fix haddock submodule pointer
[ghc-hetmet.git] / compiler / typecheck / TcTyDecls.lhs
index 9b0e681..15c817a 100644 (file)
@@ -30,9 +30,9 @@ import NameSet
 import Digraph
 import BasicTypes
 import SrcLoc
-import Outputable
+import Maybes( mapCatMaybes )
 import Util ( isSingleton )
-import List ( partition )
+import Data.List
 \end{code}
 
 
@@ -132,6 +132,42 @@ calcClassCycles decls
 %*                                                                      *
 %************************************************************************
 
+Identification of recursive TyCons
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+The knot-tying parameters: @rec_details_list@ is an alist mapping @Name@s to
+@TyThing@s.
+
+Identifying a TyCon as recursive serves two purposes
+
+1.  Avoid infinite types.  Non-recursive newtypes are treated as
+"transparent", like type synonyms, after the type checker.  If we did
+this for all newtypes, we'd get infinite types.  So we figure out for
+each newtype whether it is "recursive", and add a coercion if so.  In
+effect, we are trying to "cut the loops" by identifying a loop-breaker.
+
+2.  Avoid infinite unboxing.  This is nothing to do with newtypes.
+Suppose we have
+        data T = MkT Int T
+        f (MkT x t) = f t
+Well, this function diverges, but we don't want the strictness analyser
+to diverge.  But the strictness analyser will diverge because it looks
+deeper and deeper into the structure of T.   (I believe there are
+examples where the function does something sane, and the strictness
+analyser still diverges, but I can't see one now.)
+
+Now, concerning (1), the FC2 branch currently adds a coercion for ALL
+newtypes.  I did this as an experiment, to try to expose cases in which
+the coercions got in the way of optimisations.  If it turns out that we
+can indeed always use a coercion, then we don't risk recursive types,
+and don't need to figure out what the loop breakers are.
+
+For newtype *families* though, we will always have a coercion, so they
+are always loop breakers!  So you can easily adjust the current
+algorithm by simply treating all newtype families as loop breakers (and
+indeed type families).  I think.
+
+
+
 For newtypes, we label some as "recursive" such that
 
     INVARIANT: there is no cycle of non-recursive newtypes
@@ -160,6 +196,7 @@ T's source module is compiled.  We don't want T's recursiveness to change.
 The "recursive" flag for algebraic data types is irrelevant (never consulted)
 for types with more than one constructor.
 
+
 An algebraic data type M.T is "recursive" iff
         it has just one constructor, and
         (a) it is declared in an hi-boot file (see RdrHsSyn.hsIfaceDecl)
@@ -216,11 +253,10 @@ calcRecFlags boot_details tyclss
                 nt_loop_breakers  `unionNameSets`
                 prod_loop_breakers
 
-    all_tycons = [ tc | tycls <- tyclss,
+    all_tycons = [ tc | tc <- mapCatMaybes getTyCon tyclss
                            -- Recursion of newtypes/data types can happen via
                            -- the class TyCon, so tyclss includes the class tycons
-                        let tc = getTyCon tycls,
-                        not (tyConName tc `elemNameSet` boot_name_set) ]
+                      , not (tyConName tc `elemNameSet` boot_name_set) ]
                            -- Remove the boot_name_set because they are going
                            -- to be loop breakers regardless.
 
@@ -284,10 +320,10 @@ calcRecFlags boot_details tyclss
 new_tc_rhs :: TyCon -> Type
 new_tc_rhs tc = snd (newTyConRhs tc)    -- Ignore the type variables
 
-getTyCon :: TyThing -> TyCon
-getTyCon (ATyCon tc) = tc
-getTyCon (AClass cl) = classTyCon cl
-getTyCon _           = panic "getTyCon"
+getTyCon :: TyThing -> Maybe TyCon
+getTyCon (ATyCon tc) = Just tc
+getTyCon (AClass cl) = Just (classTyCon cl)
+getTyCon _           = Nothing
 
 findLoopBreakers :: [(TyCon, [TyCon])] -> [Name]
 -- Finds a set of tycons that cut all loops
@@ -319,8 +355,8 @@ tcTyConsOfType ty
      go (FunTy a b)                = go a `plusNameEnv` go b
      go (PredTy (IParam _ ty))     = go ty
      go (PredTy (ClassP cls tys))  = go_tc (classTyCon cls) tys
+     go (PredTy (EqPred ty1 ty2))  = go ty1 `plusNameEnv` go ty2
      go (ForAllTy _ ty)            = go ty
-     go _                          = panic "tcTyConsOfType"
 
      go_tc tc tys = extendNameEnv (go_s tys) (tyConName tc) tc
      go_s tys = foldr (plusNameEnv . go) emptyNameEnv tys