White-space only
[ghc-hetmet.git] / compiler / types / Coercion.lhs
index c2261ad..1e071eb 100644 (file)
@@ -25,13 +25,23 @@ module Coercion (
         mkSymCoercion, mkTransCoercion,
         mkLeftCoercion, mkRightCoercion, mkInstCoercion, mkAppCoercion,
         mkForAllCoercion, mkFunCoercion, mkInstsCoercion, mkUnsafeCoercion,
-        mkNewTypeCoercion, mkDataInstCoercion, mkAppsCoercion,
+        mkNewTypeCoercion, mkFamInstCoercion, mkAppsCoercion,
 
         splitNewTypeRepCo_maybe, decomposeCo,
 
         unsafeCoercionTyCon, symCoercionTyCon,
         transCoercionTyCon, leftCoercionTyCon, 
-        rightCoercionTyCon, instCoercionTyCon -- needed by TysWiredIn
+        rightCoercionTyCon, instCoercionTyCon, -- needed by TysWiredIn
+
+       -- CoercionI
+       CoercionI(..),
+       isIdentityCoercion,
+       mkSymCoI, mkTransCoI, 
+       mkTyConAppCoI, mkAppTyCoI, mkFunTyCoI,
+       mkNoteTyCoI, mkForAllTyCoI,
+       fromCoI,
+       mkClassPPredCoI, mkIParamPredCoI, mkEqPredCoI,
+
        ) where 
 
 #include "HsVersions.h"
@@ -39,6 +49,7 @@ module Coercion (
 import TypeRep
 import Type
 import TyCon
+import Class
 import Var
 import Name
 import OccName
@@ -156,61 +167,71 @@ mkForAllCoercion tv  co  = ASSERT ( isTyVar tv ) mkForAllTy tv co
 mkFunCoercion    co1 co2 = mkFunTy co1 co2
 
 
+-------------------------------
 -- This smart constructor creates a sym'ed version its argument,
 -- but tries to push the sym's down to the leaves.  If we come to
 -- sym tv or sym tycon then we can drop the sym because tv and tycon
 -- are reflexive coercions
 mkSymCoercion co      
-  | Just co2 <- splitSymCoercion_maybe co = co2
-     -- sym (sym co) --> co
-  | Just (co1, arg_tys) <- splitTyConApp_maybe co
-  , not (isCoercionTyCon co1) = mkTyConApp co1 (map mkSymCoercion arg_tys)
-     -- we can drop the sym for a TyCon 
-     -- sym (ty [t1, ..., tn]) --> ty [sym t1, ..., sym tn] 
-  | (co1, arg_tys) <- splitAppTys co
-  , isTyVarTy co1 = mkAppTys (maybe_drop co1) (map mkSymCoercion arg_tys)
-     -- sym (tv [t1, ..., tn]) --> tv [sym t1, ..., sym tn]
-     --   if tv type variable
-     -- sym (cv [t1, ..., tn]) --> (sym cv) [sym t1, ..., sym tn]
-     --   if cv is a coercion variable
-     -- fall through if head is a CoercionTyCon
-  | Just (co1, co2) <- splitTransCoercion_maybe co
+  | Just co' <- coreView co = mkSymCoercion co'
+
+mkSymCoercion (ForAllTy tv ty)  = ForAllTy tv (mkSymCoercion ty)
+mkSymCoercion (AppTy co1 co2)  = AppTy (mkSymCoercion co1) (mkSymCoercion co2)
+mkSymCoercion (FunTy co1 co2)  = FunTy (mkSymCoercion co1) (mkSymCoercion co2)
+
+mkSymCoercion (TyConApp tc cos) 
+  | not (isCoercionTyCon tc) = mkTyConApp tc (map mkSymCoercion cos)
+
+mkSymCoercion (TyConApp tc [co]) 
+  | tc `hasKey` symCoercionTyConKey   = co    -- sym (sym co) --> co
+  | tc `hasKey` leftCoercionTyConKey  = mkLeftCoercion (mkSymCoercion co)
+  | tc `hasKey` rightCoercionTyConKey = mkRightCoercion (mkSymCoercion co)
+
+mkSymCoercion (TyConApp tc [co1,co2]) 
+  | tc `hasKey` transCoercionTyConKey
      -- sym (co1 `trans` co2) --> (sym co2) `trans (sym co2)
+     -- Note reversal of arguments!
   = mkTransCoercion (mkSymCoercion co2) (mkSymCoercion co1)
-  | Just (co, ty) <- splitInstCoercion_maybe co
+
+  | tc `hasKey` instCoercionTyConKey
      -- sym (co @ ty) --> (sym co) @ ty
-  = mkInstCoercion (mkSymCoercion co) ty
-  | Just co <- splitLeftCoercion_maybe co
-     -- sym (left co) --> left (sym co)
-  = mkLeftCoercion (mkSymCoercion co)
-  | Just co <- splitRightCoercion_maybe co
-     -- sym (right co) --> right (sym co)
-  = mkRightCoercion (mkSymCoercion co)
-  where
-    maybe_drop (TyVarTy tv) 
-        | isCoVar tv = mkCoercion symCoercionTyCon [TyVarTy tv]
-        | otherwise  = TyVarTy tv
-    maybe_drop other = other
-mkSymCoercion (ForAllTy tv ty) = ForAllTy tv (mkSymCoercion ty)
--- for atomic types and constructors, we can just ignore sym since these
--- are reflexive coercions
+     -- Note: sym is not applied to 'ty'
+  = mkInstCoercion (mkSymCoercion co1) co2
+
+mkSymCoercion (TyConApp tc cos)        -- Other coercion tycons, such as those
+  = mkCoercion symCoercionTyCon [TyConApp tc cos]  -- arising from newtypes
+
 mkSymCoercion (TyVarTy tv) 
   | isCoVar tv = mkCoercion symCoercionTyCon [TyVarTy tv]
-  | otherwise  = TyVarTy tv
-mkSymCoercion co = mkCoercion symCoercionTyCon [co] 
+  | otherwise  = TyVarTy tv    -- Reflexive
+
+-------------------------------
+-- ToDo: we should be cleverer about transitivity
+mkTransCoercion g1 g2  -- sym g `trans` g = id
+  | (t1,_) <- coercionKind g1
+  , (_,t2) <- coercionKind g2
+  , t1 `coreEqType` t2 
+  = t1 
+
+  | otherwise
+  = mkCoercion transCoercionTyCon [g1, g2]
+
 
+-------------------------------
 -- Smart constructors for left and right
 mkLeftCoercion co 
   | Just (co', _) <- splitAppCoercion_maybe co = co'
-  | otherwise                           = mkCoercion leftCoercionTyCon [co]
+  | otherwise = mkCoercion leftCoercionTyCon [co]
 
 mkRightCoercion  co      
   | Just (co1, co2) <- splitAppCoercion_maybe co = co2
   | otherwise = mkCoercion rightCoercionTyCon [co]
 
-mkTransCoercion co1 co2 = mkCoercion transCoercionTyCon [co1, co2]
-
-mkInstCoercion  co ty = mkCoercion instCoercionTyCon  [co, ty]
+mkInstCoercion co ty
+  | Just (tv,co') <- splitForAllTy_maybe co
+  = substTyWith [tv] [ty] co'  -- (forall a.co) @ ty  -->  co[ty/a]
+  | otherwise
+  = mkCoercion instCoercionTyCon  [co, ty]
 
 mkInstsCoercion co tys = foldl mkInstCoercion co tys
 
@@ -284,18 +305,18 @@ mkNewTypeCoercion name tycon tvs rhs_ty
     rule args = ASSERT( co_con_arity == length args )
                (TyConApp tycon args, substTyWith tvs args rhs_ty)
 
--- Coercion identifying a data/newtype representation type and its family
--- instance.  It has the form `Co tvs :: F ts :=: R tvs', where `Co' is the
--- coercion tycon built here, `F' the family tycon and `R' the (derived)
+-- Coercion identifying a data/newtype/synonym representation type and its 
+-- family instance.  It has the form `Co tvs :: F ts :=: R tvs', where `Co' is 
+-- the coercion tycon built here, `F' the family tycon and `R' the (derived)
 -- representation tycon.
 --
-mkDataInstCoercion :: Name     -- unique name for the coercion tycon
-                  -> [TyVar]   -- type parameters of the coercion (`tvs')
-                  -> TyCon     -- family tycon (`F')
-                  -> [Type]    -- type instance (`ts')
-                  -> TyCon     -- representation tycon (`R')
-                  -> TyCon     -- => coercion tycon (`Co')
-mkDataInstCoercion name tvs family instTys rep_tycon
+mkFamInstCoercion :: Name      -- unique name for the coercion tycon
+                 -> [TyVar]    -- type parameters of the coercion (`tvs')
+                 -> TyCon      -- family tycon (`F')
+                 -> [Type]     -- type instance (`ts')
+                 -> TyCon      -- representation tycon (`R')
+                 -> TyCon      -- => coercion tycon (`Co')
+mkFamInstCoercion name tvs family instTys rep_tycon
   = mkCoercionTyCon name coArity rule
   where
     coArity = length tvs
@@ -411,3 +432,92 @@ splitNewTypeRepCo_maybe (TyConApp tc tys)
     co_con = maybe (pprPanic "splitNewTypeRepCo_maybe" (ppr tc)) id (newTyConCo_maybe tc)
 splitNewTypeRepCo_maybe other = Nothing
 \end{code}
+
+
+--------------------------------------
+-- CoercionI smart constructors
+--     lifted smart constructors of ordinary coercions
+
+
+\begin{code}
+
+       -- CoercionI is either 
+       --      (a) proper coercion
+       --      (b) the identity coercion
+data CoercionI = IdCo | ACo Coercion
+
+isIdentityCoercion :: CoercionI -> Bool
+isIdentityCoercion IdCo = True
+isIdentityCoercion _    = False
+
+mkSymCoI :: CoercionI -> CoercionI
+mkSymCoI IdCo = IdCo
+mkSymCoI (ACo co) = ACo $ mkCoercion symCoercionTyCon [co] 
+                               -- the smart constructor
+                               -- is too smart with tyvars
+
+mkTransCoI :: CoercionI -> CoercionI -> CoercionI
+mkTransCoI IdCo aco = aco
+mkTransCoI aco IdCo = aco
+mkTransCoI (ACo co1) (ACo co2) = ACo $ mkTransCoercion co1 co2
+
+mkTyConAppCoI :: TyCon -> [Type] -> [CoercionI] -> CoercionI
+mkTyConAppCoI tyCon tys cois =
+       let (anyAcon,co_args) = f tys cois
+       in if anyAcon
+               then ACo (TyConApp tyCon co_args)
+               else IdCo
+       where
+               f [] [] = (False,[])
+               f (x:xs) (y:ys) = 
+                       let (b,cos) = f xs ys
+                       in case y of
+                               IdCo   -> (b,x:cos)
+                               ACo co -> (True,co:cos)
+
+mkAppTyCoI :: Type -> CoercionI -> Type -> CoercionI -> CoercionI
+mkAppTyCoI ty1 IdCo ty2 IdCo = IdCo
+mkAppTyCoI ty1 coi1 ty2 coi2 =
+       ACo $ AppTy (fromCoI coi1 ty1) (fromCoI coi2 ty2)
+
+mkFunTyCoI :: Type -> CoercionI -> Type -> CoercionI -> CoercionI
+mkFunTyCoI ty1 IdCo ty2 IdCo = IdCo
+mkFunTyCoI ty1 coi1 ty2 coi2 =
+       ACo $ FunTy (fromCoI coi1 ty1) (fromCoI coi2 ty2)
+
+mkNoteTyCoI :: TyNote -> CoercionI -> CoercionI
+mkNoteTyCoI _ IdCo = IdCo
+mkNoteTyCoI note (ACo co) = ACo $ NoteTy note co
+
+mkForAllTyCoI :: TyVar -> CoercionI -> CoercionI
+mkForAllTyCoI _ IdCo = IdCo
+mkForAllTyCoI tv (ACo co) = ACo $ ForAllTy tv co
+
+fromCoI IdCo ty     = ty
+fromCoI (ACo co) ty = co
+
+mkClassPPredCoI :: Class -> [Type] -> [CoercionI] -> CoercionI
+mkClassPPredCoI cls tys cois =
+       let (anyAcon,co_args) = f tys cois
+       in if anyAcon
+               then ACo $ PredTy $ ClassP cls co_args
+               else IdCo
+       where
+               f [] [] = (False,[])
+               f (x:xs) (y:ys) = 
+                       let (b,cos) = f xs ys
+                       in case y of
+                               IdCo   -> (b,x:cos)
+                               ACo co -> (True,co:cos)
+
+mkIParamPredCoI :: (IPName Name) -> CoercionI -> CoercionI 
+mkIParamPredCoI ipn IdCo     = IdCo
+mkIParamPredCoI ipn (ACo co) = ACo $ PredTy $ IParam ipn co
+
+mkEqPredCoI :: Type -> CoercionI -> Type -> CoercionI -> CoercionI
+mkEqPredCoI _    IdCo     _   IdCo      = IdCo
+mkEqPredCoI ty1  IdCo     _   (ACo co2) = ACo $ PredTy $ EqPred ty1 co2
+mkEqPredCoI ty1 (ACo co1) ty2 coi2      = ACo $ PredTy $ EqPred co1 (fromCoI coi2 ty2)
+
+\end{code}
+