Document -fwarn-unrecognised-pragmas; fixes trac #3031
[ghc-hetmet.git] / docs / users_guide / glasgow_exts.xml
index 393cbf5..b7e8ca4 100644 (file)
@@ -38,19 +38,20 @@ documentation</ulink> describes all the libraries that come with GHC.
     <indexterm><primary>extensions</primary><secondary>options controlling</secondary>
     </indexterm>
 
-    <para>The language option flag control what variation of the language are
+    <para>The language option flags control what variation of the language are
     permitted.  Leaving out all of them gives you standard Haskell
     98.</para>
 
-    <para>Generally speaking, all the language options are introduced by "<option>-X</option>", 
-    e.g. <option>-XTemplateHaskell</option>.
-    </para>
-
-   <para> All the language options can be turned off by using the prefix "<option>No</option>"; 
-      e.g. "<option>-XNoTemplateHaskell</option>".</para>
-
-   <para> Language options recognised by Cabal can also be enabled using the <literal>LANGUAGE</literal> pragma,
-   thus <literal>{-# LANGUAGE TemplateHaskell #-}</literal> (see <xref linkend="language-pragma"/>>). </para>
+    <para>Language options can be controlled in two ways:
+    <itemizedlist>
+      <listitem><para>Every language option can switched on by a command-line flag "<option>-X...</option>" 
+        (e.g. <option>-XTemplateHaskell</option>), and switched off by the flag "<option>-XNo...</option>"; 
+        (e.g. <option>-XNoTemplateHaskell</option>).</para></listitem>
+      <listitem><para>
+          Language options recognised by Cabal can also be enabled using the <literal>LANGUAGE</literal> pragma,
+          thus <literal>{-# LANGUAGE TemplateHaskell #-}</literal> (see <xref linkend="language-pragma"/>). </para>
+          </listitem>
+      </itemizedlist></para>
 
     <para>The flag <option>-fglasgow-exts</option>
           <indexterm><primary><option>-fglasgow-exts</option></primary></indexterm>
@@ -390,7 +391,7 @@ Indeed, the bindings can even be recursive.
         the syntax by eliminating odd cases
         like <literal>Prelude..</literal>.  For example,
         when <literal>NewQualifiedOperators</literal> is on, it is possible to
-        write the enerated sequence <literal>[Monday..]</literal>
+        write the enumerated sequence <literal>[Monday..]</literal>
         without spaces, whereas in Haskell 98 this would be a
         reference to the operator &lsquo;<literal>.</literal>&lsquo;
         from module <literal>Monday</literal>.</para>
@@ -1232,7 +1233,7 @@ it is not clear which of the two types is intended.
 </para>
 <para>
 Haskell 98 regards all four as ambiguous, but with the
-<option>-fdisambiguate-record-fields</option> flag, GHC will accept
+<option>-XDisambiguateRecordFields</option> flag, GHC will accept
 the former two.  The rules are precisely the same as those for instance
 declarations in Haskell 98, where the method names on the left-hand side 
 of the method bindings in an instance declaration refer unambiguously
@@ -2002,9 +2003,9 @@ of the data constructor.  For GADTs, the field may mention only types
 that appear as a simple type-variable argument in the constructor's result
 type</emphasis>.  For example:
 <programlisting>
-data T a where { T1 { f1::a, f2::(a,b) } :: T a }    -- b is existential
-upd1 t x = t { f1=x }   -- OK:   upd1 :: T a -> b -> T b
-upd2 t x = t { f2=x }   -- BAD   (f2's type mentions b, which is
+data T a b where { T1 { f1::a, f2::b, f3::(b,c) } :: T a b } -- c is existential
+upd1 t x = t { f1=x }   -- OK:   upd1 :: T a b -> a' -> T a' b
+upd2 t x = t { f3=x }   -- BAD   (f3's type mentions c, which is
                         --        existentially quantified)
 
 data G a b where { G1 { g1::a, g2::c } :: G a [c] }
@@ -3860,37 +3861,71 @@ data instance GMap (Either a b) v = GMapEither (GMap a v) (GMap b v)
       can be any number.
     </para>
     <para>
-      Data and newtype instance declarations are only legit when an
-      appropriate family declaration is in scope - just like class instances
-      require the class declaration to be visible.  Moreover, each instance
+      Data and newtype instance declarations are only permitted when an
+      appropriate family declaration is in scope - just as a class instance declaratoin
+      requires the class declaration to be visible.  Moreover, each instance
       declaration has to conform to the kind determined by its family
       declaration.  This implies that the number of parameters of an instance
       declaration matches the arity determined by the kind of the family.
-      Although, all data families are declared with
-      the <literal>data</literal> keyword, instances can be
-      either <literal>data</literal> or <literal>newtype</literal>s, or a mix
-      of both. 
     </para>
     <para>
+      A data family instance declaration can use the full exprssiveness of
+      ordinary <literal>data</literal> or <literal>newtype</literal> declarations:
+      <itemizedlist>
+      <listitem><para> Although, a data family is <emphasis>introduced</emphasis> with
+      the keyword "<literal>data</literal>", a data family <emphasis>instance</emphasis> can 
+      use either <literal>data</literal> or <literal>newtype</literal>. For example:
+<programlisting>
+data family T a
+data    instance T Int  = T1 Int | T2 Bool
+newtype instance T Char = TC Bool
+</programlisting>
+      </para></listitem>
+      <listitem><para> A <literal>data instance</literal> can use GADT syntax for the data constructors,
+      and indeed can define a GADT.  For example:
+<programlisting>
+data family G a b
+data instance G [a] b where
+   G1 :: c -> G [Int] b
+   G2 :: G [a] Bool
+</programlisting>
+      </para></listitem>
+      <listitem><para> You can use a <literal>deriving</literal> clause on a
+      <literal>data instance</literal> or <literal>newtype instance</literal>
+      declaration.
+      </para></listitem>
+      </itemizedlist>
+    </para>
+
+    <para>
       Even if type families are defined as toplevel declarations, functions
-      that perform different computations for different family instances still
+      that perform different computations for different family instances may still
       need to be defined as methods of type classes.  In particular, the
       following is not possible: 
 <programlisting>
 data family T a
 data instance T Int  = A
 data instance T Char = B
-nonsence :: T a -> Int
-nonsence A = 1             -- WRONG: These two equations together...
-nonsence B = 2             -- ...will produce a type error.
+foo :: T a -> Int
+foo A = 1             -- WRONG: These two equations together...
+foo B = 2             -- ...will produce a type error.
 </programlisting>
-      Given the functionality provided by GADTs (Generalised Algebraic Data
+Instead, you would have to write <literal>foo</literal> as a class operation, thus:
+<programlisting>
+class C a where 
+  foo :: T a -> Int
+instance Foo Int where
+  foo A = 1
+instance Foo Char where
+  foo B = 2
+</programlisting>
+      (Given the functionality provided by GADTs (Generalised Algebraic Data
       Types), it might seem as if a definition, such as the above, should be
       feasible.  However, type families are - in contrast to GADTs - are
       <emphasis>open;</emphasis> i.e., new instances can always be added,
       possibly in other 
       modules.  Supporting pattern matching across different data instances
-      would require a form of extensible case construct. 
+      would require a form of extensible case construct.)
     </para>
 
     <sect4 id="assoc-data-inst">
@@ -5994,7 +6029,7 @@ main = do { print $ eval [$expr|1 + 2|]
 module Expr where
 
 import qualified Language.Haskell.TH as TH
-import Language.Haskell.TH.Quasi
+import Language.Haskell.TH.Quote
 
 data Expr  =  IntExpr Integer
            |  AntiIntExpr String
@@ -6578,13 +6613,24 @@ Because the preprocessor targets Haskell (rather than Core),
 <indexterm><primary>Bang patterns</primary></indexterm>
 </title>
 <para>GHC supports an extension of pattern matching called <emphasis>bang
-patterns</emphasis>.   Bang patterns are under consideration for Haskell Prime.
+patterns</emphasis>, written <literal>!<replaceable>pat</replaceable></literal>.   
+Bang patterns are under consideration for Haskell Prime.
 The <ulink
 url="http://hackage.haskell.org/trac/haskell-prime/wiki/BangPatterns">Haskell
 prime feature description</ulink> contains more discussion and examples
 than the material below.
 </para>
 <para>
+The key change is the addition of a new rule to the 
+<ulink url="http://haskell.org/onlinereport/exps.html#sect3.17.2">semantics of pattern matching in the Haskell 98 report</ulink>.
+Add new bullet 10, saying: Matching the pattern <literal>!</literal><replaceable>pat</replaceable> 
+against a value <replaceable>v</replaceable> behaves as follows:
+<itemizedlist>
+<listitem><para>if <replaceable>v</replaceable> is bottom, the match diverges</para></listitem>
+<listitem><para>otherwise, <replaceable>pat</replaceable> is matched against <replaceable>v</replaceable>  </para></listitem>
+</itemizedlist>
+</para>
+<para>
 Bang patterns are enabled by the flag <option>-XBangPatterns</option>.
 </para>
 
@@ -6615,9 +6661,40 @@ A bang only really has an effect if it precedes a variable or wild-card pattern:
 f3 !(x,y) = [x,y]
 f4 (x,y)  = [x,y]
 </programlisting>
-Here, <literal>f3</literal> and <literal>f4</literal> are identical; putting a bang before a pattern that
+Here, <literal>f3</literal> and <literal>f4</literal> are identical; 
+putting a bang before a pattern that
 forces evaluation anyway does nothing.
-</para><para>
+</para>
+<para>
+There is one (apparent) exception to this general rule that a bang only
+makes a difference when it precedes a variable or wild-card: a bang at the
+top level of a <literal>let</literal> or <literal>where</literal>
+binding makes the binding strict, regardless of the pattern. For example:
+<programlisting>
+let ![x,y] = e in b
+</programlisting>
+is a strict binding: operationally, it evaluates <literal>e</literal>, matches
+it against the pattern <literal>[x,y]</literal>, and then evaluates <literal>b</literal>.
+(We say "apparent" exception because the Right Way to think of it is that the bang
+at the top of a binding is not part of the <emphasis>pattern</emphasis>; rather it
+is part of the syntax of the <emphasis>binding</emphasis>.)
+Nested bangs in a pattern binding behave uniformly with all other forms of 
+pattern matching.  For example
+<programlisting>
+let (!x,[y]) = e in b
+</programlisting>
+is equivalent to this:
+<programlisting>
+let { t = case e of (x,[y]) -> x `seq` (x,y)
+      x = fst t
+      y = snd t }
+in b
+</programlisting>
+The binding is lazy, but when either <literal>x</literal> or <literal>y</literal> is
+evaluated by <literal>b</literal> the entire pattern is matched, including forcing the
+evaluation of <literal>x</literal>.
+</para>
+<para>
 Bang patterns work in <literal>case</literal> expressions too, of course:
 <programlisting>
 g5 x = let y = f x in body
@@ -6627,18 +6704,6 @@ g7 x = case f x of { !y -&gt; body }
 The functions <literal>g5</literal> and <literal>g6</literal> mean exactly the same thing.  
 But <literal>g7</literal> evaluates <literal>(f x)</literal>, binds <literal>y</literal> to the
 result, and then evaluates <literal>body</literal>.
-</para><para>
-Bang patterns work in <literal>let</literal> and <literal>where</literal>
-definitions too. For example:
-<programlisting>
-let ![x,y] = e in b
-</programlisting>
-is a strict pattern: operationally, it evaluates <literal>e</literal>, matches
-it against the pattern <literal>[x,y]</literal>, and then evaluates <literal>b</literal>
-The "<literal>!</literal>" should not be regarded as part of the pattern; after all,
-in a function argument <literal>![x,y]</literal> means the 
-same as <literal>[x,y]</literal>.  Rather, the "<literal>!</literal>" 
-is part of the syntax of <literal>let</literal> bindings.
 </para>
 </sect2>
 
@@ -6824,14 +6889,31 @@ Assertion failures can be caught, see the documentation for the
     <replaceable>word</replaceable>.  The various values for
     <replaceable>word</replaceable> that GHC understands are described
     in the following sections; any pragma encountered with an
-    unrecognised <replaceable>word</replaceable> is (silently)
+    unrecognised <replaceable>word</replaceable> is
     ignored. The layout rule applies in pragmas, so the closing <literal>#-}</literal>
     should start in a column to the right of the opening <literal>{-#</literal>. </para> 
 
-    <para>Certain pragmas are <emphasis>file-header pragmas</emphasis>.  A file-header
-      pragma must precede the <literal>module</literal> keyword in the file.  
+    <para>Certain pragmas are <emphasis>file-header pragmas</emphasis>:
+      <itemizedlist>
+      <listitem><para>
+         A file-header
+         pragma must precede the <literal>module</literal> keyword in the file.
+         </para></listitem>
+      <listitem><para>
       There can be as many file-header pragmas as you please, and they can be
-      preceded or followed by comments.</para>
+      preceded or followed by comments.  
+         </para></listitem>
+      <listitem><para>
+      File-header pragmas are read once only, before
+      pre-processing the file (e.g. with cpp).
+         </para></listitem>
+      <listitem><para>
+         The file-header pragmas are: <literal>{-# LANGUAGE #-}</literal>,
+       <literal>{-# OPTIONS_GHC #-}</literal>, and
+       <literal>{-# INCLUDE #-}</literal>.
+         </para></listitem>
+      </itemizedlist>
+      </para>
 
     <sect2 id="language-pragma">
       <title>LANGUAGE pragma</title>
@@ -8120,7 +8202,7 @@ r) ->
 <title>Special built-in functions</title>
 <para>GHC has a few built-in functions with special behaviour.  These
 are now described in the module <ulink
-url="../libraries/base/GHC-Prim.html"><literal>GHC.Prim</literal></ulink>
+url="../libraries/ghc-prim/GHC-Prim.html"><literal>GHC.Prim</literal></ulink>
 in the library documentation.</para>
 </sect1>