Fix debugger
[ghc-hetmet.git] / compiler / typecheck / TcInteract.lhs
index f0edcc9..a403bc4 100644 (file)
@@ -1,8 +1,7 @@
 \begin{code}
 module TcInteract ( 
      solveInteract, AtomicInert, 
-     InertSet, emptyInert, updInertSet, extractUnsolved, solveOne,
-     listToWorkList
+     InertSet, emptyInert, updInertSet, extractUnsolved, solveOne 
   ) where  
 
 #include "HsVersions.h"
@@ -111,46 +110,73 @@ solving. See Note [Loopy Spontaneous Solving]
 
 -- See Note [InertSet invariants]
 data InertSet 
-  = IS { inert_cts  :: Bag.Bag CanonicalCt 
+  = IS { inert_eqs  :: Bag.Bag CanonicalCt   -- Equalities only **CTyEqCan** 
+       , inert_cts  :: Bag.Bag CanonicalCt   -- Other constraints 
+       , inert_fds  :: FDImprovements        -- List of pairwise improvements that have kicked in already
+                                             -- and reside either in the worklist or in the inerts 
        , inert_fsks :: Map.Map TcTyVar [(TcTyVar,Coercion)] }
        -- See Note [InertSet FlattenSkolemEqClass] 
 
+type FDImprovement  = (PredType,PredType) 
+type FDImprovements = [(PredType,PredType)] 
+
 instance Outputable InertSet where
-  ppr is = vcat [ vcat (map ppr (Bag.bagToList $ inert_cts is))
+  ppr is = vcat [ vcat (map ppr (Bag.bagToList $ inert_eqs is))
+                , vcat (map ppr (Bag.bagToList $ inert_cts is))
                 , vcat (map (\(v,rest) -> ppr v <+> text "|->" <+> hsep (map (ppr.fst) rest)) 
                        (Map.toList $ inert_fsks is)
                        )
                 ]
                        
 emptyInert :: InertSet
-emptyInert = IS { inert_cts = Bag.emptyBag, inert_fsks = Map.empty } 
+emptyInert = IS { inert_eqs = Bag.emptyBag
+                , inert_cts = Bag.emptyBag, inert_fsks = Map.empty, inert_fds = [] }
 
 updInertSet :: InertSet -> AtomicInert -> InertSet 
 -- Introduces an element in the inert set for the first time 
-updInertSet (IS { inert_cts = cts, inert_fsks = fsks })  
+updInertSet (IS { inert_eqs = eqs, inert_cts = cts, inert_fsks = fsks, inert_fds = fdis })  
             item@(CTyEqCan { cc_id    = cv
                            , cc_tyvar = tv1 
                            , cc_rhs   = xi })
   | Just tv2 <- tcGetTyVar_maybe xi,
     FlatSkol {} <- tcTyVarDetails tv1, 
     FlatSkol {} <- tcTyVarDetails tv2 
-  = let cts'  = cts `Bag.snocBag` item 
+  = let eqs'  = eqs `Bag.snocBag` item 
         fsks' = Map.insertWith (++) tv2 [(tv1, mkCoVarCoercion cv)] fsks
         -- See Note [InertSet FlattenSkolemEqClass] 
-    in IS { inert_cts = cts', inert_fsks = fsks' }
-updInertSet (IS { inert_cts = cts
-                , inert_fsks = fsks }) item 
+    in IS { inert_eqs = eqs', inert_cts = cts, inert_fsks = fsks', inert_fds = fdis }
+updInertSet (IS { inert_eqs = eqs, inert_cts = cts
+                , inert_fsks = fsks, inert_fds = fdis }) item 
+  | isTyEqCCan item 
+  = let eqs' = eqs `Bag.snocBag` item 
+    in IS { inert_eqs = eqs', inert_cts = cts, inert_fsks = fsks, inert_fds = fdis } 
+  | otherwise 
   = let cts' = cts `Bag.snocBag` item
-    in IS { inert_cts = cts', inert_fsks = fsks } 
+    in IS { inert_eqs = eqs, inert_cts = cts', inert_fsks = fsks, inert_fds = fdis } 
+
+updInertSetFDImprs :: InertSet -> Maybe FDImprovement -> InertSet 
+updInertSetFDImprs is (Just fdi) = is { inert_fds = fdi : inert_fds is } 
+updInertSetFDImprs is Nothing    = is 
+
+foldISEqCtsM :: Monad m => (a -> AtomicInert -> m a) -> a -> InertSet -> m a 
+-- Fold over the equalities of the inerts
+foldISEqCtsM k z IS { inert_eqs = eqs } 
+  = Bag.foldlBagM k z eqs 
 
-foldlInertSetM :: (Monad m) => (a -> AtomicInert -> m a) -> a -> InertSet -> m a 
-foldlInertSetM k z (IS { inert_cts = cts }) 
-  = Bag.foldlBagM k z cts
+foldISOtherCtsM :: Monad m => (a -> AtomicInert -> m a) -> a -> InertSet -> m a 
+-- Fold over other constraints in the inerts 
+foldISOtherCtsM k z IS { inert_cts = cts } 
+  = Bag.foldlBagM k z cts 
 
 extractUnsolved :: InertSet -> (InertSet, CanonicalCts)
-extractUnsolved is@(IS {inert_cts = cts}) 
-  = (is { inert_cts = cts'}, unsolved)
-  where (unsolved, cts') = Bag.partitionBag isWantedCt cts
+extractUnsolved is@(IS {inert_eqs = eqs, inert_cts = cts, inert_fds = fdis }) 
+  = let is_init  = is { inert_eqs = emptyCCan 
+                      , inert_cts = solved_cts, inert_fsks = Map.empty, inert_fds = fdis }
+        is_final = Bag.foldlBag updInertSet is_init solved_eqs -- Add equalities carefully
+    in (is_final, unsolved) 
+  where (unsolved_cts, solved_cts) = Bag.partitionBag isWantedCt cts
+        (unsolved_eqs, solved_eqs) = Bag.partitionBag isWantedCt eqs
+        unsolved                   = unsolved_cts `unionBags` unsolved_eqs
 
 
 getFskEqClass :: InertSet -> TcTyVar -> [(TcTyVar,Coercion)] 
@@ -170,6 +196,20 @@ getFskEqClass (IS { inert_cts = cts, inert_fsks = fsks }) tv
         lkp Nothing ct@(CTyEqCan {cc_tyvar = tv'}) | tv' == tv = Just ct 
         lkp other _ct = other 
 
+haveBeenImproved :: FDImprovements -> PredType -> PredType -> Bool 
+haveBeenImproved [] _ _ = False 
+haveBeenImproved ((pty1,pty2):fdimprs) pty1' pty2' 
+ | tcEqPred pty1 pty1' && tcEqPred pty2 pty2' 
+ = True 
+ | tcEqPred pty1 pty2' && tcEqPred pty2 pty1'
+ = True 
+ | otherwise 
+ = haveBeenImproved fdimprs pty1' pty2' 
+
+getFDImprovements :: InertSet -> FDImprovements 
+-- Return a list of the improvements that have kicked in so far 
+getFDImprovements = inert_fds 
+
 
 isWantedCt :: CanonicalCt -> Bool 
 isWantedCt ct = isWanted (cc_flavor ct)
@@ -238,6 +278,10 @@ Note [Basic plan]
 2. Pairwise interaction (binary)
     * Take one from work list 
     * Try all pair-wise interactions with each constraint in inert
+   
+   As an optimisation, we prioritize the equalities both in the 
+   worklist and in the inerts. 
+
 3. Try to solve spontaneously for equalities involving touchables 
 4. Top-level interaction (binary wrt top-level)
    Superclass decomposition belongs in (4), see note [Superclasses]
@@ -247,27 +291,45 @@ Note [Basic plan]
 type AtomicInert = CanonicalCt     -- constraint pulled from InertSet
 type WorkItem    = CanonicalCt     -- constraint pulled from WorkList
 
-type WorkList    = CanonicalCts    -- A mixture of Given, Wanted, and Solved
-type SWorkList   = WorkList        -- A worklist of solved 
-                   
-
-listToWorkList :: [WorkItem] -> WorkList
-listToWorkList = Bag.listToBag
+-- A mixture of Given, Wanted, and Derived constraints. 
+-- We split between equalities and the rest to process equalities first. 
+data WorkList    = WL { wl_eqs   :: CanonicalCts -- Equalities (CTyEqCan, CFunEqCan) 
+                      , wl_other :: CanonicalCts   -- Other 
+                      }
+type SWorkList         = WorkList        -- A worklist of solved 
 
 unionWorkLists :: WorkList -> WorkList -> WorkList 
-unionWorkLists = Bag.unionBags 
+unionWorkLists wl1 wl2 
+  = WL { wl_eqs   = andCCan (wl_eqs wl1) (wl_eqs wl2)
+       , wl_other = andCCan (wl_other wl1) (wl_other wl2) }
+
+foldWorkListEqCtsM :: Monad m => (a -> WorkItem -> m a) -> a -> WorkList -> m a 
+-- Fold over the equalities of a worklist 
+foldWorkListEqCtsM f r wl = Bag.foldlBagM f r (wl_eqs wl) 
 
-foldlWorkListM :: (Monad m) => (a -> WorkItem -> m a) -> a -> WorkList -> m a 
-foldlWorkListM = Bag.foldlBagM 
+foldWorkListOtherCtsM :: Monad m => (a -> WorkItem -> m a) -> a -> WorkList -> m a 
+-- Fold over non-equality constraints of a worklist
+foldWorkListOtherCtsM f r wl = Bag.foldlBagM f r (wl_other wl) 
 
 isEmptyWorkList :: WorkList -> Bool 
-isEmptyWorkList = Bag.isEmptyBag
+isEmptyWorkList wl = isEmptyCCan (wl_eqs wl) && isEmptyCCan (wl_other wl) 
 
 emptyWorkList :: WorkList
-emptyWorkList = Bag.emptyBag
+emptyWorkList = WL { wl_eqs = emptyCCan, wl_other = emptyCCan } 
+
+workListFromCCans :: CanonicalCts -> WorkList 
+-- Generic, no precondition 
+workListFromCCans cts = WL eqs others 
+  where (eqs, others) = Bag.partitionBag isTyEqCCan cts
+
+workListFromCCan :: CanonicalCt -> WorkList 
+workListFromCCan ct | isTyEqCCan ct = WL (singleCCan ct) emptyCCan 
+                    | otherwise     = WL emptyCCan (singleCCan ct) 
+-- TODO: 
+-- At the call sites of workListFromCCan(s), sometimes we know whether the new work
+-- involves equalities or not. It's probably a good idea to add specialized calls for 
+-- those, to avoid asking whether 'isTyEqCCan' all the time.
 
-singletonWorkList :: CanonicalCt -> WorkList 
-singletonWorkList ct = singleCCan ct 
 
 data StopOrContinue 
   = Stop                       -- Work item is consumed
@@ -296,6 +358,9 @@ instance Outputable StageResult where
                  , ptext (sLit "new work =") <+> ppr work <> comma
                  , ptext (sLit "stop =") <+> ppr stop])
 
+instance Outputable WorkList where 
+  ppr (WL eqcts othercts) = vcat [ppr eqcts, ppr othercts] 
+
 type SimplifierStage = WorkItem -> InertSet -> TcS StageResult 
 
 -- Combine a sequence of simplifier 'stages' to create a pipeline 
@@ -329,8 +394,7 @@ runSolverPipeline pipeline inerts workItem
                      , sr_stop     = ContinueWith work_item })
       = do { itr <- stage work_item inerts 
            ; traceTcS ("Stage result (" ++ name ++ ")") (ppr itr)
-           ; let itr' = itr { sr_new_work = sr_new_work itr 
-                                            `unionWorkLists` accum_work }
+           ; let itr' = itr { sr_new_work = accum_work `unionWorkLists` sr_new_work itr }
            ; run_pipeline stages itr' }
 \end{code}
 
@@ -362,10 +426,11 @@ React with (F Int ~ b) ==> IR Stop True []    -- after substituting we re-canoni
 -- returning an extended inert set.
 --
 -- See Note [Touchables and givens].
-solveInteract :: InertSet -> WorkList -> TcS InertSet
+solveInteract :: InertSet -> CanonicalCts -> TcS InertSet
 solveInteract inert ws 
   = do { dyn_flags <- getDynFlags
-       ; solveInteractWithDepth (ctxtStkDepth dyn_flags,0,[]) inert ws 
+       ; let worklist = workListFromCCans ws 
+       ; solveInteractWithDepth (ctxtStkDepth dyn_flags,0,[]) inert worklist
        }
 solveOne :: InertSet -> WorkItem -> TcS InertSet 
 solveOne inerts workItem 
@@ -388,7 +453,9 @@ solveInteractWithDepth ctxt@(max_depth,n,stack) inert ws
          vcat [ text "Current depth =" <+> ppr n
               , text "Max depth =" <+> ppr max_depth
               ]
-       ; foldlWorkListM (solveOneWithDepth ctxt) inert ws }
+       ; is_from_eqs <- foldWorkListEqCtsM (solveOneWithDepth ctxt) inert ws 
+       ; foldWorkListOtherCtsM (solveOneWithDepth ctxt) is_from_eqs ws
+       }
 
 ------------------
 -- Fully interact the given work item with an inert set, and return a
@@ -412,9 +479,10 @@ solveOneWithDepth (max_depth, n, stack) inert work
     indent = replicate (2*n) ' '
 
 thePipeline :: [(String,SimplifierStage)]
-thePipeline = [ ("interact with inerts", interactWithInertsStage)
-              , ("spontaneous solve",    spontaneousSolveStage)
-              , ("top-level reactions",  topReactionsStage) ]
+thePipeline = [ ("interact with inert eqs", interactWithInertEqsStage)
+              , ("interact with inerts",    interactWithInertsStage)
+              , ("spontaneous solve",       spontaneousSolveStage)
+              , ("top-level reactions",     topReactionsStage) ]
 \end{code}
 
 *********************************************************************************
@@ -426,60 +494,25 @@ thePipeline = [ ("interact with inerts", interactWithInertsStage)
 \begin{code}
 spontaneousSolveStage :: SimplifierStage 
 spontaneousSolveStage workItem inerts 
-  = do { mSolve <- trySpontaneousSolve workItem inerts 
+  = do { mSolve <- trySpontaneousSolve workItem inerts
        ; case mSolve of 
            Nothing -> -- no spontaneous solution for him, keep going
-               return $ SR { sr_new_work   = emptyWorkList 
-                           , sr_inerts     = inerts 
+               return $ SR { sr_new_work   = emptyWorkList
+                           , sr_inerts     = inerts
                            , sr_stop       = ContinueWith workItem }
 
-           Just workList' -> -- He has been solved; workList' are all givens 
+           Just workList' -> -- He has been solved; workList' are all givens
                return $ SR { sr_new_work = workList'
                            , sr_inerts   = inerts 
-                           , sr_stop     = Stop } 
+                           , sr_stop     = Stop }
        }
 
-{-- This is all old code, but does not quite work now. The problem is that due to 
-    Note [Loopy Spontaneous Solving] we may have unflattened a type, to be able to 
-    perform a sneaky unification. This unflattening means that we may have to recanonicalize
-    a given (solved) equality, this is why the result of trySpontaneousSolve is now a list
-    of constraints (instead of an atomic solved constraint). We would have to react all of 
-    them once again with the worklist but that is very tiresome. Instead we throw them back
-    in the worklist. 
-
-               | isWantedCt workItem 
-                           -- Original was wanted we have now made him given so 
-                           -- we have to ineract him with the inerts again because 
-                           -- of the change in his status. This may produce some work. 
-                   -> do { traceTcS "recursive interact with inerts {" $ vcat
-                               [ text "work = " <+> ppr workItem'
-                               , text "inerts = " <+> ppr inerts ]
-                         ; itr_again <- interactWithInertsStage workItem' inerts 
-                         ; case sr_stop itr_again of 
-                            Stop -> pprPanic "BUG: Impossible to happen" $ 
-                                    vcat [ text "Original workitem:" <+> ppr workItem
-                                         , text "Spontaneously solved:" <+> ppr workItem'
-                                         , text "Solved was consumed, when reacting with inerts:"
-                                         , nest 2 (ppr inerts) ]
-                            ContinueWith workItem'' -- Now *this* guy is inert wrt to inerts
-                                ->  do { traceTcS "end recursive interact }" $ ppr workItem''
-                                       ; return $ SR { sr_new_work = sr_new_work itr_again
-                                                     , sr_inerts   = sr_inerts itr_again 
-                                                                     `extendInertSet` workItem'' 
-                                                     , sr_stop     = Stop } }
-                         }
-               | otherwise
-                   -> return $ SR { sr_new_work   = emptyWorkList 
-                                  , sr_inerts     = inerts `extendInertSet` workItem' 
-                                  , sr_stop       = Stop } }
---} 
-
 -- @trySpontaneousSolve wi@ solves equalities where one side is a
 -- touchable unification variable. Returns:
 --   * Nothing if we were not able to solve it
 --   * Just wi' if we solved it, wi' (now a "given") should be put in the work list.
 --                 See Note [Touchables and givens] 
--- Note, just passing the inerts through for the skolem equivalence classes
+-- NB: just passing the inerts through for the skolem equivalence classes
 trySpontaneousSolve :: WorkItem -> InertSet -> TcS (Maybe SWorkList)
 trySpontaneousSolve (CTyEqCan { cc_id = cv, cc_flavor = gw, cc_tyvar = tv1, cc_rhs = xi }) inerts 
   | isGiven gw
@@ -490,8 +523,7 @@ trySpontaneousSolve (CTyEqCan { cc_id = cv, cc_flavor = gw, cc_tyvar = tv1, cc_r
        ; case (tch1, tch2) of
            (True,  True)  -> trySpontaneousEqTwoWay inerts cv gw tv1 tv2
            (True,  False) -> trySpontaneousEqOneWay inerts cv gw tv1 xi
-           (False, True)  | tyVarKind tv1 `isSubKind` tyVarKind tv2
-                          -> trySpontaneousEqOneWay inerts cv gw tv2 (mkTyVarTy tv1)
+           (False, True)  -> trySpontaneousEqOneWay inerts cv gw tv2 (mkTyVarTy tv1)
           _ -> return Nothing }
   | otherwise
   = do { tch1 <- isTouchableMetaTyVar tv1
@@ -507,29 +539,78 @@ trySpontaneousSolve _ _ = return Nothing
 trySpontaneousEqOneWay :: InertSet -> CoVar -> CtFlavor -> TcTyVar -> Xi
                        -> TcS (Maybe SWorkList)
 -- tv is a MetaTyVar, not untouchable
--- Precondition: kind(xi) is a sub-kind of kind(tv)
 trySpontaneousEqOneWay inerts cv gw tv xi      
-  | not (isSigTyVar tv) || isTyVarTy xi
-  = solveWithIdentity inerts cv gw tv xi
-  | otherwise
-  = return Nothing
+  | not (isSigTyVar tv) || isTyVarTy xi 
+  = if typeKind xi `isSubKind` tyVarKind tv then
+        solveWithIdentity inerts cv gw tv xi
+    else if tyVarKind tv `isSubKind` typeKind xi then 
+             return Nothing -- kinds are compatible but we can't solveWithIdentity this way
+                            -- This case covers the  a_touchable :: * ~ b_untouchable :: ?? 
+                            -- which has to be deferred or floated out for someone else to solve 
+                            -- it in a scope where 'b' is no longer untouchable. 
+         else kindErrorTcS gw (mkTyVarTy tv) xi -- See Note [Kind errors]
+
+  | otherwise -- Still can't solve, sig tyvar and non-variable rhs
+  = return Nothing 
 
 ----------------
 trySpontaneousEqTwoWay :: InertSet -> CoVar -> CtFlavor -> TcTyVar -> TcTyVar
                        -> TcS (Maybe SWorkList)
--- Both tyvars are *touchable* MetaTyvars
--- By the CTyEqCan invariant, k2 `isSubKind` k1
+-- Both tyvars are *touchable* MetaTyvars so there is only a chance for kind error here
 trySpontaneousEqTwoWay inerts cv gw tv1 tv2
-  | k1 `eqKind` k2
+  | k1 `isSubKind` k2
   , nicer_to_update_tv2 = solveWithIdentity inerts cv gw tv2 (mkTyVarTy tv1)
-  | otherwise           = ASSERT( k2 `isSubKind` k1 )
-                          solveWithIdentity inerts cv gw tv1 (mkTyVarTy tv2)
+  | k2 `isSubKind` k1 
+  = solveWithIdentity inerts cv gw tv1 (mkTyVarTy tv2) 
+  | otherwise -- None is a subkind of the other, but they are both touchable! 
+  = kindErrorTcS gw (mkTyVarTy tv1) (mkTyVarTy tv2) -- See Note [Kind errors]
   where
     k1 = tyVarKind tv1
     k2 = tyVarKind tv2
     nicer_to_update_tv2 = isSigTyVar tv1 || isSystemName (Var.varName tv2)
 \end{code}
 
+Note [Kind errors] 
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Consider the wanted problem: 
+      alpha ~ (# Int, Int #) 
+where alpha :: ?? and (# Int, Int #) :: (#). We can't spontaneously solve this constraint, 
+but we should rather reject the program that give rise to it. If 'trySpontaneousEqTwoWay' 
+simply returns @Nothing@ then that wanted constraint is going to propagate all the way and 
+get quantified over in inference mode. That's bad because we do know at this point that the 
+constraint is insoluble. Instead, we call 'kindErrorTcS' here, which immediately fails. 
+
+The same applies in canonicalization code in case of kind errors in the givens. 
+
+Note [Spontaneous solving and kind compatibility] 
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Note that our canonical constraints insist that only *given* equalities (tv ~ xi) 
+or (F xis ~ rhs) require the LHS and the RHS to have exactly the same kinds. 
+
+  - We have to require this because: 
+        Given equalities can be freely used to rewrite inside 
+        other types or constraints.
+  - We do not have to do the same for wanteds because:
+        First, wanted equations (tv ~ xi) where tv is a touchable
+        unification variable may have kinds that do not agree (the
+        kind of xi must be a sub kind of the kind of tv).  Second, any
+        potential kind mismatch will result in the constraint not
+        being soluble, which will be reported anyway. This is the
+        reason that @trySpontaneousOneWay@ and @trySpontaneousTwoWay@
+        will perform a kind compatibility check, and only then will
+        they proceed to @solveWithIdentity@.
+
+Caveat: 
+  - Givens from higher-rank, such as: 
+          type family T b :: * -> * -> * 
+          type instance T Bool = (->) 
+
+          f :: forall a. ((T a ~ (->)) => ...) -> a -> ... 
+          flop = f (...) True 
+     Whereas we would be able to apply the type instance, we would not be able to 
+     use the given (T Bool ~ (->)) in the body of 'flop' 
+
 Note [Loopy spontaneous solving] 
 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 Consider the original wanted: 
@@ -639,7 +720,7 @@ solveWithIdentity inerts cv gw tv xi
                Derived {} -> setDerivedCoBind cv co 
                _          -> pprPanic "Can't spontaneously solve *given*" empty 
                      -- See Note [Avoid double unifications] 
-           ; return (Just cts) }
+           ; return $ Just (workListFromCCans cts)  }
 
 occurCheck :: VarEnv (TcTyVar, TcType) -> InertSet
            -> TcTyVar -> TcType -> Maybe (TcType,CoercionI) 
@@ -746,6 +827,8 @@ data InteractResult
 
         , ir_new_work     :: WorkList
             -- new work items to add to the WorkList
+
+        , ir_improvement  :: Maybe FDImprovement -- In case improvement kicked in
         }
 
 -- What to do with the inert reactant.
@@ -753,55 +836,81 @@ data InertAction = KeepInert | DropInert
   deriving Eq
 
 mkIRContinue :: Monad m => WorkItem -> InertAction -> WorkList -> m InteractResult
-mkIRContinue wi keep newWork = return $ IR (ContinueWith wi) keep newWork
+mkIRContinue wi keep newWork = return $ IR (ContinueWith wi) keep newWork Nothing 
 
 mkIRStop :: Monad m => InertAction -> WorkList -> m InteractResult
-mkIRStop keep newWork = return $ IR Stop keep newWork
+mkIRStop keep newWork = return $ IR Stop keep newWork Nothing
+
+mkIRStop_RecordImprovement :: Monad m => InertAction -> WorkList -> FDImprovement -> m InteractResult 
+mkIRStop_RecordImprovement keep newWork fdimpr = return $ IR Stop keep newWork (Just fdimpr) 
+
 
 dischargeWorkItem :: Monad m => m InteractResult
-dischargeWorkItem = mkIRStop KeepInert emptyCCan
+dischargeWorkItem = mkIRStop KeepInert emptyWorkList
 
 noInteraction :: Monad m => WorkItem -> m InteractResult
-noInteraction workItem = mkIRContinue workItem KeepInert emptyCCan
+noInteraction workItem = mkIRContinue workItem KeepInert emptyWorkList
 
 data WhichComesFromInert = LeftComesFromInert | RightComesFromInert 
 
+
 ---------------------------------------------------
--- Interact a single WorkItem with an InertSet as far as possible, i.e. until we get a Stop 
--- result from an individual interaction (i.e. when the WorkItem is consumed), or until we've 
--- interacted the WorkItem with the entire InertSet.
---
--- Postcondition: the new InertSet in the resulting StageResult is subset 
--- of the input InertSet.
+-- Interact a single WorkItem with the equalities of an inert set as far as possible, i.e. until we 
+-- get a Stop result from an individual reaction (i.e. when the WorkItem is consumed), or until we've 
+-- interact the WorkItem with the entire equalities of the InertSet
+
+interactWithInertEqsStage :: SimplifierStage 
+interactWithInertEqsStage workItem inert
+  = foldISEqCtsM interactNext initITR inert 
+  where initITR = SR { sr_inerts   = IS { inert_eqs  = emptyCCan -- We will fold over the equalities
+                                        , inert_fsks = Map.empty -- which will generate those two again
+                                        , inert_cts  = inert_cts inert
+                                        , inert_fds  = inert_fds inert
+                                        }
+                     , sr_new_work = emptyWorkList
+                     , sr_stop     = ContinueWith workItem }
+
 
+---------------------------------------------------
+-- Interact a single WorkItem with *non-equality* constraints in the inert set. 
+-- Precondition: equality interactions must have already happened, hence we have 
+-- to pick up some information from the incoming inert, before folding over the 
+-- "Other" constraints it contains! 
 interactWithInertsStage :: SimplifierStage
 interactWithInertsStage workItem inert
-  = foldlInertSetM interactNext initITR inert
+  = foldISOtherCtsM interactNext initITR inert
   where 
-    initITR = SR { sr_inerts   = emptyInert
-                 , sr_new_work = emptyCCan
+    initITR = SR { -- Pick up: (1) equations, (2) FD improvements, (3) FlatSkol equiv. classes
+                   sr_inerts   = IS { inert_eqs  = inert_eqs inert 
+                                    , inert_cts  = emptyCCan      
+                                    , inert_fds  = inert_fds inert 
+                                    , inert_fsks = inert_fsks inert }
+                 , sr_new_work = emptyWorkList
                  , sr_stop     = ContinueWith workItem }
 
+interactNext :: StageResult -> AtomicInert -> TcS StageResult 
+interactNext it inert  
+  | ContinueWith workItem <- sr_stop it
+  = do { let inerts      = sr_inerts it 
+             fdimprs_old = getFDImprovements inerts 
 
-    interactNext :: StageResult -> AtomicInert -> TcS StageResult 
-    interactNext it inert  
-      | ContinueWith workItem <- sr_stop it
-        = do { ir <- interactWithInert inert workItem 
-             ; let inerts = sr_inerts it 
-             ; return $ SR { sr_inerts   = if ir_inert_action ir == KeepInert
-                                           then inerts `updInertSet` inert
-                                           else inerts
-                           , sr_new_work = sr_new_work it `unionWorkLists` ir_new_work ir
-                           , sr_stop     = ir_stop ir } }
-      | otherwise = return $ itrAddInert inert it
-    
-                             
-    itrAddInert :: AtomicInert -> StageResult -> StageResult
-    itrAddInert inert itr = itr { sr_inerts = (sr_inerts itr) `updInertSet` inert }
+       ; ir <- interactWithInert fdimprs_old inert workItem 
+
+       -- New inerts depend on whether we KeepInert or not and must 
+       -- be updated with FD improvement information from the interaction result (ir) 
+       ; let inerts_new = updInertSetFDImprs upd_inert (ir_improvement ir) 
+             upd_inert  = if ir_inert_action ir == KeepInert 
+                          then inerts `updInertSet` inert else inerts
+
+       ; return $ SR { sr_inerts   = inerts_new
+                     , sr_new_work = sr_new_work it `unionWorkLists` ir_new_work ir
+                     , sr_stop     = ir_stop ir } }
+  | otherwise 
+  = return $ it { sr_inerts = (sr_inerts it) `updInertSet` inert }
 
 -- Do a single interaction of two constraints.
-interactWithInert :: AtomicInert -> WorkItem -> TcS InteractResult
-interactWithInert inert workitem 
+interactWithInert :: FDImprovements -> AtomicInert -> WorkItem -> TcS InteractResult
+interactWithInert fdimprs inert workitem 
   =  do { ctxt <- getTcSContext
         ; let is_allowed  = allowedInteraction (simplEqsOnly ctxt) inert workitem 
               inert_ev    = cc_id inert 
@@ -814,12 +923,12 @@ interactWithInert inert workitem
         -- We don't have to do this for givens, as we fully know the evidence for them. 
         ; rec_ev_ok <- 
             case (cc_flavor inert, cc_flavor workitem) of 
-              (Wanted loc, Derived _) -> isGoodRecEv work_ev  (WantedEvVar inert_ev loc)
-              (Derived _, Wanted loc) -> isGoodRecEv inert_ev (WantedEvVar work_ev loc)
-              _                       -> return True 
+              (Wanted loc, Derived {}) -> isGoodRecEv work_ev  (WantedEvVar inert_ev loc)
+              (Derived {}, Wanted loc) -> isGoodRecEv inert_ev (WantedEvVar work_ev loc)
+              _                        -> return True 
 
         ; if is_allowed && rec_ev_ok then 
-              doInteractWithInert inert workitem 
+              doInteractWithInert fdimprs inert workitem 
           else 
               noInteraction workitem 
         }
@@ -831,10 +940,10 @@ allowedInteraction eqs_only (CIPCan {})   (CIPCan {})   = not eqs_only
 allowedInteraction _ _ _ = True 
 
 --------------------------------------------
-doInteractWithInert :: CanonicalCt -> CanonicalCt -> TcS InteractResult
+doInteractWithInert :: FDImprovements -> CanonicalCt -> CanonicalCt -> TcS InteractResult
 -- Identical class constraints.
 
-doInteractWithInert 
+doInteractWithInert fdimprs
            (CDictCan { cc_id = d1, cc_flavor = fl1, cc_class = cls1, cc_tyargs = tys1 }) 
   workItem@(CDictCan { cc_id = d2, cc_flavor = fl2, cc_class = cls2, cc_tyargs = tys2 })
   | cls1 == cls2 && (and $ zipWith tcEqType tys1 tys2)
@@ -842,76 +951,84 @@ doInteractWithInert
 
   | cls1 == cls2 && (not (isGiven fl1 && isGiven fl2))
   =     -- See Note [When improvement happens]
-    do { let work_item_pred_loc = (ClassP cls2 tys2, ppr d2)
-             inert_pred_loc     = (ClassP cls1 tys1, ppr d1)
+    do { let pty1 = ClassP cls1 tys1 
+             pty2 = ClassP cls2 tys2 
+             work_item_pred_loc = (pty2, ppr d2)
+             inert_pred_loc     = (pty1, ppr d1)
             loc                = combineCtLoc fl1 fl2
              eqn_pred_locs = improveFromAnother work_item_pred_loc inert_pred_loc         
+
        ; wevvars <- mkWantedFunDepEqns loc eqn_pred_locs 
+       ; fd_cts <- canWanteds wevvars 
+       ; let fd_work = workListFromCCans fd_cts 
                 -- See Note [Generating extra equalities]
-       ; workList <- canWanteds wevvars 
-       ; mkIRContinue workItem KeepInert workList -- Keep the inert there so we avoid 
-                                                  -- re-introducing the fundep equalities
+       ; traceTcS "Checking if improvements existed." (ppr fdimprs) 
+       ; if isEmptyCCan fd_cts || haveBeenImproved fdimprs pty1 pty2 then
+             -- Must keep going
+             mkIRContinue workItem KeepInert fd_work 
+         else do { traceTcS "Recording improvement and throwing item back in worklist." (ppr (pty1,pty2))
+                 ; mkIRStop_RecordImprovement KeepInert 
+                      (fd_work `unionWorkLists` workListFromCCan workItem) (pty1,pty2)
+                 }
          -- See Note [FunDep Reactions] 
        }
 
 -- Class constraint and given equality: use the equality to rewrite
 -- the class constraint. 
-doInteractWithInert (CTyEqCan { cc_id = cv, cc_flavor = ifl, cc_tyvar = tv, cc_rhs = xi }) 
+doInteractWithInert _fdimprs
+                    (CTyEqCan { cc_id = cv, cc_flavor = ifl, cc_tyvar = tv, cc_rhs = xi }) 
                     (CDictCan { cc_id = dv, cc_flavor = wfl, cc_class = cl, cc_tyargs = xis }) 
   | ifl `canRewrite` wfl 
   , tv `elemVarSet` tyVarsOfTypes xis
-    -- substitute for tv in xis.  Note that the resulting class
-    -- constraint is still canonical, since substituting xi-types in
-    -- xi-types generates xi-types.  However, it may no longer be
-    -- inert with respect to the inert set items we've already seen.
-    -- For example, consider the inert set
-    --
-    --   D Int (g)
-    --   a ~g Int
-    --
-    -- and the work item D a (w). D a does not interact with D Int.
-    -- Next, it does interact with a ~g Int, getting rewritten to D
-    -- Int (w).  But now we must go back through the rest of the inert
-    -- set again, to find that it can now be discharged by the given D
-    -- Int instance.
-  = do { rewritten_dict <- rewriteDict (cv,tv,xi) (dv,wfl,cl,xis)
-       ; mkIRStop KeepInert (singleCCan rewritten_dict) }
+  = if isDerivedSC wfl then 
+        mkIRStop KeepInert $ emptyWorkList -- See Note [Adding Derived Superclasses]
+    else do { rewritten_dict <- rewriteDict (cv,tv,xi) (dv,wfl,cl,xis)
+            -- Continue with rewritten Dictionary because we can only be in the 
+            -- interactWithEqsStage, so the dictionary is inert. 
+            ; mkIRContinue rewritten_dict KeepInert emptyWorkList }
     
-doInteractWithInert (CDictCan { cc_id = dv, cc_flavor = ifl, cc_class = cl, cc_tyargs = xis }) 
+doInteractWithInert _fdimprs 
+                    (CDictCan { cc_id = dv, cc_flavor = ifl, cc_class = cl, cc_tyargs = xis }) 
            workItem@(CTyEqCan { cc_id = cv, cc_flavor = wfl, cc_tyvar = tv, cc_rhs = xi })
   | wfl `canRewrite` ifl
   , tv `elemVarSet` tyVarsOfTypes xis
-  = do { rewritten_dict <- rewriteDict (cv,tv,xi) (dv,ifl,cl,xis) 
-       ; mkIRContinue workItem DropInert (singleCCan rewritten_dict) }
+  = if isDerivedSC ifl then
+        mkIRContinue workItem DropInert emptyWorkList -- No need to do any rewriting, 
+                                                      -- see Note [Adding Derived Superclasses]
+    else do { rewritten_dict <- rewriteDict (cv,tv,xi) (dv,ifl,cl,xis) 
+            ; mkIRContinue workItem DropInert (workListFromCCan rewritten_dict) }
 
 -- Class constraint and given equality: use the equality to rewrite
 -- the class constraint.
-doInteractWithInert (CTyEqCan { cc_id = cv, cc_flavor = ifl, cc_tyvar = tv, cc_rhs = xi }) 
+doInteractWithInert _fdimprs 
+                    (CTyEqCan { cc_id = cv, cc_flavor = ifl, cc_tyvar = tv, cc_rhs = xi }) 
                     (CIPCan { cc_id = ipid, cc_flavor = wfl, cc_ip_nm = nm, cc_ip_ty = ty }) 
   | ifl `canRewrite` wfl
   , tv `elemVarSet` tyVarsOfType ty 
   = do { rewritten_ip <- rewriteIP (cv,tv,xi) (ipid,wfl,nm,ty) 
-       ; mkIRStop KeepInert (singleCCan rewritten_ip) }
+       ; mkIRContinue rewritten_ip KeepInert emptyWorkList } 
 
-doInteractWithInert (CIPCan { cc_id = ipid, cc_flavor = ifl, cc_ip_nm = nm, cc_ip_ty = ty }) 
+doInteractWithInert _fdimprs 
+                    (CIPCan { cc_id = ipid, cc_flavor = ifl, cc_ip_nm = nm, cc_ip_ty = ty }) 
            workItem@(CTyEqCan { cc_id = cv, cc_flavor = wfl, cc_tyvar = tv, cc_rhs = xi })
   | wfl `canRewrite` ifl
   , tv `elemVarSet` tyVarsOfType ty
   = do { rewritten_ip <- rewriteIP (cv,tv,xi) (ipid,ifl,nm,ty) 
-       ; mkIRContinue workItem DropInert (singleCCan rewritten_ip) } 
+       ; mkIRContinue workItem DropInert (workListFromCCan rewritten_ip) }
 
 -- Two implicit parameter constraints.  If the names are the same,
 -- but their types are not, we generate a wanted type equality 
 -- that equates the type (this is "improvement").  
 -- However, we don't actually need the coercion evidence,
 -- so we just generate a fresh coercion variable that isn't used anywhere.
-doInteractWithInert (CIPCan { cc_id = id1, cc_flavor = ifl, cc_ip_nm = nm1, cc_ip_ty = ty1 }) 
+doInteractWithInert _fdimprs 
+                    (CIPCan { cc_id = id1, cc_flavor = ifl, cc_ip_nm = nm1, cc_ip_ty = ty1 }) 
            workItem@(CIPCan { cc_flavor = wfl, cc_ip_nm = nm2, cc_ip_ty = ty2 })
   | nm1 == nm2 && isGiven wfl && isGiven ifl
   =    -- See Note [Overriding implicit parameters]
         -- Dump the inert item, override totally with the new one
        -- Do not require type equality
-    mkIRContinue workItem DropInert emptyCCan
+    mkIRContinue workItem DropInert emptyWorkList
 
   | nm1 == nm2 && ty1 `tcEqType` ty2 
   = solveOneFromTheOther (id1,ifl) workItem 
@@ -920,7 +1037,8 @@ doInteractWithInert (CIPCan { cc_id = id1, cc_flavor = ifl, cc_ip_nm = nm1, cc_i
   =    -- See Note [When improvement happens]
     do { co_var <- newWantedCoVar ty1 ty2 
        ; let flav = Wanted (combineCtLoc ifl wfl) 
-       ; mkCanonical flav co_var >>= mkIRContinue workItem KeepInert } 
+       ; cans <- mkCanonical flav co_var 
+       ; mkIRContinue workItem KeepInert (workListFromCCans cans) }
 
 
 -- Inert: equality, work item: function equality
@@ -932,56 +1050,59 @@ doInteractWithInert (CIPCan { cc_id = id1, cc_flavor = ifl, cc_ip_nm = nm1, cc_i
 -- we will ``expose'' x2 and x4 to rewriting.
 
 -- Otherwise, we can try rewriting the type function equality with the equality.
-doInteractWithInert (CTyEqCan { cc_id = cv1, cc_flavor = ifl, cc_tyvar = tv, cc_rhs = xi1 }) 
+doInteractWithInert _fdimprs
+                    (CTyEqCan { cc_id = cv1, cc_flavor = ifl, cc_tyvar = tv, cc_rhs = xi1 }) 
                     (CFunEqCan { cc_id = cv2, cc_flavor = wfl, cc_fun = tc
                                , cc_tyargs = args, cc_rhs = xi2 })
   | ifl `canRewrite` wfl 
   , tv `elemVarSet` tyVarsOfTypes args
   = do { rewritten_funeq <- rewriteFunEq (cv1,tv,xi1) (cv2,wfl,tc,args,xi2) 
-       ; mkIRStop KeepInert (singleCCan rewritten_funeq) }
+       ; mkIRStop KeepInert (workListFromCCan rewritten_funeq) } 
+         -- must Stop here, because we may no longer be inert after the rewritting.
 
 -- Inert: function equality, work item: equality
-
-doInteractWithInert (CFunEqCan {cc_id = cv1, cc_flavor = ifl, cc_fun = tc
+doInteractWithInert _fdimprs
+                    (CFunEqCan {cc_id = cv1, cc_flavor = ifl, cc_fun = tc
                               , cc_tyargs = args, cc_rhs = xi1 }) 
            workItem@(CTyEqCan { cc_id = cv2, cc_flavor = wfl, cc_tyvar = tv, cc_rhs = xi2 })
   | wfl `canRewrite` ifl
   , tv `elemVarSet` tyVarsOfTypes args
   = do { rewritten_funeq <- rewriteFunEq (cv2,tv,xi2) (cv1,ifl,tc,args,xi1) 
-       ; mkIRContinue workItem DropInert (singleCCan rewritten_funeq) } 
+       ; mkIRContinue workItem DropInert (workListFromCCan rewritten_funeq) } 
 
-doInteractWithInert (CFunEqCan { cc_id = cv1, cc_flavor = fl1, cc_fun = tc1
+doInteractWithInert _fdimprs
+                    (CFunEqCan { cc_id = cv1, cc_flavor = fl1, cc_fun = tc1
                                , cc_tyargs = args1, cc_rhs = xi1 }) 
            workItem@(CFunEqCan { cc_id = cv2, cc_flavor = fl2, cc_fun = tc2
                                , cc_tyargs = args2, cc_rhs = xi2 })
-  | fl1 `canRewrite` fl2 && lhss_match
+  | fl1 `canSolve` fl2 && lhss_match
   = do { cans <- rewriteEqLHS LeftComesFromInert  (mkCoVarCoercion cv1,xi1) (cv2,fl2,xi2) 
-       ; mkIRStop KeepInert cans } 
-  | fl2 `canRewrite` fl1 && lhss_match
+       ; mkIRStop KeepInert (workListFromCCans cans) } 
+  | fl2 `canSolve` fl1 && lhss_match
   = do { cans <- rewriteEqLHS RightComesFromInert (mkCoVarCoercion cv2,xi2) (cv1,fl1,xi1) 
-       ; mkIRContinue workItem DropInert cans }
+       ; mkIRContinue workItem DropInert (workListFromCCans cans) }
   where
     lhss_match = tc1 == tc2 && and (zipWith tcEqType args1 args2) 
 
-doInteractWithInert 
+doInteractWithInert _fdimprs 
            inert@(CTyEqCan { cc_id = cv1, cc_flavor = fl1, cc_tyvar = tv1, cc_rhs = xi1 }) 
            workItem@(CTyEqCan { cc_id = cv2, cc_flavor = fl2, cc_tyvar = tv2, cc_rhs = xi2 })
 -- Check for matching LHS 
-  | fl1 `canRewrite` fl2 && tv1 == tv2 
+  | fl1 `canSolve` fl2 && tv1 == tv2 
   = do { cans <- rewriteEqLHS LeftComesFromInert (mkCoVarCoercion cv1,xi1) (cv2,fl2,xi2) 
-       ; mkIRStop KeepInert cans } 
+       ; mkIRStop KeepInert (workListFromCCans cans) } 
 
-  | fl2 `canRewrite` fl1 && tv1 == tv2 
+  | fl2 `canSolve` fl1 && tv1 == tv2 
   = do { cans <- rewriteEqLHS RightComesFromInert (mkCoVarCoercion cv2,xi2) (cv1,fl1,xi1) 
-       ; mkIRContinue workItem DropInert cans } 
+       ; mkIRContinue workItem DropInert (workListFromCCans cans) } 
 
 -- Check for rewriting RHS 
   | fl1 `canRewrite` fl2 && tv1 `elemVarSet` tyVarsOfType xi2 
   = do { rewritten_eq <- rewriteEqRHS (cv1,tv1,xi1) (cv2,fl2,tv2,xi2) 
-       ; mkIRStop KeepInert rewritten_eq }
+       ; mkIRStop KeepInert (workListFromCCans rewritten_eq) }
   | fl2 `canRewrite` fl1 && tv2 `elemVarSet` tyVarsOfType xi1
   = do { rewritten_eq <- rewriteEqRHS (cv2,tv2,xi2) (cv1,fl1,tv1,xi1) 
-       ; mkIRContinue workItem DropInert rewritten_eq } 
+       ; mkIRContinue workItem DropInert (workListFromCCans rewritten_eq) } 
 
 -- Finally, if workitem is a Flatten Equivalence Class constraint and the 
 -- inert is a wanted constraint, even when the workitem cannot rewrite the 
@@ -993,20 +1114,13 @@ doInteractWithInert
     isMetaTyVar tv1,                    -- and has a unification variable lhs
     FlatSkol {} <- tcTyVarDetails tv2,  -- And workitem is a flatten skolem equality
     Just tv2'   <- tcGetTyVar_maybe xi2, FlatSkol {} <- tcTyVarDetails tv2' 
-  = mkIRContinue workItem DropInert (singletonWorkList inert)
+  = mkIRContinue workItem DropInert (workListFromCCan inert)   
 
 
 -- Fall-through case for all other situations
-doInteractWithInert _ workItem = noInteraction workItem
-
---------------------------------------------
-combineCtLoc :: CtFlavor -> CtFlavor -> WantedLoc
--- Precondition: At least one of them should be wanted 
-combineCtLoc (Wanted loc) _ = loc 
-combineCtLoc _ (Wanted loc) = loc 
-combineCtLoc _ _ = panic "Expected one of wanted constraints (BUG)" 
-
+doInteractWithInert _fdimprs _ workItem = noInteraction workItem
 
+-------------------------
 -- Equational Rewriting 
 rewriteDict  :: (CoVar, TcTyVar, Xi) -> (DictId, CtFlavor, Class, [Xi]) -> TcS CanonicalCt
 rewriteDict (cv,tv,xi) (dv,gw,cl,xis) 
@@ -1083,7 +1197,7 @@ rewriteEqRHS (cv1,tv1,xi1) (cv2,gw,tv2,xi2)
        ; return (singleCCan $ CTyEqCan { cc_id = cv2' 
                                        , cc_flavor = gw 
                                        , cc_tyvar = tv2 
-                                       , cc_rhs   = xi2'' }) 
+                                       , cc_rhs   = xi2'' })
        }
   where 
     xi2' = substTyWith [tv1] [xi1] xi2 
@@ -1091,10 +1205,10 @@ rewriteEqRHS (cv1,tv1,xi1) (cv2,gw,tv2,xi2)
 
 
 rewriteEqLHS :: WhichComesFromInert -> (Coercion,Xi) -> (CoVar,CtFlavor,Xi) -> TcS CanonicalCts
--- Used to ineratct two equalities of the following form: 
+-- Used to ineract two equalities of the following form: 
 -- First Equality:   co1: (XXX ~ xi1)  
 -- Second Equality:  cv2: (XXX ~ xi2) 
--- Where the cv1 `canRewrite` cv2 equality 
+-- Where the cv1 `canSolve` cv2 equality 
 -- We have an option of creating new work (xi1 ~ xi2) OR (xi2 ~ xi1). This 
 -- depends on whether the left or the right equality comes from the inert set. 
 -- We must:  
@@ -1118,10 +1232,9 @@ rewriteEqLHS which (co1,xi1) (cv2,gw,xi2)
                    (False,RightComesFromInert) -> 
                         newGivOrDerCoVar xi1 xi2 $ 
                         mkSymCoercion co1 `mkTransCoercion` mkCoVarCoercion cv2
-       ; mkCanonical gw cv2' }
-
-
-
+       ; mkCanonical gw cv2'
+       }
+                                           
 solveOneFromTheOther :: (EvVar, CtFlavor) -> CanonicalCt -> TcS InteractResult 
 -- First argument inert, second argument workitem. They both represent 
 -- wanted/given/derived evidence for the *same* predicate so we try here to 
@@ -1137,15 +1250,15 @@ solveOneFromTheOther (iid,ifl) workItem
   | isDerived ifl && isDerived wfl 
   = noInteraction workItem 
 
-  | ifl `canRewrite` wfl
+  | ifl `canSolve` wfl
   = do { unless (isGiven wfl) $ setEvBind wid (EvId iid) 
            -- Overwrite the binding, if one exists
           -- For Givens, which are lambda-bound, nothing to overwrite,
        ; dischargeWorkItem }
 
-  | otherwise  -- wfl `canRewrite` ifl 
+  | otherwise  -- wfl `canSolve` ifl 
   = do { unless (isGiven ifl) $ setEvBind iid (EvId wid)
-       ; mkIRContinue workItem DropInert emptyCCan }
+       ; mkIRContinue workItem DropInert emptyWorkList }
 
   where 
      wfl = cc_flavor workItem
@@ -1569,15 +1682,17 @@ doTopReact workItem@(CDictCan { cc_id = dv, cc_flavor = Wanted loc
                     -- Solved in one step and no new wanted work produced. 
                     -- i.e we directly matched a top-level instance
                    -- No point in caching this in 'inert', nor in adding superclasses
-                    then return $ SomeTopInt { tir_new_work  = emptyCCan 
+                    then return $ SomeTopInt { tir_new_work  = emptyWorkList 
                                              , tir_new_inert = Stop }
 
                     -- Solved and new wanted work produced, you may cache the 
                    -- (tentatively solved) dictionary as Derived and its superclasses
-                    else do { let solved = makeSolved workItem
-                            ; sc_work <- newSCWorkFromFlavored dv (Derived loc) cls xis 
+                    else do { let solved = makeSolvedByInst workItem
+                            ; sc_work <- newDerivedSCWork dv loc cls xis
+                                         -- See Note [Adding Derived Superclasses]
+                            ; let inst_work = workListFromCCans workList
                             ; return $ SomeTopInt 
-                                  { tir_new_work = workList `unionWorkLists` sc_work 
+                                  { tir_new_work  = inst_work `unionWorkLists` sc_work 
                                   , tir_new_inert = ContinueWith solved } }
                   }
        }
@@ -1591,10 +1706,21 @@ doTopReact workItem@(CDictCan { cc_id = dv, cc_flavor = Wanted loc
            ; wevvars <- mkWantedFunDepEqns loc eqn_pred_locs 
                      -- NB: fundeps generate some wanted equalities, but 
                      --     we don't use their evidence for anything
-           ; fd_work <- canWanteds wevvars 
-           ; sc_work <- newSCWorkFromFlavored dv (Derived loc) cls xis
-           ; return $ SomeTopInt { tir_new_work = fd_work `unionWorkLists` sc_work
-                                 , tir_new_inert = ContinueWith workItem }
+           ; fd_cts <- canWanteds wevvars 
+           ; let fd_work = workListFromCCans fd_cts
+
+           ; if isEmptyCCan fd_cts then 
+                 do { sc_work <- newDerivedSCWork dv loc cls xis
+                                 -- See Note [Adding Derived Superclasses] 
+                    ; return $ SomeTopInt { tir_new_work = fd_work `unionWorkLists` sc_work
+                                          , tir_new_inert = ContinueWith workItem }
+                    }
+             else -- More fundep work produced, don't do any superlcass stuff, just 
+                  -- thow him back in the worklist prioritizing the solution of fd equalities
+                 return $ 
+                 SomeTopInt { tir_new_work = fd_work `unionWorkLists` workListFromCCan workItem
+                            , tir_new_inert = Stop }
+
            -- NB: workItem is inert, but it isn't solved
           -- keep it as inert, although it's not solved because we
            -- have now reacted all its top-level fundep-induced equalities!
@@ -1602,10 +1728,15 @@ doTopReact workItem@(CDictCan { cc_id = dv, cc_flavor = Wanted loc
            -- See Note [FunDep Reactions]
            }
 
--- Otherwise, we have a given or derived 
-doTopReact workItem@(CDictCan { cc_id = dv, cc_flavor = fl
-                              , cc_class = cls, cc_tyargs = xis }) 
-  = do { sc_work <- newSCWorkFromFlavored dv fl cls xis 
+-- Derived, do not add any further derived superclasses; their full transitive 
+-- closure has already been added. 
+doTopReact (CDictCan { cc_flavor = fl })
+  | isDerived fl
+  = return NoTopInt
+
+doTopReact workItem@(CDictCan { cc_id = dv, cc_flavor = Given loc
+                              , cc_class = cls, cc_tyargs = xis })
+  = do { sc_work <- newGivenSCWork dv loc cls xis 
        ; return $ SomeTopInt sc_work (ContinueWith workItem) }
     -- See Note [Given constraint that matches an instance declaration]
 
@@ -1634,7 +1765,8 @@ doTopReact (CFunEqCan { cc_id = cv, cc_flavor = fl
                               _ -> newGivOrDerCoVar xi rhs_ty $ 
                                    mkSymCoercion (mkCoVarCoercion cv) `mkTransCoercion` coe 
 
-                   ; workList <- mkCanonical fl cv'
+                   ; can_cts <- mkCanonical fl cv'
+                   ; let workList = workListFromCCans can_cts
                    ; return $ SomeTopInt workList Stop }
            _ 
              -> panicTcS $ text "TcSMonad.matchFam returned multiple instances!"
@@ -1645,6 +1777,65 @@ doTopReact (CFunEqCan { cc_id = cv, cc_flavor = fl
 doTopReact _workItem = return NoTopInt 
 \end{code}
 
+Note [Adding Derived Superclasses]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
+Generally speaking, we want to be able to add derived superclasses of
+unsolved wanteds, and wanteds that have been partially being solved
+via an instance. This is important to be able to simplify the inferred
+constraints more (and to allow for recursive dictionaries, less
+importantly). Example:
+
+Inferred wanted constraint is (Eq a, Ord a), but we'd only like to
+quantify over Ord a, hence we would like to be able to add the
+superclass of Ord a as Derived and use it to solve the wanted Eq a.
+
+Hence we will add Derived superclasses in the following two cases: 
+    (1) When we meet an unsolved wanted in top-level reactions
+    (2) When we partially solve a wanted in top-level reactions using an instance decl.
+
+At that point, we have two options:
+    (1) Add transitively add *ALL* of the superclasses of the Derived
+    (2) Add only the immediate ones, but whenever we meet a Derived in
+        the future, add its own superclasses as Derived.
+
+Option (2) is terrible, because deriveds may be rewritten or kicked
+out of the inert set, which will result in slightly rewritten
+superclasses being reintroduced in the worklist and the inert set. Eg:
+
+    class C a => B a 
+    instance Foo a => B [a] 
+
+Original constraints: 
+[Wanted] d : B [a] 
+[Given] co : a ~ Int 
+
+We apply the instance to the wanted and put it and its superclasses as
+as Deriveds in the inerts:
+
+[Derived] d : B [a] 
+[Derived] (sel d) : C [a]
+
+The work is now: 
+[Given] co  : a ~ Int 
+[Wanted] d' : Foo a 
+
+Now, suppose that we interact the Derived with the Given equality, and
+kick him out of the inert, the next time around a superclass C [Int]
+will be produced -- but we already *have* C [a] in the inerts which
+will anyway get rewritten to C [Int].
+
+So we choose (1), and *never* introduce any more superclass work from
+Deriveds.  This enables yet another optimisation: If we ever meet an
+equality that can rewrite a Derived, if that Derived is a superclass
+derived (like C [a] above), i.e. not a partially solved one (like B
+[a]) above, we may simply completely *discard* that Derived. The
+reason is because somewhere in the inert lies the original wanted, or
+partially solved constraint that gave rise to that superclass, and
+that constraint *will* be kicked out, and *will* result in the
+rewritten superclass to be added in the inerts later on, anyway.
+
+
+
 Note [FunDep and implicit parameter reactions] 
 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 Currently, our story of interacting two dictionaries (or a dictionary
@@ -1673,7 +1864,17 @@ might dischard d2 directly:
         d2 := d1 |> D Int cv
 
 But in general it's a bit painful to figure out the necessary coercion,
-so we just take the first approach.
+so we just take the first approach. Here is a better example. Consider:
+    class C a b c | a -> b 
+And: 
+     [Given]  d1 : C T Int Char 
+     [Wanted] d2 : C T beta Int 
+In this case, it's *not even possible* to solve the wanted immediately. 
+So we should simply output the functional dependency and add this guy
+[but NOT its superclasses] back in the worklist. Even worse: 
+     [Given] d1 : C T Int beta 
+     [Wanted] d2: C T beta Int 
+Then it is solvable, but its very hard to detect this on the spot. 
 
 It's exactly the same with implicit parameters, except that the
 "aggressive" approach would be much easier to implement.
@@ -1836,23 +2037,42 @@ NB: The desugarer needs be more clever to deal with equalities
     that participate in recursive dictionary bindings. 
 
 \begin{code}
-newSCWorkFromFlavored :: EvVar -> CtFlavor -> Class -> [Xi]
-                      -> TcS WorkList
-newSCWorkFromFlavored ev flavor cls xis
-  | Given loc <- flavor                 -- The NoScSkol says "don't add superclasses"
-  , NoScSkol <- ctLocOrigin loc  -- Very important!
+
+newGivenSCWork :: EvVar -> GivenLoc -> Class -> [Xi] -> TcS WorkList
+newGivenSCWork ev loc cls xis
+  | NoScSkol <- ctLocOrigin loc  -- Very important!
   = return emptyWorkList
-    
   | otherwise
+  = newImmSCWorkFromFlavored ev (Given loc) cls xis >>= return . workListFromCCans 
+
+newDerivedSCWork :: EvVar -> WantedLoc -> Class -> [Xi] -> TcS WorkList 
+newDerivedSCWork ev loc cls xis 
+  =  do { ims <- newImmSCWorkFromFlavored ev flavor cls xis 
+        ; final_cts <- rec_sc_work ims 
+        ; return $ workListFromCCans final_cts } 
+  where rec_sc_work :: CanonicalCts -> TcS CanonicalCts 
+        rec_sc_work cts 
+          = do { bg <- mapBagM (\c -> do { ims <- imm_sc_work c 
+                                         ; recs_ims <- rec_sc_work ims 
+                                         ; return $ consBag c recs_ims }) cts 
+               ; return $ concatBag bg } 
+        imm_sc_work (CDictCan { cc_id = dv, cc_flavor = fl, cc_class = cls, cc_tyargs = xis })
+           = newImmSCWorkFromFlavored dv fl cls xis 
+        imm_sc_work _ct = return emptyCCan 
+
+        flavor = Derived loc DerSC 
+
+newImmSCWorkFromFlavored :: EvVar -> CtFlavor -> Class -> [Xi] -> TcS CanonicalCts 
+-- Returns immediate superclasses 
+newImmSCWorkFromFlavored ev flavor cls xis 
   = do { let (tyvars, sc_theta, _, _) = classBigSig cls 
              sc_theta1 = substTheta (zipTopTvSubst tyvars xis) sc_theta
-             -- Add *all* its superclasses (equalities or not) as new given work 
-             -- See Note [New Wanted Superclass Work] 
        ; sc_vars <- zipWithM inst_one sc_theta1 [0..]
-       ; mkCanonicals flavor sc_vars } 
+       ; mkCanonicals flavor sc_vars }
   where
     inst_one pred n = newGivOrDerEvVar pred (EvSuperClass ev n)
 
+
 data LookupInstResult
   = NoInstance
   | GenInst [WantedEvVar] EvTerm