanonicalCt -> InertSet -> (CanonicalCts, InertSet) 
+    getISRelevant (CDictCan { cc_class = cls } ) is 
+      = let (relevant, residual_map) = getRelevantCts cls (inert_dicts is) 
+        in (relevant, is { inert_dicts = residual_map }) 
+    getISRelevant (CFunEqCan { cc_fun = tc } ) is 
+      = let (relevant, residual_map) = getRelevantCts tc (inert_funeqs is) 
+        in (relevant, is { inert_funeqs = residual_map })
+    getISRelevant (CIPCan { cc_ip_nm = nm }) is 
+      = let (relevant, residual_map) = getRelevantCts nm (inert_ips is)
+        in (relevant, is { inert_ips = residual_map }) 
+    -- An equality, finally, may kick everything except equalities out 
+    -- because we have already interacted the equalities in interactWithInertEqsStage
+    getISRelevant _eq_ct is  -- Equality, everything is relevant for this one 
+                             -- TODO: if we were caching variables, we'd know that only 
+                             --       some are relevant. Experiment with this for now. 
+      = let cts = cCanMapToBag (inert_ips is) `unionBags` 
+                    cCanMapToBag (inert_dicts is) `unionBags` cCanMapToBag (inert_funeqs is)
+        in (cts, is { inert_dicts  = emptyCCanMap
+                    , inert_ips    = emptyCCanMap
+                    , inert_funeqs = emptyCCanMap })
+
+interactNext :: StageResult -> AtomicInert -> TcS StageResult 
+interactNext it inert  
+  | ContinueWith workItem <- sr_stop it
+  = do { let inerts      = sr_inerts it 
+             fdimprs_old = getFDImprovements inerts 
+
+       ; ir <- interactWithInert fdimprs_old inert workItem 
+
+       -- New inerts depend on whether we KeepInert or not and must
+       -- be updated with FD improvement information from the interaction result (ir)
+       ; let inerts_new = updInertSetFDImprs upd_inert (ir_improvement ir)
+             upd_inert  = case ir_inert_action ir of
+                            KeepInert                   -> inerts `updInertSet` inert
+                            DropInert                   -> inerts
+                            KeepTransformedInert inert' -> inerts `updInertSet` inert'
+
+       ; return $ SR { sr_inerts   = inerts_new
+                     , sr_new_work = sr_new_work it `unionWorkLists` ir_new_work ir
+                     , sr_stop     = ir_stop ir } }
+  | otherwise 
+  = return $ it { sr_inerts = (sr_inerts it) `updInertSet` inert }
 
 -- Do a single interaction of two constraints.
-interactWithInert :: AtomicInert -> WorkItem -> TcS InteractResult
-interactWithInert inert workitem 
+interactWithInert :: FDImprovements -> AtomicInert -> WorkItem -> TcS InteractResult
+interactWithInert fdimprs inert workitem 
   =  do { ctxt <- getTcSContext
         ; let is_allowed  = allowedInteraction (simplEqsOnly ctxt) inert workitem 
               inert_ev    = cc_id inert 
               work_ev     = cc_id workitem 
 
-        -- Never interact a wanted and a derived where the derived's evidence 
-        -- mentions the wanted evidence in an unguarded way. 
-        -- See Note [Superclasses and recursive dictionaries] 
-        -- and Note [New Wanted Superclass Work] 
-        -- We don't have to do this for givens, as we fully know the evidence for them. 
+        -- Never interact a wanted and a derived where the derived's evidence
+        -- mentions the wanted evidence in an unguarded way.
+        -- See Note [Superclasses and recursive dictionaries]
+        -- and Note [New Wanted Superclass Work]
+        -- We don't have to do this for givens, as we fully know the evidence for them.
         ; rec_ev_ok <- 
             case (cc_flavor inert, cc_flavor workitem) of 
-              (Wanted loc, Derived _) -> isGoodRecEv work_ev  (WantedEvVar inert_ev loc)
-              (Derived _, Wanted loc) -> isGoodRecEv inert_ev (WantedEvVar work_ev loc)
-              _                       -> return True 
+              (Wanted loc, Derived {}) -> isGoodRecEv work_ev  (WantedEvVar inert_ev loc)
+              (Derived {}, Wanted loc) -> isGoodRecEv inert_ev (WantedEvVar work_ev loc)
+              _                        -> return True 
 
         ; if is_allowed && rec_ev_ok then 
-              doInteractWithInert inert workitem 
+              doInteractWithInert fdimprs inert workitem 
           else 
               noInteraction workitem 
         }
@@ -829,150 +849,167 @@ allowedInteraction eqs_only (CIPCan {})   (CIPCan {})   = not eqs_only
 allowedInteraction _ _ _ = True 
 
 --------------------------------------------
-doInteractWithInert :: CanonicalCt -> CanonicalCt -> TcS InteractResult
+doInteractWithInert :: FDImprovements -> CanonicalCt -> CanonicalCt -> TcS InteractResult
 -- Identical class constraints.
 
-doInteractWithInert 
+doInteractWithInert fdimprs
            (CDictCan { cc_id = d1, cc_flavor = fl1, cc_class = cls1, cc_tyargs = tys1 }) 
-  workItem@(CDictCan { cc_id = d2, cc_flavor = fl2, cc_class = cls2, cc_tyargs = tys2 })
+  workItem@(CDictCan { cc_flavor = fl2, cc_class = cls2, cc_tyargs = tys2 })
   | cls1 == cls2 && (and $ zipWith tcEqType tys1 tys2)
   = solveOneFromTheOther (d1,fl1) workItem 
 
   | cls1 == cls2 && (not (isGiven fl1 && isGiven fl2))
   =     -- See Note [When improvement happens]
-    do { let work_item_pred_loc = (ClassP cls2 tys2, ppr d2)
-             inert_pred_loc     = (ClassP cls1 tys1, ppr d1)
+    do { let pty1 = ClassP cls1 tys1
+             pty2 = ClassP cls2 tys2
+             work_item_pred_loc = (pty2, pprFlavorArising fl2)
+             inert_pred_loc     = (pty1, pprFlavorArising fl1)
             loc                = combineCtLoc fl1 fl2
-             eqn_pred_locs = improveFromAnother work_item_pred_loc inert_pred_loc         
+             eqn_pred_locs = improveFromAnother work_item_pred_loc inert_pred_loc
+                             -- See Note [Efficient Orientation]
+
        ; wevvars <- mkWantedFunDepEqns loc eqn_pred_locs 
+       ; fd_work <- canWanteds wevvars 
                 -- See Note [Generating extra equalities]
-       ; workList <- canWanteds wevvars 
-       ; mkIRContinue workItem KeepInert workList -- Keep the inert there so we avoid 
-                                                  -- re-introducing the fundep equalities
-         -- See Note [FunDep Reactions] 
+       ; traceTcS "Checking if improvements existed." (ppr fdimprs)
+       ; if isEmptyWorkList fd_work || haveBeenImproved fdimprs pty1 pty2 then
+             -- Must keep going
+             mkIRContinue workItem KeepInert fd_work 
+         else do { traceTcS "Recording improvement and throwing item back in worklist." (ppr (pty1,pty2))
+                 ; mkIRStop_RecordImprovement KeepInert 
+                      (fd_work `unionWorkLists` workListFromCCan workItem) (pty1,pty2)
+                 }
+         -- See Note [FunDep Reactions]
        }
 
 -- Class constraint and given equality: use the equality to rewrite
 -- the class constraint. 
-doInteractWithInert (CTyEqCan { cc_id = cv, cc_flavor = ifl, cc_tyvar = tv, cc_rhs = xi }) 
+doInteractWithInert _fdimprs
+                    (CTyEqCan { cc_id = cv, cc_flavor = ifl, cc_tyvar = tv, cc_rhs = xi }) 
                     (CDictCan { cc_id = dv, cc_flavor = wfl, cc_class = cl, cc_tyargs = xis }) 
   | ifl `canRewrite` wfl 
   , tv `elemVarSet` tyVarsOfTypes xis
-    -- substitute for tv in xis.  Note that the resulting class
-    -- constraint is still canonical, since substituting xi-types in
-    -- xi-types generates xi-types.  However, it may no longer be
-    -- inert with respect to the inert set items we've already seen.
-    -- For example, consider the inert set
-    --
-    --   D Int (g)
-    --   a ~g Int
-    --
-    -- and the work item D a (w). D a does not interact with D Int.
-    -- Next, it does interact with a ~g Int, getting rewritten to D
-    -- Int (w).  But now we must go back through the rest of the inert
-    -- set again, to find that it can now be discharged by the given D
-    -- Int instance.
-  = do { rewritten_dict <- rewriteDict (cv,tv,xi) (dv,wfl,cl,xis)
-       ; mkIRStop KeepInert (singleCCan rewritten_dict) }
+  = if isDerivedSC wfl then 
+        mkIRStop KeepInert $ emptyWorkList -- See Note [Adding Derived Superclasses]
+    else do { rewritten_dict <- rewriteDict (cv,tv,xi) (dv,wfl,cl,xis)
+            -- Continue with rewritten Dictionary because we can only be in the 
+            -- interactWithEqsStage, so the dictionary is inert. 
+            ; mkIRContinue rewritten_dict KeepInert emptyWorkList }
     
-doInteractWithInert (CDictCan { cc_id = dv, cc_flavor = ifl, cc_class = cl, cc_tyargs = xis }) 
+doInteractWithInert _fdimprs 
+                    (CDictCan { cc_id = dv, cc_flavor = ifl, cc_class = cl, cc_tyargs = xis }) 
            workItem@(CTyEqCan { cc_id = cv, cc_flavor = wfl, cc_tyvar = tv, cc_rhs = xi })
   | wfl `canRewrite` ifl
   , tv `elemVarSet` tyVarsOfTypes xis
-  = do { rewritten_dict <- rewriteDict (cv,tv,xi) (dv,ifl,cl,xis) 
-       ; mkIRContinue workItem DropInert (singleCCan rewritten_dict) }
+  = if isDerivedSC ifl then
+        mkIRContinue workItem DropInert emptyWorkList -- No need to do any rewriting, 
+                                                      -- see Note [Adding Derived Superclasses]
+    else do { rewritten_dict <- rewriteDict (cv,tv,xi) (dv,ifl,cl,xis) 
+            ; mkIRContinue workItem DropInert (workListFromCCan rewritten_dict) }
 
 -- Class constraint and given equality: use the equality to rewrite
 -- the class constraint.
-doInteractWithInert (CTyEqCan { cc_id = cv, cc_flavor = ifl, cc_tyvar = tv, cc_rhs = xi }) 
+doInteractWithInert _fdimprs 
+                    (CTyEqCan { cc_id = cv, cc_flavor = ifl, cc_tyvar = tv, cc_rhs = xi }) 
                     (CIPCan { cc_id = ipid, cc_flavor = wfl, cc_ip_nm = nm, cc_ip_ty = ty }) 
   | ifl `canRewrite` wfl
   , tv `elemVarSet` tyVarsOfType ty 
   = do { rewritten_ip <- rewriteIP (cv,tv,xi) (ipid,wfl,nm,ty) 
-       ; mkIRStop KeepInert (singleCCan rewritten_ip) }
+       ; mkIRContinue rewritten_ip KeepInert emptyWorkList } 
 
-doInteractWithInert (CIPCan { cc_id = ipid, cc_flavor = ifl, cc_ip_nm = nm, cc_ip_ty = ty }) 
+doInteractWithInert _fdimprs 
+                    (CIPCan { cc_id = ipid, cc_flavor = ifl, cc_ip_nm = nm, cc_ip_ty = ty }) 
            workItem@(CTyEqCan { cc_id = cv, cc_flavor = wfl, cc_tyvar = tv, cc_rhs = xi })
   | wfl `canRewrite` ifl
   , tv `elemVarSet` tyVarsOfType ty
   = do { rewritten_ip <- rewriteIP (cv,tv,xi) (ipid,ifl,nm,ty) 
-       ; mkIRContinue workItem DropInert (singleCCan rewritten_ip) } 
+       ; mkIRContinue workItem DropInert (workListFromCCan rewritten_ip) }
 
 -- Two implicit parameter constraints.  If the names are the same,
 -- but their types are not, we generate a wanted type equality 
 -- that equates the type (this is "improvement").  
 -- However, we don't actually need the coercion evidence,
 -- so we just generate a fresh coercion variable that isn't used anywhere.
-doInteractWithInert (CIPCan { cc_id = id1, cc_flavor = ifl, cc_ip_nm = nm1, cc_ip_ty = ty1 }) 
+doInteractWithInert _fdimprs 
+                    (CIPCan { cc_id = id1, cc_flavor = ifl, cc_ip_nm = nm1, cc_ip_ty = ty1 }) 
            workItem@(CIPCan { cc_flavor = wfl, cc_ip_nm = nm2, cc_ip_ty = ty2 })
   | nm1 == nm2 && isGiven wfl && isGiven ifl
   =    -- See Note [Overriding implicit parameters]
         -- Dump the inert item, override totally with the new one
        -- Do not require type equality
-    mkIRContinue workItem DropInert emptyCCan
+    mkIRContinue workItem DropInert emptyWorkList
 
   | nm1 == nm2 && ty1 `tcEqType` ty2 
   = solveOneFromTheOther (id1,ifl) workItem 
 
   | nm1 == nm2
   =    -- See Note [When improvement happens]
-    do { co_var <- newWantedCoVar ty1 ty2 
+    do { co_var <- newWantedCoVar ty2 ty1 -- See Note [Efficient Orientation]
        ; let flav = Wanted (combineCtLoc ifl wfl) 
-       ; mkCanonical flav co_var >>= mkIRContinue workItem KeepInert } 
+       ; cans <- mkCanonical flav co_var 
+       ; mkIRContinue workItem KeepInert cans }
 
 
--- Inert: equality, work item: function equality
 
 -- Never rewrite a given with a wanted equality, and a type function
--- equality can never rewrite an equality.  Note also that if we have
--- F x1 ~ x2 and a ~ x3, and a occurs in x2, we don't rewrite it.  We
--- can wait until F x1 ~ x2 matches another F x1 ~ x4, and only then
--- we will ``expose'' x2 and x4 to rewriting.
+-- equality can never rewrite an equality. We rewrite LHS *and* RHS 
+-- of function equalities so that our inert set exposes everything that 
+-- we know about equalities.
 
--- Otherwise, we can try rewriting the type function equality with the equality.
-doInteractWithInert (CTyEqCan { cc_id = cv1, cc_flavor = ifl, cc_tyvar = tv, cc_rhs = xi1 }) 
+-- Inert: equality, work item: function equality
+doInteractWithInert _fdimprs
+                    (CTyEqCan { cc_id = cv1, cc_flavor = ifl, cc_tyvar = tv, cc_rhs = xi1 }) 
                     (CFunEqCan { cc_id = cv2, cc_flavor = wfl, cc_fun = tc
                                , cc_tyargs = args, cc_rhs = xi2 })
   | ifl `canRewrite` wfl 
-  , tv `elemVarSet` tyVarsOfTypes args
+  , tv `elemVarSet` tyVarsOfTypes (xi2:args) -- Rewrite RHS as well
   = do { rewritten_funeq <- rewriteFunEq (cv1,tv,xi1) (cv2,wfl,tc,args,xi2) 
-       ; mkIRStop KeepInert (singleCCan rewritten_funeq) }
+       ; mkIRStop KeepInert (workListFromCCan rewritten_funeq) } 
+         -- Must Stop here, because we may no longer be inert after the rewritting.
 
 -- Inert: function equality, work item: equality
-
-doInteractWithInert (CFunEqCan {cc_id = cv1, cc_flavor = ifl, cc_fun = tc
+doInteractWithInert _fdimprs
+                    (CFunEqCan {cc_id = cv1, cc_flavor = ifl, cc_fun = tc
                               , cc_tyargs = args, cc_rhs = xi1 }) 
            workItem@(CTyEqCan { cc_id = cv2, cc_flavor = wfl, cc_tyvar = tv, cc_rhs = xi2 })
   | wfl `canRewrite` ifl
-  , tv `elemVarSet` tyVarsOfTypes args
+  , tv `elemVarSet` tyVarsOfTypes (xi1:args) -- Rewrite RHS as well
   = do { rewritten_funeq <- rewriteFunEq (cv2,tv,xi2) (cv1,ifl,tc,args,xi1) 
-       ; mkIRContinue workItem DropInert (singleCCan rewritten_funeq) } 
-
-doInteractWithInert (CFunEqCan { cc_id = cv1, cc_flavor = fl1, cc_fun = tc1
+       ; mkIRContinue workItem DropInert (workListFromCCan rewritten_funeq) } 
+         -- One may think that we could (KeepTransformedInert rewritten_funeq) 
+         -- but that is wrong, because it may end up not being inert with respect 
+         -- to future inerts. Example: 
+         -- Original inert = {    F xis ~  [a], b ~ Maybe Int } 
+         -- Work item comes along = a ~ [b] 
+         -- If we keep { F xis ~ [b] } in the inert set we will end up with: 
+         --      { F xis ~ [b], b ~ Maybe Int, a ~ [Maybe Int] } 
+         -- At the end, which is *not* inert. So we should unfortunately DropInert here.
+
+doInteractWithInert _fdimprs
+                    (CFunEqCan { cc_id = cv1, cc_flavor = fl1, cc_fun = tc1
                                , cc_tyargs = args1, cc_rhs = xi1 }) 
            workItem@(CFunEqCan { cc_id = cv2, cc_flavor = fl2, cc_fun = tc2
                                , cc_tyargs = args2, cc_rhs = xi2 })
-  | fl1 `canRewrite` fl2 && lhss_match
+  | fl1 `canSolve` fl2 && lhss_match
   = do { cans <- rewriteEqLHS LeftComesFromInert  (mkCoVarCoercion cv1,xi1) (cv2,fl2,xi2) 
        ; mkIRStop KeepInert cans } 
-  | fl2 `canRewrite` fl1 && lhss_match
+  | fl2 `canSolve` fl1 && lhss_match
   = do { cans <- rewriteEqLHS RightComesFromInert (mkCoVarCoercion cv2,xi2) (cv1,fl1,xi1) 
        ; mkIRContinue workItem DropInert cans }
   where
     lhss_match = tc1 == tc2 && and (zipWith tcEqType args1 args2) 
 
-doInteractWithInert 
-           inert@(CTyEqCan { cc_id = cv1, cc_flavor = fl1, cc_tyvar = tv1, cc_rhs = xi1 }) 
+doInteractWithInert _fdimprs 
+           (CTyEqCan { cc_id = cv1, cc_flavor = fl1, cc_tyvar = tv1, cc_rhs = xi1 }) 
            workItem@(CTyEqCan { cc_id = cv2, cc_flavor = fl2, cc_tyvar = tv2, cc_rhs = xi2 })
 -- Check for matching LHS 
-  | fl1 `canRewrite` fl2 && tv1 == tv2 
+  | fl1 `canSolve` fl2 && tv1 == tv2 
   = do { cans <- rewriteEqLHS LeftComesFromInert (mkCoVarCoercion cv1,xi1) (cv2,fl2,xi2) 
        ; mkIRStop KeepInert cans } 
 
-  | fl2 `canRewrite` fl1 && tv1 == tv2 
+  | fl2 `canSolve` fl1 && tv1 == tv2 
   = do { cans <- rewriteEqLHS RightComesFromInert (mkCoVarCoercion cv2,xi2) (cv1,fl1,xi1) 
-       ; mkIRContinue workItem DropInert cans } 
-
+       ; mkIRContinue workItem DropInert cans }
 -- Check for rewriting RHS 
   | fl1 `canRewrite` fl2 && tv1 `elemVarSet` tyVarsOfType xi2 
   = do { rewritten_eq <- rewriteEqRHS (cv1,tv1,xi1) (cv2,fl2,tv2,xi2) 
@@ -981,30 +1018,10 @@ doInteractWithInert
   = do { rewritten_eq <- rewriteEqRHS (cv2,tv2,xi2) (cv1,fl1,tv1,xi1) 
        ; mkIRContinue workItem DropInert rewritten_eq } 
 
--- Finally, if workitem is a Flatten Equivalence Class constraint and the 
--- inert is a wanted constraint, even when the workitem cannot rewrite the 
--- inert, drop the inert out because you may have to reconsider solving the 
--- inert *using* the equivalence class you created. See note [Loopy Spontaneous Solving]
--- and [InertSet FlattenSkolemEqClass] 
-
-  | not $ isGiven fl1,                  -- The inert is wanted or derived
-    isMetaTyVar tv1,                    -- and has a unification variable lhs
-    FlatSkol {} <- tcTyVarDetails tv2,  -- And workitem is a flatten skolem equality
-    Just tv2'   <- tcGetTyVar_maybe xi2, FlatSkol {} <- tcTyVarDetails tv2' 
-  = mkIRContinue workItem DropInert (singletonWorkList inert)
-
-
 -- Fall-through case for all other situations
-doInteractWithInert _ workItem = noInteraction workItem
-
---------------------------------------------
-combineCtLoc :: CtFlavor -> CtFlavor -> WantedLoc
--- Precondition: At least one of them should be wanted 
-combineCtLoc (Wanted loc) _ = loc 
-combineCtLoc _ (Wanted loc) = loc 
-combineCtLoc _ _ = panic "Expected one of wanted constraints (BUG)" 
-
+doInteractWithInert _fdimprs _ workItem = noInteraction workItem
 
+-------------------------
 -- Equational Rewriting 
 rewriteDict  :: (CoVar, TcTyVar, Xi) -> (DictId, CtFlavor, Class, [Xi]) -> TcS CanonicalCt
 rewriteDict (cv,tv,xi) (dv,gw,cl,xis) 
@@ -1035,25 +1052,30 @@ rewriteIP (cv,tv,xi) (ipid,gw,nm,ty)
                         , cc_ip_ty = ty' }) }
    
 rewriteFunEq :: (CoVar,TcTyVar,Xi) -> (CoVar,CtFlavor,TyCon, [Xi], Xi) -> TcS CanonicalCt
-rewriteFunEq (cv1,tv,xi1) (cv2,gw, tc,args,xi2) 
+rewriteFunEq (cv1,tv,xi1) (cv2,gw, tc,args,xi2)                   -- cv2 :: F args ~ xi2
   = do { let arg_cos = substTysWith [tv] [mkCoVarCoercion cv1] args 
              args'   = substTysWith [tv] [xi1] args 
-             fun_co  = mkTyConCoercion tc arg_cos 
+             fun_co  = mkTyConCoercion tc arg_cos                 -- fun_co :: F args ~ F args'
+
+             xi2'    = substTyWith [tv] [xi1] xi2
+             xi2_co  = substTyWith [tv] [mkCoVarCoercion cv1] xi2 -- xi2_co :: xi2 ~ xi2' 
        ; cv2' <- case gw of 
-                   Wanted {} -> do { cv2' <- newWantedCoVar (mkTyConApp tc args') xi2 
+                   Wanted {} -> do { cv2' <- newWantedCoVar (mkTyConApp tc args') xi2'
                                    ; setWantedCoBind cv2 $ 
-                                     mkTransCoercion fun_co (mkCoVarCoercion cv2') 
+                                     fun_co `mkTransCoercion` 
+                                            mkCoVarCoercion cv2' `mkTransCoercion` mkSymCoercion xi2_co
                                    ; return cv2' } 
-                   _giv_or_der -> newGivOrDerCoVar (mkTyConApp tc args') xi2 $
-                                  mkTransCoercion (mkSymCoercion fun_co) (mkCoVarCoercion cv2) 
+                   _giv_or_der -> newGivOrDerCoVar (mkTyConApp tc args') xi2' $
+                                  mkSymCoercion fun_co `mkTransCoercion` 
+                                                mkCoVarCoercion cv2 `mkTransCoercion` xi2_co
        ; return (CFunEqCan { cc_id = cv2'
                            , cc_flavor = gw
                            , cc_tyargs = args'
                            , cc_fun = tc 
-                           , cc_rhs = xi2 }) }
+                           , cc_rhs = xi2' }) }
 
 
-rewriteEqRHS :: (CoVar,TcTyVar,Xi) -> (CoVar,CtFlavor,TcTyVar,Xi) -> TcS CanonicalCts
+rewriteEqRHS :: (CoVar,TcTyVar,Xi) -> (CoVar,CtFlavor,TcTyVar,Xi) -> TcS WorkList
 -- Use the first equality to rewrite the second, flavors already checked. 
 -- E.g.          c1 : tv1 ~ xi1   c2 : tv2 ~ xi2
 -- rewrites c2 to give
@@ -1065,39 +1087,32 @@ rewriteEqRHS (cv1,tv1,xi1) (cv2,gw,tv2,xi2)
   , tv2 == tv2'         -- In this case xi2[xi1/tv1] = tv2, so we have tv2~tv2
   = do { when (isWanted gw) (setWantedCoBind cv2 (mkSymCoercion co2')) 
        ; return emptyCCan } 
-  | otherwise 
-  = do { cv2' <- 
-           case gw of 
-             Wanted {} 
-                 -> do { cv2' <- newWantedCoVar (mkTyVarTy tv2) xi2' 
-                       ; setWantedCoBind cv2 $ 
+  | otherwise
+  = do { cv2' <-
+           case gw of
+             Wanted {}
+                 -> do { cv2' <- newWantedCoVar (mkTyVarTy tv2) xi2'
+                       ; setWantedCoBind cv2 $
                          mkCoVarCoercion cv2' `mkTransCoercion` mkSymCoercion co2'
-                       ; return cv2' } 
+                       ; return cv2' }
              _giv_or_der 
                  -> newGivOrDerCoVar (mkTyVarTy tv2) xi2' $ 
                     mkCoVarCoercion cv2 `mkTransCoercion` co2'
 
-       ; xi2'' <- canOccursCheck gw tv2 xi2' -- we know xi2' is *not* tv2 
-       ; return (singleCCan $ CTyEqCan { cc_id = cv2' 
-                                       , cc_flavor = gw 
-                                       , cc_tyvar = tv2 
-                                       , cc_rhs   = xi2'' }) 
+       ; canEq gw cv2' (mkTyVarTy tv2) xi2' 
        }
   where 
     xi2' = substTyWith [tv1] [xi1] xi2 
     co2' = substTyWith [tv1] [mkCoVarCoercion cv1] xi2  -- xi2 ~ xi2[xi1/tv1]
 
 
-rewriteEqLHS :: WhichComesFromInert -> (Coercion,Xi) -> (CoVar,CtFlavor,Xi) -> TcS CanonicalCts
--- Used to ineratct two equalities of the following form: 
+rewriteEqLHS :: WhichComesFromInert -> (Coercion,Xi) -> (CoVar,CtFlavor,Xi) -> TcS WorkList
+-- Used to ineract two equalities of the following form: 
 -- First Equality:   co1: (XXX ~ xi1)  
 -- Second Equality:  cv2: (XXX ~ xi2) 
--- Where the cv1 `canRewrite` cv2 equality 
--- We have an option of creating new work (xi1 ~ xi2) OR (xi2 ~ xi1). This 
--- depends on whether the left or the right equality comes from the inert set. 
--- We must:  
---     prefer to create (xi2 ~ xi1) if the first comes from the inert 
---     prefer to create (xi1 ~ xi2) if the second comes from the inert 
+-- Where the cv1 `canSolve` cv2 equality 
+-- We have an option of creating new work (xi1 ~ xi2) OR (xi2 ~ xi1), 
+--    See Note [Efficient Orientation] for that 
 rewriteEqLHS which (co1,xi1) (cv2,gw,xi2) 
   = do { cv2' <- case (isWanted gw, which) of 
                    (True,LeftComesFromInert) ->
@@ -1116,10 +1131,9 @@ rewriteEqLHS which (co1,xi1) (cv2,gw,xi2)
                    (False,RightComesFromInert) -> 
                         newGivOrDerCoVar xi1 xi2 $ 
                         mkSymCoercion co1 `mkTransCoercion` mkCoVarCoercion cv2
-       ; mkCanonical gw cv2' }
-
-
-
+       ; mkCanonical gw cv2'
+       }
+                                           
 solveOneFromTheOther :: (EvVar, CtFlavor) -> CanonicalCt -> TcS InteractResult 
 -- First argument inert, second argument workitem. They both represent 
 -- wanted/given/derived evidence for the *same* predicate so we try here to 
@@ -1135,15 +1149,15 @@ solveOneFromTheOther (iid,ifl) workItem
   | isDerived ifl && isDerived wfl 
   = noInteraction workItem 
 
-  | ifl `canRewrite` wfl
+  | ifl `canSolve` wfl
   = do { unless (isGiven wfl) $ setEvBind wid (EvId iid) 
            -- Overwrite the binding, if one exists
           -- For Givens, which are lambda-bound, nothing to overwrite,
        ; dischargeWorkItem }
 
-  | otherwise  -- wfl `canRewrite` ifl 
+  | otherwise  -- wfl `canSolve` ifl 
   = do { unless (isGiven ifl) $ setEvBind iid (EvId wid)
-       ; mkIRContinue workItem DropInert emptyCCan }
+       ; mkIRContinue workItem DropInert emptyWorkList }
 
   where 
      wfl = cc_flavor workItem
@@ -1549,63 +1563,76 @@ allowedTopReaction _        _             = True
 doTopReact :: WorkItem -> TcS TopInteractResult 
 -- The work item does not react with the inert set, 
 -- so try interaction with top-level instances
+
+-- Given dictionary; just add superclasses
+-- See Note [Given constraint that matches an instance declaration]
+doTopReact workItem@(CDictCan { cc_id = dv, cc_flavor = Given loc
+                              , cc_class = cls, cc_tyargs = xis })
+  = do { sc_work <- newGivenSCWork dv loc cls xis 
+       ; return $ SomeTopInt sc_work (ContinueWith workItem) }
+
+-- Derived dictionary
+-- Do not add any further derived superclasses; their 
+-- full transitive closure has already been added. 
+-- But do look for functional dependencies
+doTopReact workItem@(CDictCan { cc_flavor = Derived loc _
+                              , cc_class = cls, cc_tyargs = xis })
+  = do { fd_work <- findClassFunDeps cls xis loc
+       ; if isEmptyWorkList fd_work then 
+              return NoTopInt
+         else return $ SomeTopInt { tir_new_work = fd_work
+                                  , tir_new_inert = ContinueWith workItem } }
+
 doTopReact workItem@(CDictCan { cc_id = dv, cc_flavor = Wanted loc
                               , cc_class = cls, cc_tyargs = xis }) 
   = do { -- See Note [MATCHING-SYNONYMS]
        ; lkp_inst_res <- matchClassInst cls xis loc
        ; case lkp_inst_res of 
-           NoInstance -> do { traceTcS "doTopReact/ no class instance for" (ppr dv) 
-                            ; funDepReact }
+           NoInstance -> 
+             do { traceTcS "doTopReact/ no class instance for" (ppr dv) 
+                ; fd_work <- findClassFunDeps cls xis loc
+                ; if isEmptyWorkList fd_work then 
+                      do { sc_work <- newDerivedSCWork dv loc cls xis
+                                 -- See Note [Adding Derived Superclasses] 
+                                -- NB: workItem is inert, but it isn't solved
+                                -- keep it as inert, although it's not solved 
+                                -- because we have now reacted all its 
+                                -- top-level fundep-induced equalities!
+                         ; return $ SomeTopInt 
+                              { tir_new_work = fd_work `unionWorkLists` sc_work
+                              , tir_new_inert = ContinueWith workItem } }
+
+                  else -- More fundep work produced, don't do any superclass stuff, 
+                       -- just thow him back in the worklist, which will prioritize 
+                       -- the solution of fd equalities
+                       return $ SomeTopInt 
+                              { tir_new_work = fd_work `unionWorkLists` 
+                                               workListFromCCan workItem
+                              , tir_new_inert = Stop } }
+
            GenInst wtvs ev_term ->  -- Solved 
                   -- No need to do fundeps stuff here; the instance 
                   -- matches already so we won't get any more info
                   -- from functional dependencies
                do { traceTcS "doTopReact/ found class instance for" (ppr dv) 
                   ; setDictBind dv ev_term 
-                  ; workList <- canWanteds wtvs
+                  ; inst_work <- canWanteds wtvs
                   ; if null wtvs
                     -- Solved in one step and no new wanted work produced. 
                     -- i.e we directly matched a top-level instance
                    -- No point in caching this in 'inert', nor in adding superclasses
-                    then return $ SomeTopInt { tir_new_work  = emptyCCan 
+                    then return $ SomeTopInt { tir_new_work  = emptyWorkList 
                                              , tir_new_inert = Stop }
 
                     -- Solved and new wanted work produced, you may cache the 
                    -- (tentatively solved) dictionary as Derived and its superclasses
-                    else do { let solved = makeSolved workItem
-                            ; sc_work <- newSCWorkFromFlavored dv (Derived loc) cls xis 
+                    else do { let solved = makeSolvedByInst workItem
+                            ; sc_work <- newDerivedSCWork dv loc cls xis
+                                         -- See Note [Adding Derived Superclasses]
                             ; return $ SomeTopInt 
-                                  { tir_new_work = workList `unionWorkLists` sc_work 
+                                  { tir_new_work  = inst_work `unionWorkLists` sc_work 
                                   , tir_new_inert = ContinueWith solved } }
-                  }
-       }
-  where 
-    -- Try for a fundep reaction beween the wanted item 
-    -- and a top-level instance declaration
-    funDepReact 
-      = do { instEnvs <- getInstEnvs
-           ; let eqn_pred_locs = improveFromInstEnv (classInstances instEnvs)
-                                                    (ClassP cls xis, ppr dv)
-           ; wevvars <- mkWantedFunDepEqns loc eqn_pred_locs 
-                     -- NB: fundeps generate some wanted equalities, but 
-                     --     we don't use their evidence for anything
-           ; fd_work <- canWanteds wevvars 
-           ; sc_work <- newSCWorkFromFlavored dv (Derived loc) cls xis
-           ; return $ SomeTopInt { tir_new_work = fd_work `unionWorkLists` sc_work
-                                 , tir_new_inert = ContinueWith workItem }
-           -- NB: workItem is inert, but it isn't solved
-          -- keep it as inert, although it's not solved because we
-           -- have now reacted all its top-level fundep-induced equalities!
-                    
-           -- See Note [FunDep Reactions]
-           }
-
--- Otherwise, we have a given or derived 
-doTopReact workItem@(CDictCan { cc_id = dv, cc_flavor = fl
-                              , cc_class = cls, cc_tyargs = xis }) 
-  = do { sc_work <- newSCWorkFromFlavored dv fl cls xis 
-       ; return $ SomeTopInt sc_work (ContinueWith workItem) }
-    -- See Note [Given constraint that matches an instance declaration]
+       }          }
 
 -- Type functions
 doTopReact (CFunEqCan { cc_id = cv, cc_flavor = fl
@@ -1632,8 +1659,8 @@ doTopReact (CFunEqCan { cc_id = cv, cc_flavor = fl
                               _ -> newGivOrDerCoVar xi rhs_ty $ 
                                    mkSymCoercion (mkCoVarCoercion cv) `mkTransCoercion` coe 
 
-                   ; workList <- mkCanonical fl cv'
-                   ; return $ SomeTopInt workList Stop }
+                   ; can_cts <- mkCanonical fl cv'
+                   ; return $ SomeTopInt can_cts Stop }
            _ 
              -> panicTcS $ text "TcSMonad.matchFam returned multiple instances!"
        }
@@ -1641,8 +1668,80 @@ doTopReact (CFunEqCan { cc_id = cv, cc_flavor = fl
 
 -- Any other work item does not react with any top-level equations
 doTopReact _workItem = return NoTopInt 
+
+----------------------
+findClassFunDeps :: Class -> [Xi] -> WantedLoc -> TcS WorkList
+-- Look for a fundep reaction beween the wanted item 
+-- and a top-level instance declaration
+findClassFunDeps cls xis loc
+ = do { instEnvs <- getInstEnvs
+      ; let eqn_pred_locs = improveFromInstEnv (classInstances instEnvs)
+                                               (ClassP cls xis, pprArisingAt loc)
+      ; wevvars <- mkWantedFunDepEqns loc eqn_pred_locs 
+                     -- NB: fundeps generate some wanted equalities, but 
+                     --     we don't use their evidence for anything
+      ; canWanteds wevvars }
 \end{code}
 
+Note [Adding Derived Superclasses]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
+Generally speaking, we want to be able to add derived superclasses of
+unsolved wanteds, and wanteds that have been partially being solved
+via an instance. This is important to be able to simplify the inferred
+constraints more (and to allow for recursive dictionaries, less
+importantly). Example:
+
+Inferred wanted constraint is (Eq a, Ord a), but we'd only like to
+quantify over Ord a, hence we would like to be able to add the
+superclass of Ord a as Derived and use it to solve the wanted Eq a.
+
+Hence we will add Derived superclasses in the following two cases: 
+    (1) When we meet an unsolved wanted in top-level reactions
+    (2) When we partially solve a wanted in top-level reactions using an instance decl.
+
+At that point, we have two options:
+    (1) Add transitively add *ALL* of the superclasses of the Derived
+    (2) Add only the immediate ones, but whenever we meet a Derived in
+        the future, add its own superclasses as Derived.
+
+Option (2) is terrible, because deriveds may be rewritten or kicked
+out of the inert set, which will result in slightly rewritten
+superclasses being reintroduced in the worklist and the inert set. Eg:
+
+    class C a => B a 
+    instance Foo a => B [a] 
+
+Original constraints: 
+[Wanted] d : B [a] 
+[Given] co : a ~ Int 
+
+We apply the instance to the wanted and put it and its superclasses as
+as Deriveds in the inerts:
+
+[Derived] d : B [a] 
+[Derived] (sel d) : C [a]
+
+The work is now: 
+[Given] co  : a ~ Int 
+[Wanted] d' : Foo a 
+
+Now, suppose that we interact the Derived with the Given equality, and
+kick him out of the inert, the next time around a superclass C [Int]
+will be produced -- but we already *have* C [a] in the inerts which
+will anyway get rewritten to C [Int].
+
+So we choose (1), and *never* introduce any more superclass work from
+Deriveds.  This enables yet another optimisation: If we ever meet an
+equality that can rewrite a Derived, if that Derived is a superclass
+derived (like C [a] above), i.e. not a partially solved one (like B
+[a]) above, we may simply completely *discard* that Derived. The
+reason is because somewhere in the inert lies the original wanted, or
+partially solved constraint that gave rise to that superclass, and
+that constraint *will* be kicked out, and *will* result in the
+rewritten superclass to be added in the inerts later on, anyway.
+
+
+
 Note [FunDep and implicit parameter reactions] 
 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 Currently, our story of interacting two dictionaries (or a dictionary
@@ -1671,7 +1770,17 @@ might dischard d2 directly:
         d2 := d1 |> D Int cv
 
 But in general it's a bit painful to figure out the necessary coercion,
-so we just take the first approach.
+so we just take the first approach. Here is a better example. Consider:
+    class C a b c | a -> b 
+And: 
+     [Given]  d1 : C T Int Char 
+     [Wanted] d2 : C T beta Int 
+In this case, it's *not even possible* to solve the wanted immediately. 
+So we should simply output the functional dependency and add this guy
+[but NOT its superclasses] back in the worklist. Even worse: 
+     [Given] d1 : C T Int beta 
+     [Wanted] d2: C T beta Int 
+Then it is solvable, but its very hard to detect this on the spot. 
 
 It's exactly the same with implicit parameters, except that the
 "aggressive" approach would be much easier to implement.
@@ -1783,19 +1892,18 @@ new given work. There are several reasons for this:
         Now suppose that we have: 
                given: C a b 
                wanted: C a beta 
-        By interacting the given we will get that (F a ~ b) which is not 
+        By interacting the given we will get given (F a ~ b) which is not 
         enough by itself to make us discharge (C a beta). However, we 
-        may create a new given equality from the super-class that we promise
-        to solve: (F a ~ beta). Now we may interact this with the rest of 
-        constraint to finally get: 
-                  given :  beta ~ b 
-        
+        may create a new derived equality from the super-class of the
+        wanted constraint (C a beta), namely derived (F a ~ beta). 
+        Now we may interact this with given (F a ~ b) to get: 
+                  derived :  beta ~ b 
         But 'beta' is a touchable unification variable, and hence OK to 
-        unify it with 'b', replacing the given evidence with the identity. 
+        unify it with 'b', replacing the derived evidence with the identity. 
 
-        This requires trySpontaneousSolve to solve given equalities that
-        have a touchable in their RHS, *in addition* to solving wanted 
-        equalities. 
+        This requires trySpontaneousSolve to solve *derived*
+        equalities that have a touchable in their RHS, *in addition*
+        to solving wanted equalities.
 
 Here is another example where this is useful. 
 
@@ -1835,23 +1943,42 @@ NB: The desugarer needs be more clever to deal with equalities
     that participate in recursive dictionary bindings. 
 
 \begin{code}
-newSCWorkFromFlavored :: EvVar -> CtFlavor -> Class -> [Xi]
-                      -> TcS WorkList
-newSCWorkFromFlavored ev flavor cls xis
-  | Given loc <- flavor                 -- The NoScSkol says "don't add superclasses"
-  , NoScSkol <- ctLocOrigin loc  -- Very important!
+
+newGivenSCWork :: EvVar -> GivenLoc -> Class -> [Xi] -> TcS WorkList
+newGivenSCWork ev loc cls xis
+  | NoScSkol <- ctLocOrigin loc  -- Very important!
   = return emptyWorkList
-    
   | otherwise
+  = newImmSCWorkFromFlavored ev (Given loc) cls xis >>= return 
+
+newDerivedSCWork :: EvVar -> WantedLoc -> Class -> [Xi] -> TcS WorkList 
+newDerivedSCWork ev loc cls xis 
+  =  do { ims <- newImmSCWorkFromFlavored ev flavor cls xis 
+        ; rec_sc_work ims  }
+  where 
+    rec_sc_work :: CanonicalCts -> TcS CanonicalCts 
+    rec_sc_work cts 
+      = do { bg <- mapBagM (\c -> do { ims <- imm_sc_work c 
+                                     ; recs_ims <- rec_sc_work ims 
+                                     ; return $ consBag c recs_ims }) cts 
+           ; return $ concatBag bg } 
+    imm_sc_work (CDictCan { cc_id = dv, cc_flavor = fl, cc_class = cls, cc_tyargs = xis })
+       = newImmSCWorkFromFlavored dv fl cls xis 
+    imm_sc_work _ct = return emptyCCan 
+
+    flavor = Derived loc DerSC 
+
+newImmSCWorkFromFlavored :: EvVar -> CtFlavor -> Class -> [Xi] -> TcS WorkList
+-- Returns immediate superclasses 
+newImmSCWorkFromFlavored ev flavor cls xis 
   = do { let (tyvars, sc_theta, _, _) = classBigSig cls 
              sc_theta1 = substTheta (zipTopTvSubst tyvars xis) sc_theta
-             -- Add *all* its superclasses (equalities or not) as new given work 
-             -- See Note [New Wanted Superclass Work] 
        ; sc_vars <- zipWithM inst_one sc_theta1 [0..]
-       ; mkCanonicals flavor sc_vars } 
+       ; mkCanonicals flavor sc_vars }
   where
     inst_one pred n = newGivOrDerEvVar pred (EvSuperClass ev n)
 
+
 data LookupInstResult
   = NoInstance
   | GenInst [WantedEvVar] EvTerm